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2D Reconstruction from Projections
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Schedule
1. Introduction, Spatial Resolution, Intensity Resolution, Noise
2. X-Ray Imaging, Mammography, Angiography, Fluoroscopy
3. Intensity manipulations: Contrast Enhancement, Histogram Equalization
4. Computed Tomography
5. Image Reconstruction, Radon & Fourier Transform, Filtered Back Projection
6. Positron Emission Tomography
7. Maximum Likelihood Reconstruction
8. Magnetic Resonance Imaging
9. Fourier reconstruction, k-space, frequency and phase encoding 
10. Optical imaging, Fluorescence, Microscopy,  Confocal Imaging
11. Enhancement: Point Spread Function, Filtering, Sharpening, Wiener filter
12. Segmentation: Thresholding, Matched filter, Morphological operations
13. Pattern Recognition: Feature extraction, PCA, Wavelets
14. Pattern Recognition: Bayesian Inference, Linear classification
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CT - Imaging Principle

Computed Axial Tomography: Multiple x-ray projections are 
acquired around the object and a 2D image is computed from 
those projections.

Idea: Reconstruct 2D attenuation distribution (x,y) from 
multiple 1D x-ray projections g( ) taken at different angles .

g ( x)=∫ dyμ(x , y )

μ(x , y )

x
y
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CT – Forward Projection

If we have more pixel we need more projections. To derive a 
general formalism for this linear inversion problem consider:

x
y

g (s ,ϕ)=∫L(s , ϕ)
dl μ(x , y )

μ(x , y )

s

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CT - Imaging Principle

x
y

Computed Axial Tomography: Multiple x-ray projections are 
acquired around the object and a 2D image is computed from 
those projections.

Idea: Reconstruct 2D attenuation distribution (x,y) from 
multiple 1D x-ray projections g( ) taken at different angles .
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CT – Radon Transform

x

y

μ(x , y )

s


L : x cosϕ+ y sin ϕ=s

l

g (ϕ , s)=∫L
dl μ(x , y )



7

Lucas Parra, CCNY City College of New York

CT – Radon Transform

g (s ,ϕ)=∫L
dl μ(x , y )

=∫
−∞

∞

∫
−∞

∞

dx dyμ(x , y )δ (x cosϕ+ y sin ϕ−s)

This transformation from (x, y) to projections g(s, ) is called a 
Radon Transform. It can be written in a number of ways: 

As we will see next the Radon transform in invertible. 
Therefore the idea of CT it to reconstruct (x, y) from g(s, ):

μ(x , y ) g (s ,ϕ)
x-ray imaging

compute inverse 
Radon transform
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CT – Radon Transform

Each point in (s, ) maps to a line in (x, y) 
Each point in (x, y) maps to a sinusoid in (s, )

g (s ,ϕ)=∫
−∞

∞

∫
−∞

∞

dx dy δ(x− x0 , y− y0)δ (x cosϕ+ y sin ϕ−s)

=δ( x0cos ϕ+ y0sin ϕ−s)
=δ(r cosα cosϕ+r sin α sinϕ−s)
=δ(r cos (ϕ−α)−s)




y0

x0

s
r



r



-r

s

r=√ x2+ y2



Cartesian Space (x,y) Radon Space (s, ) 
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CT – Radon Transform

An image can be considered a linear superposition of points. The 
Radon transform is a linear superposition of sinusoids:

 g (s ,ϕ)=∫
−∞

∞

∫
−∞

∞

dx dyμ(x , y )δ(x cosϕ+ y sinϕ−s)

x-ray imaging

axial 
projections

s

ϕx
y
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CT – Back Projection

A naïve approach to reconstruction would be to sum the 
projection g(s, ) back in the Cartesian 2D space (x, y) 

Back-projections image b(x, y) is defined then as

b (x , y )=∫
0

π

d ϕ g ( x cosϕ+ y sin ϕ ,ϕ)


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CT – Back Projection

In practice this integral needs to be evaluated numerically. This require 
1D interpolation: Measurements g(s, ) are only given for discrete 
angles  nn   and discrete excentricities sm = m s. 

Values, s = x cos n+ y sin n, at intermediate locations will be required 
and so g(s ,n) has to be interpolated from the values      g(sm,n), 
m=1, ..., M  for a given n. 

