
  

Basic ideas of Programming 

(...and MATLAB, a friendly place to learn and use them)

Simon Kelly

 Some slides selected and adapted from course “INTRODUCTION TO COMPUTER PROGRAMMING 
FOR SCIENTISTS AND ENGINEERS,” (UC Berkeley E77)

http://jagger.me.berkeley.edu/~pack/e77       http://creativecommons.org/licenses/by-sa/2.0/ 

A star in the upper left corner means that the material on that slide is 
not specific to Matlab – the concept applies to all programming 
languages, only the syntax might be different

http://jagger.me.berkeley.edu/~pack/e77
http://creativecommons.org/licenses/by-sa/2.0/


  

Matlab Environment

When you start Matlab (double-click the Matlab icon, or type 
matlab and press return in a terminal window, depending on your 
operating system), the one thing you'll DEFINITELY see is:

The Command Window and the Matlab prompt:

>>

The rest of the environment will depend on your version and how 
it's customized. 
Other useful windows (that you can easily open/locate) are: 
command history – remembers commands recently run
Workspace – variables you're currently working with 
current directory – just like in Windows explorer, Mac Finder, you 
are always currently “in” a directory or folder
Editor – a text editor for writing scripts and functions

Note where the Help menu is – you'll need this!



  

The Matlab version I currently use looks like this:
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Yours most likely looks different... but NO BIGGIE. The same windows, menu 
items, etc are there, it might just take you a few seconds to locate/identify them

•The Matlab version I currently use looks like this:



  

Matlab as a Calculator

The command window of Matlab can be used simply as a 
calculator

● Type expressions at the >>, and press return
● Result is computed, and displayed and saved as a temporary variable 

called ans
– Use numbers, +, *, /, -, (), sin, cos, exp, abs, 
round,…

–TRY IT!

>> sin(pi/4)

ans =

    0.7071



  

Expressions have Precedence rules

In other words, certain things are computed before other things

- For example, how does matlab (or any language) know whether 
to perform the addition or the multiplication first in this expression:

>> 3 * 4 + 6

...because it has a precedence levels. Multiplication takes 
precedence over addition, so the answer to the above is 18, NOT 
30.

Here are the levels (highest first):

1. Whatever is in parenthesis ()

2. Power (^)

3. Multiplication and division (*, /)

4. Addition and subtraction (+, -)

Within a level, Matlab goes left to right



  

Legal expressions
>> 4
>> 5 + pi
>> 6*sqrt(2)^4-12
>> 6 * sqrt(    2.0)  ^ 4 - 12
>> sin(pi/3)^2 + cos(pi/3)^2
>> 1.0/0.0
>> -4/inf
>> 0/0

Illegal expressions
>> 2 4
>> (2,4)

Error messages
– Read them carefully – a large portion of the time you will quickly figure out 

what is wrong

Examples of expressions



  

Variables

Use names to assign result of an expression to a variable

Variables do not need to be declared before assignment

A single “equal” sign (=) is the assignment operator,

LHS = RHS

Read this as 

evaluate expression on the right-hand side, and then…

 assign the result to the variable named on the left-hand-side

Therefore

The right-hand-side needs to be a legal Matlab expression

The left-hand-side needs to be a single variable name

A semicolon at the end of the RHS expression suppresses the display, but 
the assignment still takes place.



  

Examples of Variables and Assignment

Legal

>> A = sqrt(13)
>> B = exp(2);
>> A = 2*B
>> A = A + 1
>> C = tan(pi/4)

Illegal (all for different reasons)

>> D = sqrt(E) + 1;
>> 3 = E
>> 3*A = 14
>> F = 2 3

Compute the square root of 13 and 
assign it to the variable named “A”

Make A equal to double the value of 
variable B. This overwrites 
whatever A was before

Increase the value of A by 1

Try them to see why 
they produce errors



  

The “workspace”

All variables that you create are stored in matlab's “working 
memory,” which is called the workspace. These are the variables 
that Matlab currently “knows about.”

Variables are accessed from the prompt (>>) or in scripts 
(introduced later) using their name as a reference

If you can't already see the workspace as a window in the Matlab 
environment, type either:

>> who 

>> whos

You can clear (ie, erase) variables with the clear command

>> clear A
clears the variable A from the workspace. Just 

      >> clear  
clears everything.



  

Logical Expressions and Logical Operators

Logical expressions are expressions that take the value of true or false.

For example, “the sky is blue” is a logical expression. So is 4<3. The first is true, 
and (this might come as a shock...) the second, is false.

