
1

Lucas Parra, CCNY City College of New York

BME 50500: Image and Signal
Processing in Biomedicine

Lecture 3: Linear Systems

Lucas C. Parra
Biomedical Engineering Department
City College of New York

CCNY

2

Lucas Parra, CCNY City College of New York

A transformation L: y = L[x] is called linear if:

A linear system is a functional transformation of time functions L:
y(t)=L[x(t)] such that:

Note that in a linear system the current output at time t may be
influenced by past or future inputs x(t').

A linear system is called time invariant if:

(shift invariant in the discrete time case)

Linear Time Invariant System (LTI)

y=L[a x1+ b x2]=a L [x1]+ b L [x2]

y (t)=L [x(t)] ⇒ y (t+ τ)=L [x (t+ τ)]

y (t)=L [a x1(t)+ b x2(t)]=a L [x1(t)]+ b L [x2(t)]

3

Lucas Parra, CCNY City College of New York

A LTI system is fully characterized by the impulse response h(τ)

Impulse response

y (t)=∫−∞

∞

d τh (τ) x (t−τ)

A LTI is represented as:

h(τ) is called impulse response because it is the system
response to an input impulse:

x (t)=δ(t)

y (t)=∫−∞

∞

d τh (τ)δ(t−τ)=h (t)

 h(τ) x(t) y(t)

4

Lucas Parra, CCNY City College of New York

Impulse response h(τ) can be measured using an unit impulse:

Impulse response

 h(τ) δ(t) h(t)

Also by differentiating the output to a step input:

x(t)=Θ(t)
∂

∂ t
y (t)=∫−∞

∞

d τ h(τ)
∂

∂ t
Θ(t−τ)

=∫−∞

∞

d τ h(τ)δ (t−τ)=h(t)

δ(t)=∂/∂ t Θ(t) where

 h(τ) Θ(t) y(t)
/t

 h(t)

5

Lucas Parra, CCNY City College of New York

Impulse response -discrete, causal, finite

In practice when implementing this digitally we have to make the
following simplifications:

1. Discrete: Approximate integral with sum at discrete lags τ = k t
Sample input and output at times t = n t:

2. Assume Causal: Depends only on the past h[l]=0, l < 0:
3. Assume Finite Impulse Response (FIR): h[l]=0, P<l, P <

y [n]=∑
l=0

P−1

h[l] x [n−l]

∫ d τh (τ) x (t−τ)=∑l
h[l] x [n−l]

6

Lucas Parra, CCNY City College of New York

Impulse response
Assignment 3A: Experiment with impulse response h
1. Record your voice using sd.rec() (import sounddevice as sd) and save it as a wav file

(from scipy.io import wavfile as wav). Do this separately. Send with your homework
only the subsequent code along with your recorded wav file.

2. Load a sound file using wav.read()
3. Display the sound signal (subplot #1).
4. Display the absolute value of its Fourier transform (subplot #2).
5. Select coefficients for h – the impulse response, a.k.a filter.
6. Filter the sound with this impulse response using np.convolve() (import numpy as np)
7. Display the absolute value of the Fourier transform (amplitude) of this filtered signal

(subplot #3).
8. Go back to 4 and select new values until you achieve either a low-pass or high-pass

filter, as judged by how much the Fourier transform of the filtered signal changed
relative to the unfiltered signal. Show the amplitude of the Fourier transform for this
filter. (subplot #4). You could also listen to the filtered signals to make a judgment on
what your filter did (import sounddevice as sd; sd.play(x, fs)). Indicate whether your
goal was a low-pass or a high-pass filter.
In total there should be 4 plots on your figure. Put the 3 spectra next to each other and
use the same vertical axes so they are easier to compare to each other. Be sure to
properly label the time and frequency axes in seconds and Hertz respectively. Only
show the positive frequencies and show amplitude on logarithmic scale. Submit your
program and sound file.

7

Lucas Parra, CCNY City College of New York

Convolution

 x[n]
 h[n]

 h[n]
 x[n]

 x[n]
 h[n] + g[n]

 x[n]
h[n]

g[n]

+

 x[n]
 h[n] * g[n]

 x[n]
 h[n] g[n]

Using this definition one can show the following properties:

Commutative:

 =

Distributive:

 =

Associative:

 =

h [n]∗x [n] = ∑
l=−∞

∞

h[l] x [n− l]

8

Lucas Parra, CCNY City College of New York

y (t)=h(t)∗x (t) ⇔ Y (ν)=H (ν) X (ν)

Y (ν)=FT [h(t)∗x(t)]=∫
−∞

∞

dt h(t)∗x (t)e−i 2π ν t
=

=∫
−∞

∞

dt ∫
−∞

∞

dt ' h(t ') x (t−t ')e−i 2π ν t

=∫
−∞

∞

dt ∫
−∞

∞

dt ' h(t ') x (t)e−i 2π ν(t+ t ')

=∫
−∞

∞

dt ' h(t ')e−i 2π ν t ' ∫
−∞

∞

dt x (t)e−i 2π ν t

=H (ν) X (ν)

Because the Fourier transform of the convolution ...