Back-projection in MATLAB:
[g,sn]=radon(mu,phin);
b = zeros(I,J);
[x,y] = meshgrid([1:J]-J/2,[1:I]-I/2);
for i=1:length(phin)

s = x*cos(pi/180*phin(i))-y*sin(pi/180*phin(i));
b = b + interp1(sn,g(:,i),s);

end

Back-projections image b(x, y) is defined then as

b (x , y )=Δϕ∑
n=1

N

g ( x cosϕn+ y sin ϕn ,ϕn)
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CT – Back Projection

Back-projection b(x, y) gives a blurred version of original (x, 
y):

 

In fact, we can show that axial projection imaging followed by 
back projection is a LSI transform with |r|-1 as PSF:

b (x , y )=μ( x , y)∗ 1
|r|

X-ray
imag. BP
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CT – Back Projection

Back-projection b(x, y) gives a blurred version of original (x, y):
 

Assignment 5: Using                                                              show 
that:

b (x , y )=∫
0

π

d ϕ g ( x cosϕ+ y sin ϕ ,ϕ)

=∫
0

π

d ϕ∫
−∞

∞

∫
−∞

∞

dx ' dy ' μ(x ' , y ' )δ(x ' cosϕ+ y ' sinϕ− xcos ϕ− y sin ϕ)

=∫
0

π

d ϕ∫
−∞

∞

∫
−∞

∞

dx ' dy ' μ(x+ x ' , y+ y ' )δ(x ' cosϕ+ y ' sinϕ)

=∫
−∞

∞

∫
−∞

∞

dx ' dy ' μ(x+x ' , y+ y ' ) 1
√x ' 2+ y ' 2

=∫
−∞

∞

∫
−∞

∞

dx ' dy ' 1
√(x ' −x)2+( y '− y)2

μ(x ' , y ' )=1
|r|

∗μ(x , y)

∫
0

π

d ϕ δ(x cosϕ+ y sin ϕ)=
1

√ x2+ y2

x=r cosθ , y=r sinθ , cos (θ−ϕ)=.. .
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CT – Back Projection, Inverse Filtering

To recover (x, y) from the back-projections we have to invert 
this convolutions:

with 

Note that convolutions can be inverted (under some 
assumptions) 

To see this we have to introduce the Fourier Transform and the 
corresponding frequency domain Convolution Theorem.

b (x , y )=μ( x , y)∗h( x , y)

μ(x , y )=b (x , y )∗hinv( x , y)

h( x , y)= 1
|r|=

1
√ x2+ y2
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CT – Back Projection, Inverse Filtering

X-ray
imag.

Inverse
Filtering

Back 

Project

Note edge effects
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The Fourier Transform (FT) is defined as*

The FT is an invertible transformation

We can show this using  

* Notational convention: Use k for spacial, and  for temporal frequency.

H (k )=FT [h(x )]=∫
−∞

∞

dx h (x )e−i 2π kx

∫
−∞

∞

dk e−i 2 πkx=δ( x)

∫
−∞

∞

dk H (k )ei 2π kx=∫
−∞

∞

∫
−∞

∞

dk dx ' h( x ' )ei 2π k (x− x' )=h (x )

h( x)=FT−1[ H (k )]=∫
−∞

∞

dk H (k )ei 2π kx

Fourier Transform (1D)



17

Lucas Parra, CCNY City College of New York

h( x)∗g ( x)⇔H (k )G (k )

FT [h (x)∗g ( x)]=∫
−∞

∞

dx h( x)∗g (x )e−i 2π kx=

=∫
−∞

∞

dx∫
−∞

∞

dx ' h (x ' ) g ( x−x ' )e−i 2π kx

=∫
−∞

∞

dx∫
−∞

∞

dx ' h (x ' ) g ( x)e−i 2π k (x +x ')

=∫
−∞

∞

dx ' h(x ')e−i 2π kx ' ∫
−∞

∞

dx g ( x)e−i 2 πkx

=H (k )G(k )

Because the Fourier transform of the convolution ...

Fourier Transform – Convolution Theorem



18

Lucas Parra, CCNY City College of New York

Note that with the convolution theorem we can implement 
convolution as a multiplication in the frequency domain. 

b (x)=g ( x)∗h( x)⇔ B(k )=G(k ) H (k )

h(x)            H(k)
                                        B(k)                b(x)
g(x)            G(k)

FT

FT
FT-1

Fourier Transform – Convolution Theorem
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Fourier Transform - Inverse Filter

With the Convolution Theorem we can derive the inverse 
convolution (or inverse filter)

Therefore

And the inverse filter is given by the inverse FT of H-1(k):

b (x)=g ( x)∗h( x)⇔ B(k )=G(k ) H (k )

G(k )=
B(k )
H (k )

g ( x)=FT−1[ 1
H (k ) ]∗b( x)
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CT – Back Projection, Inverse Filtering

To recover (x, y) from the back projections we have to invert 
this convolutions:

with

Using  

And the Convolution Theorem we have:

Summary: To obtain the attenuation we have to back project the 
measurements g(s, ) and filter that with h-1(x,y) = FT-1[ |k| ]. 

b (x , y )=μ( x , y)∗h( x , y)

μ(x , y )=FT −1 [|k|]∗b( x , y)

h( x , y)= 1
|r|=

1
√ x2+ y2

H (k x , k y )=FT [|r|−1 ]=|k|−1
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The numerical implementation of the FT is discrete in x and k. It 
is referred to as Discrete Fourier Transform (DFT). 

● A fast algorithm is available (FFT) to compute the DFT in 
only N log2 N operations instead of N2.

