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Complex Numbers

Complex numbers simplify mathematical analysis 
of time-varying quantities (i.e., the signals that we 
want to analyze).

A complex sinusoid may be expressed in phasor 
notation

A cos  t =
A
2

exp i  t 
A
2

exp −i  t 

A cos(ω t)=ℜ{A exp(i ω t)}

z=∣z∣exp(i ω t)=∣z∣(cosω t+ isinω t )
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The Fourier transform is a functional that takes a function of time     
f(t) and maps it to a function of frequency F()

It has an inverse transform that can recover the 'time domain' 
function from it 'frequency domain' transform.

In this transform pair both time and frequency are continuous. In 
signal and image processing however time and frequency may have 
to be discretized.

Continuous Fourier Transform

F =∫
−∞

∞

dt f t e−i 2  t
≡F { f t }

f t =∫
−∞

∞

d  F  e i 2  t
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Continuous Fourier Transform

f (t) |F ()|

t 

By Lucas V. Barbosa  https://commons.wikimedia.org/
w/index.php?curid=24830373
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Example of a signal and its Fourier decomposition

Continuous Fourier Transform

F =∫
−∞

∞

dt f t e−i 2  t
≡F { f t }

f t =∫
−∞

∞

d  F  e i 2  t
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Examples

CFT - Examples

FT {cos 2 ot }=
1
2

−o o

FT {1}= 

FT {t−t o}=e
−2 i  t o

FT {e−a t 2

}= 

a
e−

2


2
/ a

FT {rect t }=sinc=
sin 


rect t ={1 ∣t∣1/2

0 else }
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'Stretching' time 'shrinks' frequency and vise versa

CFT – Scale Theorem

FT { f a t }=
1
a

FT 


a


t 

Short
pulse

Medium-
length
pulse

Long
pulse

The shorter the 
pulse, 

the broader the 
spectrum!

This is the 
essence of the 
Uncertainty 
Principle!

t

t

f(t)



F()
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(1) From the definition:

(2) It then follows that:

(3) Change of variables

(4) Substituting into the integral:

f (t )=∫
−∞

∞

F()e i2 π t d 

f (at)=∫
−∞

∞

F()e i 2π at d 

f (at)=∫
−∞

∞ 1
a

F ( ω
a

)ei 2π ωt dω

ω= a d ω=a d 

FT {f (at)}=
1
a

FT { 
a

}

CFT – Scale Theorem derivation



9

Lucas Parra, CCNY City College of New York

There is a tradeoff between temporal extend and frequency 
bandwidth. There is a lower bound on the time-bandwidth product

● A signal that has a well defined frequency must be extended in time.
● A short signal must be broadband. 

CFT – Uncertainty Principle

t

f(t) F()

      t  

 t2
=

1
B∫dt∣ f t ∣

2
t 2  

2
=

1
B∫d ∣ F  ∣

2


2

B=∫ d ∣F  ∣
2
=∫ dt∣ f t ∣

2

 t  ≥
1
2

Fourier 
Transform
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The Discrete Time Frourier Transform (DTFT) is defined 
on the unit circle

The DTFT is an invertible transformation

This is simply because 

 Discrete Time Fourier Transform (DTFT)

z=e j 
=cos j sin 

X e j 
= ∑

n=−∞

∞

x [n]e− j n

x [n]=
1

2
∫
−



d  X e j 
e j n

∫2
d e− j  n

=2 n

1
2

∫
−



d  X e j 
e j n

=
1

2
∑

k =−∞

∞

x [ k ]∫
−



d  e− j  k−n 
=x [n]

=2

Angular 
frequency
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The following properties can be derived from its definition:

Conjugation

Delay

Time reversal 

Correlation

Conjugate symmetry for

DTFT - Properties

x ∗
[n ] X ∗

e− j 


X e j 
= X ∗

e− j 


x [−n] X e− j 


x [n]∈ℝ

∑
n=−∞

∞

x [nk ] y ∗
[n] X e j 

Y ∗
e j 



x [n−n0] e
− j  n0 X e j 


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The Discrete Fourier Transform (DFT) is the sampled DTFT

The N-point DFT  is defined for a signal of length N :   (analysis)

with inverse N-point DFT:   (synthesis)

Note that specifying X[0]...X[N-1] implies a synthesized periodic 
signal outside n = 0...N-1: 

 Discrete Fourier Transform (DFT)

X e j 

=2 k / N= X [ k ]

x [n]=
1
N

∑
k=0

N−1

X [k ]e j 2 kn / N

X [k ]=∑
n=0

N −1

x [n ]e− j 2 kn / N

x [n]=x [nmod N ]
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In signal processing we always work with the DFT since we can 
compute Frourier transform only for discrete frequencies. 

