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Schedule

1. Introduction, Spatial Resolution, Intensity Resolution, Noise

2. X-Ray Imaging, Mammography, Angiography, Fluoroscopy

3. Intensity manipulations: Contrast Enhancement, Histogram Equalisation

4. Computed Tomography

5. Image Reconstruction, Radon & Fourier Transform, Filtered Back Projection

6. Nuclear Imaging, PET and SPECT

7. Maximum Likelihood Reconstruction

8. Magnetic Resonance Imaging

9. Fourier reconstruction, k-space, frequency and phase encoding 

10. Optical imaging, Fluorescence, Microscopy,  Confocal Imaging

11. Enhancement: Point Spread Function, Filtering, Sharpening, Wiener filter

12. Segmentation: Thresholding, Matched filter, Morphological operations

13. Pattern Recognition: Feature extraction, PCA, Wavelets

14. Pattern Recognition: Bayesian Inference, Linear classification
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Model for a simple imaging system ...

often assumes linear shift invariance (LSI). The image of a 
point like source, s(x)x, on the detector combining all 
blurring effects of the imaging process is called the Points 
Spread Function h(x): 

Model Imaging System

source
image image

digitized 
image

Linear Space 
Invariant system

Sampling and
digitization 

h (x)=LSI [δ (x )]

x
δ( x) h (x)
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A common simplified mathematical model for an imaging 
process is that of a linear system with additive noise:

The source image s(x,y) passes through a Linear Sift Invariant 
transformation h(x,y) and sensing generates additive noise n(i,j). 
The linear transformation is given by a convolution:

g ( x , y)=h( x , y)∗s( x , y)+ n( x , y)

LSI
h(x,y)

s(x, y)
+

n(x, y)

g(x, y)

Model Imaging System
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Point Spread Function

The image of an arbitrary source s(x) is then given by a 
convolution

For a 2D discrete array (image) we write the convolutions as

g ( x)=LSI [ s (x )]=LSI [∫ dx ' δ( x−x ' )s (x ')]

=∫dx ' s ( x ' ) LSI [δ( x−x ' )]

=∫dx ' s ( x ' )h(x−x ' )

=∫dx ' h( x ' )s (x−x ' )
=h (x )∗s (x )

g ( x , y)=∑
x '=1

N

∑
y '=1

M

h(x− x ' , y− y ' )s ( x ' , y ')

=h( x , y)∗s( x , y)
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Point Spread Function

>> g = conv2(h,s);
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PSF – Smoothing, Sharpening
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There are a few simple choices of PSF we can apply to an image 
to improve image quality:
Smoothing: Simple low pass filter to remover high frequency 
noise

Sharpening: Simple high pass filter that enhances edges, 
equivalent to a second derivative (Laplacian filter)

                                            or 

Often  h
LP

 is implemented with a 2D Gaussian PSF, and h
HP

 with 
its second derivative. This way it is easier to control the scale. 

Un-sharp masking: hhp(x , y )=δ( x , y)−hlp ( x , y)
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PSF – Smoothing, Sharpening
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Assignment – simple edge detection

● Use an image from the previous slide and determine the 
circumference. 

● Filter the image to remove background noise and highlight 
edges. 

● Use automatic theresholding to determine the edges, e.g. Otsu’s 
method.   

● You can filter the relevant areas using morphological image 
operations on the thresholded image, e.g. “open” and “close”. 

● You can also use region properties to select the area that 
belongs to the edge. 

● Hopefully it is singly-connected and you can determine the 
length of the edge, if not, again you can use morphological 
operations to “close” the edge.  

● The goal is not to get this perfectly, but learn the effects of the 
different parameters. (low-pass filter size, threshold value, 
region size, size of “structure element”etc.). 

● Compare this to Canny and Sobel edge detection, see matlab 
function edge().



10

Lucas Parra, CCNY City College of New York

Assignment – simple segmentation

● The objective of this project is to measure the size of the mouse 
lungs in the CT volume “mouse_ct.mat” posted on the website. 

● Filter the image to remove background noise. 
● Use theresholding to capture the dark area of the lung volume.   
● You can filter the relevant areas using morphological image 

operations on the thresholded image, e.g. “open” and “close”. 
● You can also use region properties to rule out area that do not 

belongs to lung or are inside the lung. 
● The goal is not to get this perfectly, but learn the effects of the 

different parameters. (low-pass filter size, threshold value, 
region size, size of “structure element”etc.). 

● There are 3 repeated volumes in the same image. Measure and 
report the size of each of the 3 volumes 
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In k-space (Fourier Domain) this can be written as 

where G, H, S, and N are the 2D Fourier Transforms (FT) of g, h, 
s, and n respectively.