● Convolution with long filters is therefore often implemented 
using the FFT.   

● FFT requires N to be a power of 2.

Demonstrate: fft2, ifft2, fftshift, inverse filtering, 
separability, Zero padding for power of 2 in FFT.

Fourier Transform – FFT

g [ x ]= 1
N ∑

k=0

N −1

G [k ]e j 2π kx /N

G [ k ]=∑
x=0

N −1

g [ x ]e− j 2π kx /N
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The Fourier transform in 2D is defined correspondingly

Or in multiple dimensions with k = [kx, ky, kz, ...]
T, r = [x, y, z, ...]T

The inverse transform is defined correspondingly.

Notice that the the Fourier transform can be applied sequentially 
in each dimension!

The Convolution Theorem applies in higher dimensions as well.

Fourier Transform – 2D and higher

H (k)=∫
−∞

∞

...∫
−∞

∞

d r h (r )e−i 2π k⋅r

H (k x , k y )=∫
−∞

∞

∫
−∞

∞

dx dy h(x , y )e−i 2π(k x x+k y y)
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CT – Back Projection, Inverse Filtering

Summary: To obtain the attenuation we have to back project the 
measurements g(s, ) and filter that with h-1(x,y) = FT-1[ |k| ]. 

The problem with this approach:
1. The singularity at |k|=0 may become a problem  (total 

energy=0)
2. The area of support for b(x,y) needs to be large. This is why 

we have errors at the edges.

An alternative method that overcomes these problems is to filter 
first and then back-project.

This will require that we introduce the Projection Slice theorem.
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CT – Projection Slice Theorem

This theorem is used to invert the Radon transform. It relates the 
Randon transform g(s,) of a function (x,y) with 2D Fourier 
transform of that function. 

Denote the 2D Fourier transform of (x,y) with

And denote the 1D Fourier transform of the Radon transform as

The Projection Slice Theorem states then

F (k x , k y)=FT x , y[μ(x , y)]

G(k ,ϕ)=F (k cosϕ , k sin ϕ)

G(k ,ϕ)=FT s[g (s ,ϕ)]
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CT – Filter Back Projection

The original image (x,y) by definition: 

or in polar coordinates:

μ(x , y )=∫
−∞

∞

∫
−∞

∞

dx dy F (k x , k y )ei 2π(k x x+ k y y)

μ(x , y )=∫
0

2π

∫
0

∞

d ϕ dk k F (k cosϕ , k sin ϕ)e i 2 πk ( xcos ϕ+ ysin ϕ)

=∫
0

π

∫
−∞

∞

d ϕ dk|k|F (k cos ϕ , k sin ϕ)e i 2π k (x cosϕ+ y sin ϕ)

=∫
0

π

∫
−∞

∞

d ϕ dk|k|G (k ,ϕ)ei 2π k (x cosϕ+ y sinϕ)
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CT – Filter Back Projection

By defining the following filtered Radon transform

The previous equation becomes a simple back projection

Notice that the first operation is 1D filtering of the Radon 
transform along the excentricity axis r with H(k) = |k|.

Summary: To obtain the attenuation we have to filter g(s, ) 
with h-1(s) = FT-1[ |k| ] and back-project the result. 

μ(x , y )=∫
0

π

d ϕ ĝ (x cosϕ+ y sin ϕ ,ϕ)

ĝ (s ,ϕ)=∫
−∞

∞

dk |k|G(k ,ϕ)e i 2π ks

ĝ (s ,ϕ)=FT −1 [|k|]∗g (s ,ϕ)
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CT – Filter Back Projection

X-ray
imag.

Back
project

Inverse 

Filter

Demo: limited view angles,  limited angular sampling, noise.
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CT – Filter Back Projection

X-ray
imag.

Back
project

Inverse 

Filter

Limited view angles: 150o
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CT – Filter Back Projection

X-ray
imag.

Back
project

Inverse 

Filter

Limited angular sampling: 5o steps
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CT – Filter Back Projection

X-ray
imag.

Back
project

Inverse 

Filter

Detector calibration error: 10% at s = 80
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CT – Filter Back Projection

X-ray
imag.

Back
project

Inverse 

Filter

Sensor noise: additive Gaussian with 10% of std of g()
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Fanbeam projections

Micro CT “fanbeam” image of mouse femur

source

detector
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Fanbeam projections

x
D= tanα

s
d=sinα=

tanα
√1+ tan2α

x= Ds
√d2−s2

ϕ=θ+α

α
θ

s

x

d D
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Fanbeam projections

Resam-
pling

Back
project

Inverse 

Filter
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CT – Filter Back Projection

Assignment 6: Implement Filter Back Projection.
1. Simulate axial x-ray imaging using the matlab radon function
2. Filter with the Radon transform with inverse H(k) = |k| using 

the 1D Fourier transform along the s axis. (Note that you 
may need zero padding in the FFT).

3. Back project the filtered Radon transform.
4. Display the original and the result of each operation as in 

previous slide. 


