
1

Lucas Parra, CCNY City College of New York

BME 50500: Image and Signal
Processing in Biomedicine

Lecture 4: Filtering

Lucas C. Parra
Biomedical Engineering Department
City College of New York

CCNY

2

Lucas Parra, CCNY City College of New York

Content (Lecture Schedule)

Linear systems in discrete time/space
Impulse response, shift invariance (4)
Convolution (4)
Discrete Fourier Transform (3)
Power spectrum (7)

Medial imaging modalities
MRI (2)
Tomography, CT, PET (5)
Ultrasound (8)

Engineering tradeoffs
Sampling, aliasing (1)
Time and frequency resolution (3)
Wavelength and spatial resolution (9)
Aperture and resolution (9)

Filtering
Magnitude and phase response (6)
Filtering (6)
Correlation (7)
Template Matching (10)

Intensity manipulations
A/D conversion, linearity (1)
Thresholding (10)
Gamma correction (11)
Histogram equalization (11)

Matlab

3

Lucas Parra, CCNY City College of New York

Consider stationary oscillatory input to a LSI system h[k]:

The output is the input times the DTFT of the impulse response

The oscillation with frequency  has been modified in phase by
the “phase delay” Δ and in amplitude by “gain” G

DTFT - System frequency response

x [n]=e j nω

y [n]= ∑
k=−∞

∞

h[k] x [n−k]= ∑
k=−∞

∞

h[k]e j (n−k)ω
=H (ω)e j nω

 H (ω)

G(ω)=|H (ω)| ΔΦ(ω)=angle(H (ω))

H (ω)=G e jΔ Φ

H (ω)e j nωe j nω

4

Lucas Parra, CCNY City College of New York

Gain of a filter determines the output/input power ratio

Gain is often specified in decibel:

Phase delay ΔΦ corresponds to a shift in time, Δt, called “group
delay” which depends on the frequency f

Gain and phase delay

G=√
P y

Px

Px=
1
N
∑
n=1

N

|x [n]|
2

dB(G)=20 log10G=10 log10

P y

P x

Δϕ=2π f Δ t=ω Δ t

5

Lucas Parra, CCNY City College of New York

DTFT inversion formula tells us that arbitrary input x[n] can be
decomposed into sum of oscillations

The system response to that is given by the convolution theorem

DTFT - System frequency response

Y (ω)=H (ω) X (ω)

x [n]=
1

2π
∫
−π

π

d ω X (ω)e j nω

...

H(
1
)

H(
2
)

H(
3
)

X(
1
)

X(
2
)

X(
3
)

DTFT DTFT-1 x[n] y[n]

6

Lucas Parra, CCNY City College of New York

Moving Average Filter - FIR

y [n]=∑
k=0

Q

b [k] x [n−k]

A FIR filter is sometimes also called a Moving Average (MA)
filter :

All symmetric MA filters will have a linear phase.

However, to generate a very narrow frequency response one may
need very long filters (remember the uncertainty principle!)

To generate long filters therefore we may need a infinite
impulse response.

 y[n]

 x[n]

 h[k]

b[k]

7

Lucas Parra, CCNY City College of New York

Auto Regressive Filter - IIR

y [n]=x [n]−∑
k =1

P

a[k] y [n−k]

An Infinite Impulse Response (IIR) can be easily implemented with
an Auto Regressive (AR) filter:

However, h[t] may not be stable! Filter h[k] is stable if:

 y[n]

a[k]

 x[n]
 

 h[k]

∑
k=−∞

∞

|h[k]|<∞

8

Lucas Parra, CCNY City College of New York

ARMA filter

y [n]=−∑
k =1

P

a[k] y [n−k]+∑
k =0

Q

b[k] x [n−k]

More generally an Infinite Impulse Response (IIR) can be represented
by an ARMA filter (also called difference model):

Since ARMA filter is LSI there is a corresponding h[k] that characterizes
the system impulse response.
>> y = filter(b,a,x);
 import scipy.signal as sig
 y=sig.lfilter(b,a,x)

 y[n]

a[k]

 x[n]
 

 h[k]

b[k]

9

Lucas Parra, CCNY City College of New York

Example: h[0] = 1, h[1]=-0.8 >> fs=200
>> H = fft(h,fs)

 Time domain response Frequency domain response
>> x = sin(2*pi*5*t); >> plot(fbin,db(abs(H)))

>> plot(t,filter(h,1,x))

>> plot(fbin,angle(H))

DTFT - System frequency response

10

Lucas Parra, CCNY City College of New York

Assignment 6:

1. Pick some arbitrary FIR filter and show the magnitude and phase
response from 0Hz to Nyquist frequency. Make sure the axis are
labeled correctly.

2. Generate a 1 second steady state sinusoid with some frequency of
your choice and filter this input x[n] with your filter to generate
output y[n]. Show the input x[n] and output y[n] in a single graph.

3. Compute from these two signals the magnitude and phase response
of the filter at that frequency. Plot your measurement as a point on
the phase and magnitude plots from task 2.

4. Repeat the process for various frequencies.
5. Add -10dB noise to the output y[n] and repeat your estimation of

phase and magnitude response.

DTFT - System frequency response

11

Lucas Parra, CCNY City College of New York

Assignment 6 - Alternate:

1. Use the impulse response you have measured from your system
(Assignment 3) and show the magnitude and phase response from
0Hz to Nyquist frequency. Make sure the axis are labeled correctly.