Logical operators are the symbols we use to form logical expressions – the '<' sign 
above is one of them.

We already saw that the symbol “=” means assign the value of what's on the 
right, to the variable on the left. It's not a mathematical statement of equality like 
(2+x)2 = x2 + 4x + 4. Because a single = is already taken for assignment, Matlab 
(and many other languages) use double == to denote a logical comparison of 
equality. 

Here's a list of logical operators:

==    equals

>     greater than,                              <     less than

>=   greater than or equal                 <=   less than or equal 

~=   NOT equal to 

Matlab also represents the number 1 as True and 0 as False. E.g., you could 
make an array of numbers representing whether or not the integers 1-6 are even:

>> is_even = [0 1 0 1 0 1]



  

Complex Numbers

All arithmetic in Matlab works on complex numbers as well.

When you start Matlab, two variables already exist, and are equal 
to           .  They are i and j.  It’s common to overwrite them 
without even realizing, but you can always create the number with 
the expression sqrt(-1)

>> i
>> sqrt(-1)
>> j
>> 4 + 6j
>> 4 + 6*j
>> C = 1 – 2i;
>> real(C)
>> imag(C)
>> abs(C)
>> angle(C)*180/pi



  

Saving the workspace

When you quit Matlab (by typing “exit” or closing the window), the variables in the 
workspace are erased from memory.  If you need them for later use, you must save 
them. You can save all variables (or just some of them) to a file using the command 
save

>> save

saves all of the variables in the workspace into a file called matlab.mat (it is 
saved in the current directory)

>> save Andy

saves all of the variables in the workspace into a file called Andy.mat

>> save Important A B C D*

saves the variables A, B, C and any variable beginning with D in the workspace into a 
file called Important.mat. You can load a .mat file later:

>> load Andy

loads all of the variables from the file andy.mat



Arrays
An array is a rectangular arrangement of numbers- also 

called a matrix. They can have more dimensions than 2, 
and can be just one column (a “column vector”) or just one 
row (a “row vector”).

For example, this is a “3 x 2” array which has 2 columns and 
3 rows: 

A =

     2     3

     5     6

     3     1

>> A(2,1)

ans =

     5

This is how we access the number in the 
first column and second row. Note round 
brackets and that the row number comes 
first – this is the “first dimension” in matlab



Creating and concatenating Arrays
Horizontal and Vertical Concatenation (ie., “stacking”)

– Square brackets, [, and ] to define arrays
– Spaces (and/or commas) to separate columns
– Semi-colons to separate rows

Example
>> [ 3  4  5 ; 6  7  8 ] is the 2-by-3 array

If A and B are arrays with the same number of rows, then
>> C = [ A  B ]    is the array formed by stacking A “next to” B

Once constructed, C does not “know” that it came from two 
arrays stacked next to one another!

If A and B are arrays with the same number of columns, then
>> [ A ; B ]   is the array formed by stacking A “on top of” B

So,  [   [ 3 ; 6 ]    [ 4  5 ; 7   8 ]   ]    is equal to   [ 3  4  5;6  7  8 ] 

[3 4 5
6 7 8 ]



Creating special arrays

ones(n,m)
–a n-by-m double array, each entry is equal to 1

zeros(n,m)
–a n-by-m double array, each entry is equal to 0

rand(n,m)
–a n-by-m double array, each entry is a random number between 0 

and 1.

Examples
>> A = ones(2,3);
>> B = zeros(3,4);
>> C = rand(2,5);

Recall: “double” just refers to a way that Matlab can store a number 
in memory (specifically, the precision, or how many decimal 
places), and is the default way – nothing mysterious!



: convention

The “: (colon) convention” is used to create row vectors, 
whose entries are evenly spaced.

7:2:18  equals the row vector    [ 7  9  11  13  15  17 ]

If F, J and L are numbers with J>0, F ≤ L, then F:J:L 
creates a row vector
[ F  F+J  F+2*J  F+3*J …  F+N*J ]

where F+N*J ≤ L, and F+(N+1)*J>L

Many times, the increment is 1.   Shorthand for F:1:L is  
F:L



The SIZE command

If A is an array, then size(A) is a 1-by-2 array.
– The (1,1) entry is the number of rows of A
– The (1,2) entry is the number of columns of A

If A is an array, then
size(A,1) is the number of rows of A
size(A,2) is the number of columns of A

Example
>> A = rand(5,6);
>> B = size(A)
>> size(A,2)



