

BME I5000: Biomedical Imaging

Lecture 8 Magnetic Resonance Imaging (mostly NMR)

Lucas C. Parra, parra@ccny.cuny.edu

Blackboard: http://cityonline.ccny.cuny.edu/

Schedul

- 1. Introduction, Spatial Resolution, Intensity Resolution, Noise
- 2. X-Ray Imaging, Mammography, Angiography, Fluoroscopy
- 3. Intensity manipulations: Contrast Enhancement, Histogram Equalisation
- 4. Computed Tomography
- 5. Image Reconstruction, Radon & Fourier Transform, Filtered Back Projection
- 6. Nuclear Imaging, PET and SPECT
- 7. Maximum Likelihood Reconstruction
- 8. Magnetic Resonance Imaging
- 9. Fourier reconstruction, k-space, frequency and phase encoding
- 10. Optical imaging, Fluorescence, Microscopy, Confocal Imaging
- 11. Enhancement: Point Spread Function, Filtering, Sharpening, Wiener filter
- 12. Segmentation: Thresholding, Matched filter, Morphological operations
- 13. Pattern Recognition: Feature extraction, PCA, Wavelets
- 14. Pattern Recognition: Bayesian Inference, Linear classification

Biomedical Imaging

Imaging Modality	Year	Inventor	Wavelength Energy	Physical principle
X-Ray	1895	Röntgen (Nobel 191)	3-100 keV	Measures variable tissue absorption of X-Rays
Single Photon Emission Comp. Tomography (SPECT)	1963	Kuhl, Edwards	150 keV	Radioactive decay. Measures variable concentration of radioactive agent.
Positron Emission Tomography (PET)	1953	Brownell, Sweet	150 keV	SPECT with improved SNR due to increased number of useful events.
Computed Axial Tomography (CAT)	1972	Hounsfield, Cormack (Nobel 1979)	keV	Multiple axial X-Ray views to obtain 3D volume of absorption.
Magnetic Resonance Imaging (MRI)	1973	Lauterbur, Mansfield (Nobel 2003)	GHz	Space and tissue dependent resonance frequency of kern spin in variable magnetic field.
Ultrasound	1940- 1955	many	MHz	Measures echo of sound at tissue boundaries.

MRI - History

Nuclear Magnetic Resonance (NMR) Felix Block and Edward Purcell 1946: atomic nuclei absorb and re-emit radio frequency energy in an external magnetic field 1952: Nobel prize in physics 1971: NMR Tumor detection (Damadian)

Magnetic Resonance Imaging (MRI) 1973: Lauterbur suggests NMR could be used to form images

1977: clinical MRI scanner patented

1977: Mansfield proposes echo-planar imaging (EPI) to acquire images faster

2003: Nobel Price in Medicine

Bloch

Purcell

Lauterbur

Mansfield

Functional MRI (fMRI)

1990: Ogawa observes BOLD effect with T2*: blood vessels became more visible as blood oxygen decreased 1991: Belliveau observes first functional images using a

contrast agent

1992: Ogawa et al. and Kwong et al. publish first functional images using BOLD signal

Adapted from Jody Culham, http://defiant.ssc.uwo.ca/Jody_web/fmri4dummies.htm

MRI - Equipment

Magnet

Gradient Coil

RF Coil

Source: Joe Gati, photos

MRI – Basic Recipe

→ 1) Put subject in big magnetic field

When protons are placed in a constant magnetic field, they precess at a frequency proportional to the strength of the magnetic field (at typical radio frequencies). They also align somewhat to generate a bulk magnetization.

2) Transmit radio waves into subject [about 3 ms] Exposure to radio frequency magnetic field will synchronize this precession.

3) Turn off radio wave transmitter

The coherent precession continues but decays slowly due to interactions with magnetic moments of surrounding atoms and molecules (tissue dependent!)

