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A transformation L:  y = L[x] is called linear if:

A linear system is a functional transformation of time functions L: 
y(t)=L[x(t)] such that:
 

Note that in a linear system the current output at time t may be 
influenced by past or future inputs x(t'). 

A linear system is called  time invariant if:

(shift invariant in the discrete time case)

Linear Time Invariant System (LTI)

y=L[a x1+ b x2]=a L [ x1]+ b L [ x2]

y (t)=L [ x( t)] ⇒ y (t+ τ)=L [ x (t+ τ)]

y (t)=L [a x1(t)+ b x2( t)]=a L [ x1( t)]+ b L [ x2(t)]
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A LTI system is fully characterized by the impulse response h(τ)

Impulse response 

y (t)=∫−∞

∞

d τh (τ) x (t−τ)

A LTI is represented as:

h(τ) is called impulse response because it is the system 
response to an input impulse:

x (t )=δ( t)

y (t)=∫−∞

∞

d τh (τ)δ(t−τ)=h (t)

 h(τ) x(t)  y(t)
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Impulse response h(τ) can be measured using an unit impulse:

Impulse response 

 h(τ) δ(t)  h(t)

Also by differentiating the output to a step input:

x( t)=Θ( t)
∂

∂ t
y (t)=∫−∞

∞

d τ h( τ)
∂

∂ t
Θ(t−τ)

=∫−∞

∞

d τ h(τ )δ (t−τ)=h( t)

δ( t)=∂/∂ t Θ(t ) where 

  h(τ) Θ(t)   y(t)
/t

 h(t)
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Impulse response -discrete, causal, finite  

In practice when implementing this digitally we have to make the 
following simplifications:

1. Discrete: Approximate integral with sum at discrete lags τ = k t 
Sample input and output at times t = n t:

2. Assume Causal: Depends only on the past h[l]=0, l < 0:
3. Assume Finite Impulse Response (FIR): h[l]=0, P<l, P < 

y [n]=∑
l=0

P−1

h[ l ] x [n−l ]

∫ d τh (τ) x (t−τ)=∑l
h[ l ] x [n−l ]
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Impulse response
Assignment 3A: Experiment with impulse response h 
1. Record your voice using sd.rec() (import sounddevice as sd) and save it as a wav file 

(from scipy.io import wavfile as wav). Do this separately. Send with your homework 
only the subsequent code along with your recorded wav file.  

2. Load a sound file using wav.read() 
3. Display the sound signal (subplot #1).
4. Display the absolute value of its Fourier transform (subplot #2). 
5. Select coefficients for h – the impulse response, a.k.a filter.
6. Filter the sound with this impulse response using np.convolve() (import numpy as np)
7. Display the  absolute value of the Fourier transform (amplitude) of this filtered signal  

(subplot #3).
8. Go back to 4 and select new values until you achieve either a low-pass or high-pass 

filter, as judged by how much the Fourier transform of the filtered signal changed 
relative to the unfiltered signal. Show the amplitude of the Fourier transform for this 
filter. (subplot #4). You could also listen to the filtered signals to make a judgment on 
what your filter did (import sounddevice as sd; sd.play(x, fs)). Indicate whether your 
goal was a low-pass or a high-pass filter.  
In total there should be 4 plots on your figure. Put the 3 spectra next to each other and 
use the same vertical axes so they are easier to compare to each other. Be sure to 
properly label the time and frequency axes in seconds and Hertz respectively. Only 
show the positive frequencies and show amplitude on logarithmic scale. Submit your 
program and sound file. 
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Convolution

  x[n] 
 h[n] 

  h[n] 
 x[n] 

  x[n] 
 h[n] + g[n]

 x[n]  
h[n] 

g[n] 

+

  x[n] 
 h[n] * g[n]

  x[n] 
 h[n]  g[n] 

Using this definition one can show the following properties:

Commutative:

                                                      =

Distributive:

                                                     =

Associative:

                                                      =

h [n]∗x [n ] = ∑
l=−∞

∞

h[ l ] x [n− l ]
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y (t)=h( t)∗x (t) ⇔ Y (ν)=H (ν) X (ν)

Y (ν)=FT [h(t )∗x( t)]=∫
−∞

∞

dt h( t)∗x (t)e−i 2π ν t
=

=∫
−∞

∞

dt ∫
−∞

∞

dt ' h(t ') x ( t−t ' )e−i 2π ν t

=∫
−∞

∞

dt ∫
−∞

∞

dt ' h(t ') x ( t)e−i 2π ν(t+ t ' )

=∫
−∞

∞

dt ' h(t ' )e−i 2π ν t ' ∫
−∞

∞

dt x (t)e−i 2π ν t

=H (ν) X (ν)

Because the Fourier transform of the convolution ...