2. Generate a steady state sinusoid with the function generator at
some frequency of your choice and apply this voltage to the “input”
of your system. Sample the output and show input and output in a
single graph. Repeat this for 4 different frequencies.

3. For each frequency compute from these input and output signals the
magnitude and phase response of your system at that frequency.
Plot your measurement as a point on the phase and magnitude plots
from task 2.

DTFT - System frequency response

12

Lucas Parra, CCNY City College of New York

Assignment 6 – Alternate with soundcard:

1. Use the code from Assignment 3 where you measure the impulse
response of your sound equipment (from speaker to microphone).
Amend this code to compute and display the magnitude response in
dB from 0Hz to Nyquist frequency. Make sure the axis are labeled
correctly.

2. Generate a sinusoid of 1s duration and use sd.playrec() command to
play and record the response of your sound equipment to this
sinusoid. Repeat this for at least 20 different frequencies between
100Hz and 6000Hz.

3. For each frequency compute from these input and output signals the
magnitude response of your system at that frequency. Plot your
measurement as a point on the magnitude plots from task 1.

DTFT - System frequency response

13

Lucas Parra, CCNY City College of New York

Goal: Highpass filter the DC drift in
EEG with minimal latency and
memory.
>> sptool
Solution: Select IIR filter, 2nd order
Butterworth with cutoff at 1Hz.

DTFT - Filter design example

Downside to DC
removal is long
phase delay for
eye blinks.

14

Lucas Parra, CCNY City College of New York

A filter is said to have zero phase if it introduces no phase delay

True for all symmetric FIR filters:

A filter is said to have linear phase if

Linear phase corresponds to shift in time. Because delay in time
corresponds to a multiplication with a linear phase term:

DTFT - Zero phase and linear phase

H (ω)=|H (ω)|

h[−n]=h*
[n]

xn0
=x [n+n0] ⇒ Xn0

(ω)=e jω n0 X (ω)

H (ω)=|H (ω)|e jωn0

Y (ω)=|H (ω)|e jωn0 X (ω)=|H (ω)|Xn0
(ω)

15

Lucas Parra, CCNY City College of New York

● A filter with linear phase delays all frequencies by the same
amount.

● If we add a constant delay to a zero phase filter we obtain a
linear phase filter.

● The shift in time can be removed if the filter can be non-causal.
In which case we get a zero phase filter.

Example: delay here 11 samples

DTFT - Linear Phase

16

Lucas Parra, CCNY City College of New York

If the filter is allowed to be non
causal a quick fix is to apply the
filter to the time inverted signal
resulting in a zero phase filter:

>> filtfilt(b,a,x)

DTFT - Pragmatic filter design example

Y (ω)=|H (ω)|
2
X (ω)

17

Lucas Parra, CCNY City College of New York

FIR vs IIR filters

Finite Impulse Response Infinite Impulse Response

Defined by
coefficients

Moving average: b Moving average: b
Auto regressive: a
 or
Second order sections: SOS
Gains: G

Python code import scipy.signal as sig
y = sig.lfilter(b,1,x)

import scipy.signal as sig
y = sig.lfilter(b,a,x)
of more stable numerically:
y = np.prod(G)*sig.sosfilt(sos, x)

Matlab code y = filter(b,1,x); [b,a] = sos2tf(SOS,G);
y = filter(b,a,x);
% or more stable numerically:
y = prod(G)*sosfilt(SOS,x);

Filter order (typical) high (>10) Low (<10)

Computation speed slow fast

phase Linear Non-linear

Phase distortions less Can be strong outside pass-band

Delay Half of filter order. Memory
buffer to correct delay.

Instant. No memory buffer
needed.

18

Lucas Parra, CCNY City College of New York

Assignment 7:
1. Use sptool() to design 60Hz bandstop filter using both

an IIR filter of low order and an FIR filter with linear phase.
Hints: After finding a good filter take note of the parameters, and use the
corresponding filter design function to compute within your code the ARMA filter
coefficients. To find the corresponding filter function use for instance:
>> lookfor chebyshev
Alternatively, you may export the filter coefficients from sptool and save the
numerical values into a matlab file that your code will load. For a FIR filter it will
save coefficients Num which is simply the moving average part of the filter:

b = Num; a = 1;
For a IIR filter it will save Coefficients SOS and G. You can get coefficient a,b with
this code:

[b,a] = sos2tf(SOS,G)
Or filter using
 y = prod(G)*sosfilt(SOS,x);

2. For both IIR and FIR filters, show the corresponding impulse
response, magnitude and phase response (compute these from
filter coefficient b,a). Do not use freqz function.

3. Apply the filters to any signal you choose contaminated with
60Hz additive noise. Show the signal before and after
filtering.

DTFT - Pragmatic filter design

19

Lucas Parra, CCNY City College of New York

Assignment 7 – EGC filtering:
Use sptool in MATLAB to design an FIR and an IIR filter to

remove slow drift from baseline, as well as high frequency
line noise, from the ECG signal used in class
(sample_ecg.mat). Plot the input signal and the filtered signal
both in time and frequency domain (total of 4 plots per filter),
and also plot the Impulse Response, Frequency Response and
Phase Response of both filters (total of 3 plots per filter).

For the IIR filter, the impulse response can be obtained as the
response to an impulse, as follows:

impulse = [1; zeros(fs*T-1,1)];
h = prod(G)*sosfilt(SOS,impulse);

Pick the duration T such that the impulse response h has
dropped off to zero (approximately) by the end of this time.

DTFT - Pragmatic filter design

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