- 4) Receive radio waves re-transmitted by subject [10-110ms] The coherent precession (oscillation) generates a current in an inductive coil. The detected signal is called magnetic nuclear resonance.
- 5) Store measured radio wave data vs. time

Now go back to 2) to get some more data with different magnetic fields and radio frequencies. (here lies the Art of MRI!)

6) Process raw data to reconstruct images

MRI – Nuclear Spin

Nucleus has a quantum mechanical property called "spin" quantized by *I*. (I=1/2 for a proton in H₂O). Spin can be thought of as a spinning mass with an angular momentum *J*.

$$|\boldsymbol{J}| = \frac{h}{2\pi} \sqrt{I^2 + I}$$

Since the particle is electrically charged this spinning will generate a magnetic moment μ :

The gyromagnetic ratio γ is specific to each nucleus.

As we will see the magnetic fields and radio frequency (RF) are tuned to a specific value of γ , i.e. to a specific nucleus.

MRI – Nuclear Spin

Properties on nuclei found at high abundance in the body:

Nucleus	Atomic Number	Atomic Mass		$\gamma/2\pi(MHz/T)$	MRI Signal
Proton, ¹ H Phosphorus, ³¹ P Carbon, ¹² C Oxygen, ¹⁶ O Sodium, ²³ Na	1 15 6 8 11	1 31 12 16 23	$\frac{1/2}{1/2}$ 0 0 3/2	42.58 17.24 11.26	yes yes no no yes

MRI can be performed with odd odd atomic mass (non-zero spin) ¹H, ¹³C, ¹⁹F, ²³Na, ³¹P

Most frequent medical imaging is performed with ¹H (proton) abundant: high concentration in human body high sensitivity: yields large signals

1.5T magnet uses RF at 3.87 MHz for proton imaging.

MRI – Big Magnet

Very strong

1 Tesla (T) = 10,000 Gauss

Earth's magnetic field = 0.5 Gauss

4 Tesla = 4 x 10,000 \div 0.5 = 80,000X Earth's magnetic field

Continuously on

Main field = B_0

Source: www.spacedaily.com

x 80,000 =

Robarts Research Institute 4T

The effect is analogous to a

MRI – Nuclear Spin in Magnetic Field

When a spin is placed in a homogeneous external magnetic field

 B_0 it precesses at a frequency ω_0 .

Quantum mechanics however dictates that the valued for the zorientation of J (and μ) can only be:

$$\mu_z = \gamma J_z = \frac{\gamma h}{2\pi} m_I$$

with m = ±¹/₂ for I = ¹/₂.

MRI – Nuclear Spin in Magnetic Field

Given the quantization of $|\mu|$ and μ_z the spin can only be at angles $\Theta = \pm 54.7^{\circ}$ with external field B_{\circ} :

These are called "parallel" and "anti-parallel" states. They have different energy levels.

$$E = \mp \mu_z B_o = \mp \frac{\gamma h B_0}{4\pi}$$

MRI – Bulk Magnetization

In a macroscopic sample with many nuclei the number of nuclei with "parallel" or "anti-parallel" spin configuration is given by the Boltzman distribution:

$$\frac{N_p}{N_a} = \exp\left(-\frac{\Delta E}{kT}\right) = \exp\left(+\frac{\gamma h B_0}{2\pi kT}\right) \approx 1 + \frac{\gamma h B_0}{2\pi kT}$$

For a 1.5T field we find that in 1 million protons there are only 5 more parallel than anti-parallel spins.

This small difference however is enough to generate a macroscopic or "bulk" magnetization in the *z*-direction

$$M_{0} = \sum_{n=1}^{N} \mu_{z,n} = \frac{\gamma h}{2\pi} (N_{p} - N_{a}) = \frac{\gamma^{2} h^{2} N}{16 \pi^{2} k T} B_{0} \propto B_{0}$$

N is the total number of nuclei.

MRI – Bulk Magnetization

The small excess number of "parallel" spins generates bulk magnetization M_o in the z-direction.

The strength is proportional to the external magnetic field B_0 . The spins in transverse direction (*x* and *y* axis) do not add coherently as the spins precess out of phase.