Important result on computational cost: While computing DFT 
values X[k], k=1...N, would seem to take N2 operations there is an 
efficient method called Fast Fourier Transform (FFT) of order: 

N log
2
 N

Matlab:
>> X =  fft(x);  
>> x = ifft(X);

Python:
import numpy.fft as fft
X = fft.fft(x)

With this one can implement convolution in log
2
(P) operations per 

sample rather than P.

 Discrete Fourier Transform - FFT
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Fourier Transform Summary
Fourier transform

 (con. time, cont. freq.)
Discrete time FT

 (disc. time, con. freq.)

Fourier series
 (con. time, disc. freq.)

Discrete FT
 (disc. time, disc. freq.)

X ()=∫
−∞

∞

dt x( t)e− j 2π  t

x (t )=∫
−∞

∞

d  X ()e j 2π  t

X [k ]=∑
n=0

N −1

x [n ]e− j 2πkn / N

x [n]=
1
N

∑
k=0

N−1

X [k ]e j 2πkn / N

X (e j ω
)= ∑

n=−∞

∞

x [n ]e− j nω

x [n]=
1

2π
∫
−π

π

dω X (e j ω
)e j nω

ak=
1
2T

∫
−T

T

dt x (t)e− j kω t

x (t)= ∑
k=−∞

∞

ake
j kω t



15

Lucas Parra, CCNY City College of New York

Assignment 2:
● Generate a real-valued (sampled) sinusoid signal and display as a function 

of time (in seconds).
● Compute the DFT of the signal and display in the same figure the real and 

imaginary parts of the DFT as well as its magnitude and phase all as a 
function of frequency. Also show the original signal in the time domain – a 
total of 5 graphs in one figure. Label the frequency axis in Hz.

● Test empirically which is the highest frequency you can represent at a fixed 
sampling rate. Show an example above and bellow that frequency in the 
time domain and magnitude in the frequency domain – a total of 4 graphs. 

● Generate a complex valued sinusoid with negative frequency; display it in 
the time domain (real and imaginary parts) and frequency domain (real and 
imaginary parts) – a total of 4 graphs.  Contrast that to a sinusoid of 
positive frequency – another 4 graphs.  

● Generate a sinusoidal signal at some frequency f plus a sinusoid at 2f  
(added together) and downsample it to a new sampling rate of fs=3.5*f 
while avoiding aliasing. Display the absolute value of the DFT before and 
after down-sampling. Label the frequency axis in Hz.

 Fourier Transform
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What is the relation between a continuous time signal x(t) and its 
sampled version x[n]?
To answer that, compare the continuous time Fourier transform 
(CTFT) of a continuous time signal x(t) given by,

and the DTFT, X(ejω) of the signal sampled at frequency f
s
=1/T,  x[n] 

= x(nT)?

Sampling - Sampling Theorem*

X c =∫
−∞

∞

dt x t e− j  t

x t =
1

2
∫
−∞

∞

d  X c  e j  t

X e j 
= ∑

n=−∞

∞

x [n]e− j n
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According to the Sampling Theorem the relation is:

The DTFT repeats the CTFT with a period 2π.

Contributions above π  will overlap with different period!

Sampling - Sampling Theorem

X e j 
=

1
T

∑
k=−∞

∞

X c  

T


2 k
T 

ππ  ω

Xejω

π/Tπ/T  

X
c


Sampling frequency

Nyquist frequency
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Under which conditions can we determine continuous time  x(t) 
from discrete time x[n], t=nT? 

If the signal is bandlimited:  

Then we can determine X
c
() from X(ejω) according to the 

Sampling Theorem: 

In that case we can determine x[t] X(ejω) X
c
() x(t). 

After some algebra:

x(t) is x[n] convolved with

Sampling - Sampling Theorem

x t = ∑
n=−∞

∞

x [n ]sinc t−nT
T 

X e j 
=

1
T

X c  

T 

X c/T =0, ∣∣≥

sinct =sin  t /  t 
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Because of the sampling theorem always!:

Make sure you lowpass filter the signal to half the sampling 
frequency (Nyquist) before you sample.

If  you can not filter prior to sampling make sure that you choose 
the sampling frequency to be twice the highest frequency that 
contains significant signal power.

Do not down sample by simply taking every other sample. First 
lowpass filter then subsample. Better  yet, use either
>> x = resample(x,P,Q);
>> x = decimate(x,Q/P); % or scipi.decimate() 
>> x = downsample(x,Q/P) % don't use this!!

Sampling 

Lowpass
filter

A/D DSP D/A
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Example: Low-
frequency sinusoid (10 
Hz) plus noise that is 
only high-frequency 
(only components above 
25Hz). When sampled 
at 50Hz without 
previously removing the 
high frequency 
components the HF 
noise appears at lower 
frequencies below 
25Hz, i.e. it is 
“reflected” or “leaks” 
from the high to the low 
frequencies.

Sampling – what can go wrong

If one fails to low-pass filter before sampling, then frequencies above 
Nyquist “leak” into the sampled frequency band. 

Nyquist

Nyquist
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