
1

Lucas Parra, CCNY City College of New York

BME I5000: Biomedical Imaging

Lecture 7
Maximum Likelihood Reconstruction

Lucas C. Parra, parra@ccny.cuny.edu 

Blackboard: http://cityonline.ccny.cuny.edu/



2

Lucas Parra, CCNY City College of New York

Schedule

1. Introduction, Spatial Resolution, Intensity Resolution, Noise

2. X-Ray Imaging, Mammography, Angiography, Fluoroscopy

3. Intensity manipulations: Contrast Enhancement, Histogram Equalisation

4. Computed Tomography

5. Image Reconstruction, Radon & Fourier Transform, Filtered Back Projection

6. Nuclear Imaging, PET and SPECT

7. Maximum Likelihood Reconstruction

8. Magnetic Resonance Imaging

9. Fourier reconstruction, k-space, frequency and phase encoding 

10. Optical imaging, Fluorescence, Microscopy,  Confocal Imaging

11. Enhancement: Point Spread Function, Filtering, Sharpening, Wiener filter

12. Segmentation: Thresholding, Matched filter, Morphological operations

13. Pattern Recognition: Feature extraction, PCA, Wavelets

14. Pattern Recognition: Bayesian Inference, Linear classification
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Expected value E[f(X)] or ensemble average is defined as 

Moment m
n
 of order n is the expected value

First moment is the mean

Second moment is the power

Random Variables - Moments

mn=E [ X n]=∫
−∞

∞

dx p x  x n

E [ f X ]=∫
−∞

∞

dx p  x  f  x 

m1=E [ X ]=∫
−∞

∞

dx p x  x

m2=E [ X 2]

x  m
1 

review

p(x)
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For non-zero mean more interesting is the variance, i.e. the power 
of the deviation from the mean. 

A metric for the spread around the mean is the standard deviation 

Random Variables - Moments

var [ X ]=E [X−m1
2]=E [ X 2]−E [ X ]2

x 

 std[x]
 

 m
1 

std [ X ]=var [ X ]

review

p(x)
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For a sequence of Bernoulli trials increment  N → N+1 with 
probability p starting at N=0.  The probability of  N = k  after 
n trials is given by binomial distribution. 

For large n and small p so that, λ=np, is moderate size this 
can be approximated by the Poisson distribution:

Typical examples are photon count in 
detector, spike counts, histogram values, etc. 

Random Variables - Poisson distribution

P [N=k ]=
k e−

k !

P [N=k ]=nk  pk 1− pn−k

review
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The following moments are easy to compute using normalization

Mean:

Second moment:

Variance:

The sum of two independent Poisson variables is also Poisson with
 

Random Variables - Poisson distribution

∑
k=0

∞

P [k ]=∑
k=0

∞ k e−

k !
=1

E [k 2]=∑
k=0

∞

k 2 P k =2

var [k ]=E [k 2]−E [k ]2=

E [k ]=∑
k=0

∞

k P k =

review

=12
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Radioactive decay – Poisson distribution

The number of radioactive decays, k, which occur within a time 
interval T (<<T

1/2
) is Poisson distributed

Here λ  represents the mean number of decays during (t ... t+T). 

It can also be thought of as the intensity of the source. 

Note that for the Poisson distribution the variance is also  λ . The 
SNR of the source intensity is therefore:

 

 

p k∣=
k

k !
e−

SNR= E [k ]
std [k ]

=



=

=N t ln 2T /T 1 /2
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Radioactive decay – Poisson distribution

Assignment 7: Establish the relation between SNR  and 
resolution for a Poisson distributed intensity. Do we gain in SNR 
as we reduce resolution with the same total number of radioactive 
decays?
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Given measured data y and a PDF model p(y|θ)  parameterized 
with model parameters θ the Maximum Likelihood estimation is

The Maximum Likelihood estimate gives the

model that make the observation most likely.

We often find the ML estimate by solving for  θ in:

Maximum Likelihood Estimation

=arg max


p  y∣

∂ ln p  y∣
∂

=0
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Assume you measure a Poisson process N times and get counts 
k

1
, ..k

N
. What is the parameter λ  that explains those observations 

best. The ML estimate will be 

The solution is given by the maximum of the Log-Likelihood:

Solving for                                     gives, as one would expect:

ML of Poisson observations

=arg max


p k 1, ... , k N∣=arg max


log p k 1, ... , k N∣

∂ log L /∂=0

log L =∑
i=1

N

log p k i∣=∑
i=1

N

k i log−−log k i ! 

= 1
N∑i=1

k i
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Maximum Likelihood Estimation

Each detector pair defines a line i. Denote the number of 
detected coincident events along each line as g

i
, and the source 

intensity in pixel j as f
j
. In this example the data is then g =

[g
1
 , ... , g

N
], and parameters are f = [f

1
 , ... , f

M
]. Since the 

detector readings are independent (given the data) the likelihood 
factors

Each g is a count of independent radioactive decay events, and 
satisfies therefore a Poisson distribution,

where                    is the mean or expected number of events. 

p  g∣ f =∏
i=1

N

p g i∣ f 

p g∣=
g

g !
e−

=E [g ]
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Maximum Likelihood Estimation

Let p
ij
 be the probability that an event emitted at pixel j will be 

detected by detector pair i. The expected number of detected 
events can then be written as:

This equation corresponds to the forward model. It is a matrix 
vector representation of 

where (φ, s) is indexed by i and (x,y) by j. The advantage of this 
notation is that p

ij
 can be made to represent also

where is known µ(x, y) from a separate CT image.  

i=E [g i ]=∑ j
pij f j

g  , s=∫L
dl f x , y

g  , s=∫L
dl f x , yexp −∫L

dl ' x , y 
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Maximum Likelihood Estimation - EM

Combining these definitions the total log-Likelihood is then

This Likelihood can be maximised with the following EM 
iteration (proof in Lange & Carson, 1984):

assuming that p
ij
 is properly normalised:                    

The iteration can be initialised with  f (0)=[1, ..., 1] and converges 
typically after 10-20 steps.

log p  g∣ f =∑
ij

g i log  pij f j−pij f j

f j
k1= f j

k ∑
i

pij

g i

∑n
pi n f n

k 

∑i
pij=1



14

Lucas Parra, CCNY City College of New York

Note that                      corresponds to a back-projection operation

while                         is the forward projection (imaging). 

Summary: The measured data is divided by the forward 
projection of the current estimate, i.e. the way the data would 
look if the current estimate was the real source. That ratio (which 
is constant =1 once the estimate is correct) is back-projected and 
multiplied with the current estimate. This gives an updated 
estimate. The process is repeated until the estimate no longer 
changes. 

∑i
pij i

∑ j
pij  j

Maximum Likelihood Estimation - EM

f j
k1= f j

k ∑
i

pij

g i

∑n
pi n f n

k 
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EM

Note that its constant within region of support 

Maximum Likelihood Estimation - EM



16

Lucas Parra, CCNY City College of New York

Maximum Likelihood Estimation - EM

Advantage over filtered back-projection:
 Can accommodate more general imaging scenarios
 Incorporates Poisson nature of data
 The higher the intensity, the higher the noise. 
 Negative intensities not permitted.

 Easy to constrain region of support

Disadvantage:
 Slower by a factor of 10-20.