The effect of bulk magnetization *M* is equivalent to that of summed effect of individual spins. (but often easier to think about)

MRI – Basic Recipe

1) Put subject in big magnetic field

When protons are placed in a constant magnetic field, they precess at a frequency proportional to the strength of the magnetic field (at typical radio frequencies). They also align somewhat to generate a bulk magnetization.

→ 2) Transmit radio waves into subject [about 3 ms] Exposure to radio frequency magnetic field will synchronize this precession.

3) Turn off radio wave transmitter

The coherent precession continues but decays slowly due to interactions with magnetic moments of surrounding atoms and molecules (tissue dependent!)

- 4) Receive radio waves re-transmitted by subject [10-110ms] The coherent precession (oscillation) generates a current in an inductive coil. The detected signal is called magnetic nuclear resonance.
- 5) Store measured radio wave data vs. time

Now go back to 2) to get some more data with different magnetic fields and radio frequencies. (here lies the Art of MRI!)

6) Process raw data to reconstruct images

MRI – RF pulse

If we apply in addition to B_0 a field component B_1 ($\leq B_0$) in the *x*-direction *oscillating at frequency* $\boldsymbol{\omega}_0$ the trajectory for *M* will be:

$$B_x(t) = B_1 \sin(\omega_0 t)$$

emitting RF coil

This time varying B_1 field is applied for a short time (few ms) with an RF coil at the x-axis. The final "flip" angle depends on the length of this RF pulse and the strength of B_1 . Useful flip angles are:

$$\alpha = 90^{\circ} M_z$$
 is converted into M_y
 $\alpha = 180^{\circ} M_z$ is converted into $-M_z$

15

MRI – RF pulse

The Swing Analogy:

Oscillating spins generate bulk magnetization M_z lined up with B_0 : A bunch of kids are swinging at different swings, all with the same frequency but out of phase. The average weight of the kids is straight down from the pole – it is "aligned" with external gravity.

RF pulse (oscillating B_1) generates transverse M_x , M_y oscillation: If parents push a little bit on every swing, in synchrony, and at the natural frequency of the swings, soon all kids are swinging together in phase. The average weight of the kids is now oscillating back and forth, i.e. there is now a oscillating transverse component.

How well they are lined up at the end depends on how often and how strong they were pushed.

Note that if the parents pushed at a frequency other than the natural frequency of the swings their effort would not amount to much.

MRI – Basic Recipe

1) Put subject in big magnetic field

When protons are placed in a constant magnetic field, they precess at a frequency proportional to the strength of the magnetic field (at typical radio frequencies). They also align somewhat to generate a bulk magnetization.

2) Transmit radio waves into subject [about 3 ms] Exposure to radio frequency magnetic field will synchronize this precession.

→ 3) Turn off radio wave transmitter

The coherent precession continues but decays slowly due to interactions with magnetic moments of surrounding atoms and molecules (tissue dependent!)

4) Receive radio waves re-transmitted by subject [10-110ms] The coherent precession (oscillation) generates a current in an inductive coil. The detected signal is called magnetic nuclear resonance.

5) Store measured radio wave data vs. time

Now go back to 2) to get some more data with different magnetic fields and radio frequencies. (here lies the Art of MRI!)

6) Process raw data to reconstruct images

MRI – RF pulse

Now a oscillating B1 field perpendicular to B0 will be applied at resonant (precession) frequency $\boldsymbol{\omega}_{0}$

MRI – Bulk Magnetization, Bloch Equation

The bulk magnetization $M = [M_x, M_y, M_z]$ in an external magnetic field $B = [B_x, B_y, B_z]$ is governed by the Bloch equations

$$\frac{dM}{dt} = \mathbf{M} \times \mathbf{B} - \frac{1}{T_2} \begin{bmatrix} M_x \\ M_y \\ 0 \end{bmatrix} - \frac{1}{T_1} \begin{bmatrix} 0 \\ 0 \\ M_z - M_0 \end{bmatrix}$$

- The fist term is the same as the equation of motion for a single spin and leads again to a precession.
- The second term governs the transverse magnetization M_x and M_y . It leads to an exponential decay with time constant T_2 .
- The third term governs the longitudinal magnetization M_z . It leads to a exponential relaxation towards the equilibrium magnetization M_o with time constant T_1 .