Fourier Transform – Convolution Theorem

9

Lucas Parra, CCNY City College of New York

Note that with the convolution theorem we can implement
convolution as a multiplication in the frequency domain.

y (t)=h(t)∗x (t)⇔Y (ν)=H (ν) X (ν)

h(t)
 y(t)
x(t)

FT

FT
FT-1

Fourier Transform – Convolution Theorem

H (ν)

X (ν)
Y (ν)

10

Lucas Parra, CCNY City College of New York

Impulse response

Assignment: Measure the impulse response of an RC circuit.

● Build an RC circuit with any resistor and capacitor. Apply at
rectangle waveform at the input and measure the response at the
output. Also measure the input. Make sure you pick a reasonable
sampling rate and a frequency for the waveform so that you observe
the step response.

● Measures the step response (at least 10 repeats) and save it to a CSV
file.

● Load the data into python. You can use pandas read_csv().
● Calculate the temporal derivative to obtain the impulse response.
● Arrange the 10 repeats into a matrix and then average across the 10

repeats. You may use np.diff(), np.nonzero(), “>” and astype(int) to
convert the boolean into interger numbers.

● Display your results on a graph showing the impulse response as a
function of time. Include axis labels, and units.

● Repeat for output measures across the resistor and across the
capacitor.

11

Lucas Parra, CCNY City College of New York

Impulse response

Assignment 3C: Measure the impulse response of an acoustic
system.

● Use sd.playrec() function (import sounddevice as sd) to play and
record sound at the same time. Be sure that speaker and microphones
are close enough (loud enough) so that you record the sound coming
out of the speakers.

● Make repeated measures of the impulse response (at least 20). This
can be done by playing 20 impulses with enough spacing between
them so the recorded signals generated by neighboring pulses does
not overlap.

● Take the average of the repeated impulse responses measures.
● Estimate the amount of noise of this impulse response for each

sample.
● Display your results on a graph showing the impulse response as a

function of time. Include error bars, axis labels, and time units.
● Save the figure as png image, and send a copy of the figure and code.

12

Lucas Parra, CCNY City College of New York

Fourier Transform - Inverse Filter

With the Convolution Theorem we can derive the inverse
convolution (or inverse filter)

Therefore

And the inverse filter is given by the inverse FT of :

y (t)=h(t)∗x (t)⇔Y (ν)=H (ν) X (ν)

X (ν)=
Y (ν)

H (ν)

x (t)=FT
−1[1

H (ν)]∗y (t)=hinv(t)∗y (t)

H−1
(ν)

13

Lucas Parra, CCNY City College of New York

In signal processing we always work with the DFT since we can
compute Frourier transform only for discrete frequencies.

Important result on computational cost: While computing DFT
values X[k], k=1...N, would seem to take N2 operations there is an
efficient method called Fast Fourier Transform (FFT) of order:

N log
2
 N

>> X = fft(x);
>> x = ifft(X);

With this one can implement convolution in log
2
(P) operations per

sample rather than P!

 Discrete Fourier Transform - FFT

14

Lucas Parra, CCNY City College of New York

Because X[k] corresponds to a periodic x[n] with period N the
convolution of two signals is equivalent to a circular convolution:

That is, the circular convolution "wraps around"

It can be implemented with a circular Toeplitz matrix:

 DFT - circular convolution

h [n]∘ x [n]=∑
k=0

N −1

h [k] x [(n−k)mod N]

h

 -N 0 N-1

 x

[
y [0]

y [1]

y [2]

⋮
y [N−1]

]=[
h[0] h [N −1] h [N−2] ⋯ h[1]

h[1] h[0] h[N−1] ⋯ h [2]

h [2] h[1] h [0] ⋯ h [3]

⋮ ⋮ ⋮ ⋱ ⋮

h[N −1] h[N −2] h[N−3] ⋯ h [0]
] [

x [0]

x [1]

x [2]

⋮
x [N−1]

]

15

Lucas Parra, CCNY City College of New York

The convolution theorem for the DFT corresponds now to a
circular convolution:

We can use this for a fast implement the linear convolution

 DFT - circular convolution

y [n]=h [n]∘ x [n] ⇔ Y [k]=H [k] X [k]

y [n]=h [n]∗x [n]

16

Lucas Parra, CCNY City College of New York

Fourier Transform - Inverse Filter

Assignment 4:

● Generate a random signal x[n] with n=1...N. (N is a power of 2)
● Filter it with h=[1; -0.8;0.5] to generate y = h*x;
● Recover the signal from y with the inverse filter implemented in

the Fourier domain. Show the original and recovered x in a
single graph.

● Show the impulse response of the inverse filter.
● Recover the signal by convolving with the inverse filter in the

time domain. Again compare the results in a single graph.