Fourier Transform – Convolution Theorem
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Note that with the convolution theorem we can implement 
convolution as a multiplication in the frequency domain. 

y (t)=h( t)∗x (t)⇔Y (ν)=H (ν) X (ν)

h(t)            
                                                               y(t)
x(t)            

FT

FT
FT-1



Fourier Transform – Convolution Theorem

H (ν)

X (ν)
Y (ν)
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Impulse response

Assignment: Measure the impulse response of an RC circuit. 

● Build an RC circuit with any resistor and capacitor.  Apply at 
rectangle waveform at the input and measure the response at the 
output. Also measure the input. Make sure you pick a reasonable 
sampling rate and a frequency for the waveform so that you observe 
the step response.  

● Measures the step response (at least 10 repeats) and save it to a CSV 
file. 

● Load the data into python. You can use pandas read_csv(). 
● Calculate the temporal derivative to obtain the impulse response.
● Arrange the 10 repeats into a matrix and then average across the 10 

repeats. You may use np.diff(), np.nonzero(), “>” and astype(int) to 
convert the boolean into interger numbers.    

● Display your results on a graph showing the impulse response as a 
function of time. Include axis labels, and units.

● Repeat for output measures across the resistor and across the 
capacitor. 
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Impulse response

Assignment 3C: Measure the impulse response of an acoustic 
system. 

● Use sd.playrec() function (import sounddevice as sd) to play and 
record sound at the same time. Be sure that speaker and microphones 
are close enough (loud enough) so that you record the sound coming 
out of the speakers.   

● Make repeated measures of the impulse response (at least 20). This 
can be done by playing 20 impulses with enough spacing between 
them so the recorded signals generated by neighboring pulses does 
not overlap. 

● Take the average of the repeated impulse responses measures. 
● Estimate the amount of noise of this impulse response for each 

sample.
● Display your results on a graph showing the impulse response as a 

function of time. Include error bars, axis labels, and time units.
● Save the figure as png image, and send a copy of the figure and code. 
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Fourier Transform - Inverse Filter

With the Convolution Theorem we can derive the inverse 
convolution (or inverse filter)

Therefore

And the inverse filter is given by the inverse FT of                  :

y (t)=h( t)∗x (t)⇔Y (ν)=H (ν) X (ν)

X (ν)=
Y (ν)

H (ν)

x (t )=FT
−1[ 1

H (ν) ]∗y (t )=hinv( t)∗y ( t)

H−1
(ν)
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In signal processing we always work with the DFT since we can 
compute Frourier transform only for discrete frequencies. 

Important result on computational cost: While computing DFT 
values X[k], k=1...N, would seem to take N2 operations there is an 
efficient method called Fast Fourier Transform (FFT) of order: 

N log
2
 N

>> X =  fft(x);  
>> x = ifft(X);

With this one can implement convolution in log
2
(P) operations per 

sample rather than P!

 Discrete Fourier Transform - FFT
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Because X[k] corresponds to a periodic x[n] with period N the 
convolution of two signals is equivalent to a circular convolution:

That is, the circular convolution "wraps around" 

It can be implemented with a circular Toeplitz matrix:

 DFT - circular convolution

h [n]∘ x [n ]=∑
k=0

N −1

h [k ] x [(n−k )mod N ]

h  

 -N                0                N-1       

 x 

[
y [0]

y [1]

y [2 ]

⋮
y [ N−1]

]=[
h[0] h [N −1] h [ N−2] ⋯ h[1]

h[1] h[0] h[ N−1] ⋯ h [2]

h [2] h[1] h [0] ⋯ h [3]

⋮ ⋮ ⋮ ⋱ ⋮

h[ N −1] h[ N −2] h[ N−3 ] ⋯ h [0]
] [

x [0 ]

x [1]

x [ 2]

⋮
x [ N−1]

]
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The convolution theorem for the DFT corresponds now to a 
circular convolution:

We can use this for a fast implement the linear convolution

 DFT - circular convolution

y [n]=h [n]∘ x [n ] ⇔ Y [k ]=H [k ] X [k ]

y [n]=h [n]∗x [n ]
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Fourier Transform - Inverse Filter

Assignment 4:

● Generate a random signal x[n] with n=1...N.  (N is a power of 2)
● Filter it with h=[1; -0.8;0.5] to generate y = h*x;
● Recover the signal from y with the inverse filter implemented in 

the Fourier domain. Show the original and recovered x in a 
single graph.

● Show the impulse response of the inverse filter.
● Recover the signal by convolving with the inverse filter in the 

time domain. Again compare the results in a single graph.