City College of New York

MRI – Bloch Equation

If we consider time t much shorter than T_1 and T_2 we can just look at the first term.

$$\frac{d \mathbf{M}}{d t} = \mathbf{M} \times \mathbf{B} - \frac{1}{T_2} \begin{bmatrix} M_x \\ M_y \\ 0 \end{bmatrix} - \frac{1}{T_1} \begin{bmatrix} 0 \\ 0 \\ M_z - M_0 \end{bmatrix}$$

This is the same equation of motion as for a single spin. It describes a precession at frequency $\omega = \gamma |B|$ around the orientation of vector **B**. For a constant field $B_z = B_0$ the precession of the **M** vector is at $\boldsymbol{\omega}_0$.

Note however that the *M* vector can now take on any angle.

MRI – Free Precession - T_2 decay

After the RF pulse the system is left only with B_0 . Any contribution in the transverse direction will precess around B_0 at $\boldsymbol{\omega}_0$. Lets now consider the second term:

$$\frac{d \mathbf{M}}{d t} = \mathbf{M} \times \mathbf{B} - \frac{1}{T_2} \begin{bmatrix} M_x \\ M_y \\ 0 \end{bmatrix} - \frac{1}{T_1} \begin{bmatrix} 0 \\ 0 \\ M_z - M_0 \end{bmatrix}$$

This term indicates that M_x , M_y will decay exponentially with a time constant T_2 . Together with the precession this gives a damped oscillation, e.g. after a 90° pulse:

$$\begin{bmatrix} M_{x} \\ M_{y} \end{bmatrix} (t) = M_{0} e^{-\frac{t}{T_{2}}} \begin{bmatrix} \sin(-\omega_{0}t) \\ \cos(-\omega_{0}t) \end{bmatrix} \xrightarrow{\Sigma} 0 \\ \cos(-\omega_{0}t) \end{bmatrix} \xrightarrow{-0.5} 0 \\ -0.5 \\ -0.5 \\ -1 \\ 0 \\ z \\ -1 \\ 0 \\ -1$$

MRI – Free Precession - T_2 decay

The reason for this decay process is that each spins each see a slightly different local field around them. Each then oscillates at a slightly different frequency. The spins will be therefore quickly out of step, and the bulk transverse magnetization will disappear.

The local magnetic fields are not the same because:

- 1. Each spin sees the magnetic field generated by other spins in the molecule. Quantified with T_2 . ("spin-spin relaxation")
- 2. The field B_0 is not perfectly homogeneous. Quantified with T_2^+ and about 100 shorter than T_2 .

Total effect is
$$T_2^*$$
:

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2^+}$$
 T_2^* dominated by T_2^+ and is just a few ms.

MRI – Free Precession - T_1 relaxation

The third term in the Block equation describes the relaxation of the longitudinal magnetization M_z :

$$\frac{d \mathbf{M}}{d t} = \mathbf{M} \times \mathbf{B} - \frac{1}{T_2} \begin{bmatrix} M_x \\ M_y \\ 0 \end{bmatrix} - \frac{1}{T_1} \begin{bmatrix} 0 \\ 0 \\ M_z - M_0 \end{bmatrix}$$

This is a exponential relaxation back to the equilibrium value M_0 , e.g. after a 90° pulse and a 180° respectively:

This exponential recovery represents the return of the system to its equilibrium condition $M_z = M_0$, whereby the spins loosing energy to the surrounding latice ("spin-latice relaxation")

MRI – Basic Recipe

1) Put subject in big magnetic field

When protons are placed in a constant magnetic field, they precess at a frequency proportional to the strength of the magnetic field (at typical radio frequencies). They also align somewhat to generate a bulk magnetization.