Accessing single elements of a 
vector

If A is a vector (ie, a row or column vector), then
A(1) is its first element,
A(2) is its second element,…

Example
>> A = [ 3  4.2  -7  10.1  0.4  -3.5 ];
>> A(3)
>> Index = 5;
>> A(Index)

This syntax can be used to assign an entry of A.   Recall 
assignment
>> VariableName = Expression

An entry of an array may also be assigned
>> VariableName(Index) = Expression

So, change the 4’th entry of A to the natural logarithm of 3.
>> A(4) = log(3);



Accessing multiple elements of a 
vector

Example: Make a 1-by-6 row vector, and access multiple 
elements, giving back row vectors of various dimensions.
>> A = [ 3  4.2  -7  10.1  0.4  -3.5 ];
>> A([1 4 6]) % 1-by-3, 1st, 4th, 6th entry
>> Index = [3 2 3 5];
>> A(Index) % 1-by-4

The Index or indices should be integers.  You can use the : for 
indexing as well – say you wanted the first 3 elements of A:

  >> A(1:3) % first 3 elements

Arrays are indexed similarly.
If M is, say 4 x 3, you can access the first two rows using
>> M(1:2,:)
: on its own means “ALL of this dimension” 

Make vectors and arrays and play around!
See what the functions “reshape” and “repmat” do...



Unary Numeric Operations on double Arrays

Unary operations involve one input argument.  Examples are:
–Negation, using the “minus” sign
–Trig functions, sin, cos, tan, asin, acos, atan,
…

–General rounding functions, floor, ceil, fix, 
round

–Exponential and logs, exp, log, log10, sqrt
–Complex, abs, angle, real, imag

Example: If A is an N1-by-N2-by-N3-by-… array, then
B = sin(A);

is an N1-by-N2-by-N3-by-… array.  Every entry of B is the 
sin of the corresponding entry of A.   The “for”-loop that 
cycles the calculation over all array entries is an example of 
the vectorized nature of many Matlab builtin functions



Binary (two arguments) operations on Arrays

Addition (and subtraction)
– If A and B are arrays of the same size, then A+B is an array of the 

same size whose individual entries are the sum of the corresponding 
entries of A and B

– If A is an array and B is a scalar, then A+B is an array of the same 
size as A, whose individual entries are the sum of the corresponding 
entries of A and the scalar B

– If A is a scalar, and B is an array, use same logic as above
Scalar-Array Multiplication

– If A is an array,and B is a scalar, then A*B is an array of the same 
size as A, whose individual entries are the product of the 
corresponding entries of A and the scalar B.

Element-by-Element Multiplication
– If A and B are arrays of the same size, then A.*B is an array of the 

same size whose individual entries are the product of the 
corresponding entries of A and B

Matrix multiplication
–If A and B are arrays, then A*B is the matrix multiplication of the two 

arrays…  More later



Intro to plotting with Matlab

If X is a 1-by-N (or N-by-1) vector, and Y is a 1-by-N (or N-by-1) 
vector, then
>> plot(X,Y)

creates a figure window, and plots the data in the axis.  The points 
plotted are 

  (X(1),Y(1)), (X(2),Y(2)), … , (X(N),Y(N)).

By default, Matlab will draw straight lines between the data points, and 
the points will not be explicitly marked.  For more info, do  >> help 
plot 

Example:
>> X = linspace(0,3*pi,1000);
>> Y = sin(X);
>> plot(X,Y)

The function linspace(F,L,N) creates a vector of N values evenly 
spaced between F and L.



Matlab Scripts

You don't have to enter every expression and assignment one by 
one in the command window.

A script is a text file containing multiple lines of code 
(expressions, assignments, etc) that, when you click “run” or 
type its name in the command window, executes all lines of 
the script in order, one after another.

Try typing these lines in a new “m-file” in the editor, save the 
m-file as runthis.m, and run it:

X = linspace(0,4*pi,1000);

Y = sin(3*X) + 2*cos(5*X);

plot(X,Y)

maxy = max(abs(Y));

title([’Peak of Y is ’ num2str(maxy)]);

Can you figure out what each line is doing?



  

Functions

In mathematics, a function is a rule that assigns to each value of the 
input, a corresponding output value.

Consider the function f defined by the rule

f(x) = x2 for all numbers x.

Here, x is the input value, and f(x) is the output value.

Equivalently, we could have written the rule as

f(y) = y2 for all numbers y.

Functions can have many inputs and produce (through multiple rules) 
many outputs,   f1(a,b,c) = 2a+3b, f2(a,b,c) = bc.

In programming, a function is like a script with inputs and outputs – 
It's especially useful if you want to execute certain tasks (e.g. several 
lines of Matlab code) repeatedly. Every time you need to execute that 
task, you will only need to “call” the function.

This modularity helps break down a huge program task into a 
collection of smaller tasks, which individually are easier to design, 
write, debug and maintain.



  

A MATLAB function file

The first line is the function declaration line.

function [dp,cp] = vecop(v,w)

The function name, 
this function should 
be saved in a file 
called vecop.m

The input variables. This 
function has two.  Within 
the function, the names 
of the input variables are 
v and w.

The output variables.  This 
function has two.  The 
function’s purpose is to 
compute these variables, 
based on the values of the 
input variables.

The input and output variables are 
also called the input and output 
arguments.



  

6-line function in vecop.m

function [dp,cp] = vecop(v,w)

dp = sum(v.*w);

cp = zeros(3,1);

cp(1) = v(2)*w(3) – w(2)*v(3);

cp(2) = v(3)*w(1) – w(3)*v(1);

cp(3) = v(1)*w(2) – w(1)*v(2);

Logically correct expressions and assignments that 
compute the output variables using the values of the 
input variables.

Function declaration line



  

Comments and blank lines add readability

function [dp,cp] = vecop2(v,w)

% VECOP computes dot product and cross

% product of two 3-by-1 vectors.

dp = sum(v.*w);

cp = zeros(3,1);  % create 3-by-1

% Fill cp

cp(1) = v(2)*w(3) – w(2)*v(3);

cp(2) = v(3)*w(1) – w(3)*v(1);

cp(3) = v(1)*w(2) – w(1)*v(2);

comments



  

if, end

To conditionally control the execution of statements, you can use 

if expression

   statements

end

If expression is true, or is nonzero, then the statements between the 

if and end will be executed.  Otherwise they will not be.

Execution continues with any statements after the end.

expression should be a 
numeric or logical one.



  

if, else, end

if exp_1

   statements1

else

   statements2

end

One of the sets of statements will be executed

–If exp_1 is TRUE, then statements1 are executed

–If exp_1 is FALSE, then statements2 are executed



  

if, elseif, end

if exp_1

   statements1

elseif exp_2

   statements2

elseif exp_3

   statements3

end

Evaluate exp_1

Evaluate exp_2

Evaluate exp_3

true

Continue after end

true

true

false

false

false

Execute

statements1

Execute

statements2

Execute

statements3

Could also have an else before the end



  

Piecewise linear function

TASK: Create an m-file function for the mathematical 
function Y = F(X) shown below.

function y = 
plinear(x)

   if x<-1
      y = -1;
   elseif x<2
      y = x;
   elseif x<5
      y = 3-x;
   else
      y = -2;
   end



  

for, end
We use a for loop to execute collection of statements a fixed number of 
times.

for n=1:12

   statements

end

This is a loop that executes the statements as many times as there 
are elements in the controlvalue. 

Before each “execution pass,” the loopvariable (n) is assigned to the 
corresponding element of controlvalue. The first time through, n is 1, the 
second time, n is 2, and so on.

The loop variable doesn't have to step in unit increments – you can have

for m=[5 3 8 6]

end

loopvariable controlvalue



  

While loop

while expression

statements

end

Evaluate expression

If TRUE, execute statements

If FALSE, jump past end

repeat

Executing commands an undetermined number of times.

while expression

statements

end



  

Example using tic/toc

tic is a built-in Matlab function that starts a timer.

Every subsequent call to toc (also Matlab built-in) returns 
the elapsed time (in seconds) since the originating call to 
tic.

The code below will cause the program to “pause” for one 
second before proceeding.

tic
while toc<1
end

It would be clumsy to do this without a while-loop


	Basics of Matlab UC Berkeley Fall 2004, E77 http://jagger.me.berkeley.edu/~pack/e77 Copyright 2005, Andy Packard. This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
	Matlab Basics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	The “workspace”
	Comparison (as opposed to assignment)
	Complex Numbers
	Saving the workspace
	Arrays
	Creating Arrays
	Creating special arrays
	: convention
	The SIZE command
	Accessing single elements of a vector
	Accessing multiple elements of a vector
	Unary Numeric Operations on double Arrays
	Binary (two arguments) operations on Arrays
	Intro to plotting with Matlab
	Plotting several lines
	Functions (Chapter 11, pg 175-194)
	if, else, end