2) Transmit radio waves into subject [about 3 ms] Exposure to radio frequency magnetic field will synchronize this precession.

3) Turn off radio wave transmitter

The coherent precession continues but decays slowly due to interactions with magnetic moments of surrounding atoms and molecules (tissue dependent!)

A) Receive radio waves re-transmitted by subject [10-110ms] The coherent precession (oscillation) generates a current in an inductive coil. The detected signal is called magnetic nuclear resonance.

5) Store measured radio wave data vs. time

Now go back to 2) to get some more data with different magnetic fields and radio frequencies. (here lies the Art of MRI!)

6) Process raw data to reconstruct images

MRI – Free Precession

The overall free precession of the bulk magnetization M after RF pulse of α =90° is then

Free precession after α = 90⁰ RF pulse

MRI – Free Induction Decay

This precessing magnetization can be measured inductively with an receiver coil tuned to the resonant frequency (ω_0 =3.87 MHz for ¹H). The detected signal is called the **Free Induction Decay** (FID). If we detect it in with a coil in *x* and *y* axis we can construct a complex variable

$$s(t) = s_x(t) + i s_y(t) \propto M_x(t) + i M_y(t) = M_{xy}(0) e^{-t/T_2^*} e^{-i\omega_0 t}$$

 $M_{xy}(0)$ denotes here the magnitude of the M_x , M_y at the end of the RF pulse, i.e. at t=0 of the free precession. Its value is dependent of the specific pulse sequence and is affected typically by the decay times T_1 and T_2 .

By modifying the RF pulses and measuring the magnitude of s(t) one can make estimate the decay times T_1 and T_2 .

MRI – Pulse sequences to estimate T1, T2

T1 - Inversion recovery sequence $\infty 2 - \exp\left(-\frac{\tau}{T}\right)$

City College of New York

Assignment 8: Generate graphics representing the pulse sequence and FID for inversion recovery and echo pulse.

City College of New York

MRI – Nuclear Magnetic Resonance (NMR)

The decay constants T_1 and T_2 depend on physical properties of the resonating sample. By measuring the decay constants one can therefore deduce what is in the sample.

In the 70' is was realized that this may used for medical applications (Damadian)

Tissue	T1 (ms)	T2 (ms)
Fat	260	80
Muscle	870	45
Brain (gray matter)	900	100
Brain (white matter)	780	90
Liver	500	40
Cerebrospinal fluid	2400	160

MRI – T1 and T2 images

Tissue	MR-T1	MR-T2	СТ
Bone	dark	dark	bright
Air	dark	dark	dark
Fat	bright	bright	dark
Water	dark	bright	dark
Brain	anatomic	intermediate	intermediate

MRI – How to convert NMR into imaging?

But wait!

How can one generate images?

So far NMR only gives information on the entire sample which is resonating at one frequency $\boldsymbol{\omega}_0$ within the B_0 field.

Answer (Lauterbur 1973): Change the B_0 field with space and the resonance frequency will change with space. Resonating signal contains multiple frequency components each giving information about a different portion of space!

MRI – Basic Recipe

1) Put subject in big magnetic field

When protons are placed in a constant magnetic field, they precess at a frequency proportional to the strength of the magnetic field (at typical radio frequencies). They also align somewhat to generate a bulk magnetization.

2) Transmit radio waves into subject [about 3 ms] Exposure to radio frequency magnetic field will synchronize this precession.

3) Turn off radio wave transmitter

The coherent precession continues but decays slowly due to interactions with magnetic moments of surrounding atoms and molecules (tissue dependent!)

- 4) Receive radio waves re-transmitted by subject [10-110ms] The coherent precession (oscillation) generates a current in an inductive coil. The detected signal is called magnetic nuclear resonance.
- \rightarrow 5) Store measured radio wave data vs. time

Now go back to 2) to get some more data with different magnetic fields and radio frequencies. (here lies the Art of MRI!)

6) Process raw data to reconstruct images