Often one considers the ideal noise free case, N=0:

Demonstrate: Low-pass filter, high-pass filter, band-pass filter, 
Laplacian, un-sharp masking, etc.  in MATLAB.

Point Spread Function - K-space

G(k x , k y)=H (k x , k y) S (k x , k y)+ N (k x , k y )

G(k x , k y)=H (k x , k y) S (k x , k y)
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Effect of H on S in k-space:

k-space
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In the case of zero noise, N=0, and a known PSF we can undo 
the effect of H and recover the original image with an inverse 
filter:

That is by convolving with the inverse FT of H-1: 

Inverse Filtering

S (k x , k y)=
1

H (k x , k y )
G(k x , k y)

s( x , y)=FT−1[ 1
H (k x , k y) ]∗g (x , y )
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Problem: H(k
x
,k

y
) may be zero or very small for some 

frequencies. At those frequencies even small noise will be 
stronger than the signal, and 1/H(k

x
,k

y
) will primarily enhance 

the noise! 

Solution: Wiener Filtering

Assignment 10: 
1. Filter (convolve) an image with an PSF of your choice. 
2. Compute the inverse filter using the DFT. 
3. Recover the original image by filtering with this inverse filter. 
4. Show all three images, your filter, and its inverse filter, and 
the difference image between original and recovered image. 
5. Corrupt the filtered image with additive noise (10dB SNR) 
and repeat step 3 and 4.
6. Now repeat the same (convolution+noise) and recover the 
original image using a Wiener filter. 

Inverse Filtering
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Wiener filter considers the effect of noise N and the magnitude 
of H . It give the optimal estimate                as:



S
 = E[|S|2], 

N
 = E[|N|2] are the power-spectra of s and n: 

Expected value of the absolute square of the FT.

|H|2 is the magnitude response of h : Absolute square of the FT.

(Dependency on x, y and k
x
,k

y
  is omitted here to simplify notation)

This estimate is 'optimal' in that it represents the maximum 
aposteriory (MAP) estimate assuming zero mean Gaussian 
distributed spectra.

Wiener Filtering

Ŝ (k x , k y)=
σS

2 H *

∣H∣
2
σS

2
+ σN

2 G(k x , k y)

Ŝ (k x , k y)
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Sometimes prior information on the model parameters is 
available in the form of a prior probability density

This prior information can be combined with the likelihood of 
the data with Bayes' theorem

This is the conditional distribution of the parameter S after 
having observed data. It is therefor called posterior 
probability density. 

 

Prob. Estimation - Maximum A Posteriori

pS (S )

p (S∣data)=
p (data∣S ) pS(S )

p (data)

review
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The ML estimate can be biased towards the prior assumption 
using the posterior. 

This gives the maximum a posteriori (MAP) estimate 

The MAP estimate gives the 

most probable model given the observations.

Notice how this biases the ML estimate:

 

Prob. Estimation - Maximum A Posteriori

Ŝ=arg max
S

p(S∣data)

Ŝ=arg max
S

ln p(S∣data)

=arg max
S

[ ln p (data∣S )+ ln p(S ) ]

review
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In this case we are trying to estimate parameters S from data G, 
and assume that  S and N are Gaussian: 

The log aposteriory probability is then

Setting derivative d lnp(S|G)/dS* = 0, and solving for S gives the 
Wiener Filter solution: 

Wiener Filtering

ln p (S∣G)= ln pN (G∣S )+ ln pS (S )+ const.

=−∣HS−G∣
2
/ (2σN

2
)−∣S∣2

/(2σS
2
)+ const.

Ŝ=
σ s

2 H *

∣H∣
2
σ s

2
+ σN

2 G

pS (S )∝exp(−
∣S∣

2

2σS
2 ) pN ( N )∝exp (−

∣N∣
2

2σN
2 )
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Back in the space domain this is

Three important limiting cases:

For N0 the filter [ ] becomes a inverse filter:  

For H=1, filter reduces to                
i.e. 0/1 gain for low/high SNR respectively.

For, H0, or ,SNR=
S
/

N
0, the filter [ ] reduces to: 

Wiener Filtering

ŝ( x , y)=FT−1[ σ s
2 H *

∣H∣
2
σ s

2
+ σN

2 ]∗g (x , y )

[ H−1 ]

[ σ s
2

σN
2 H * ]

[ σ s
2

σ s
2
+ σN

2 ]
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Back in the space domain this is

 
Multiplying with H* corresponds to a correlation with H:

To  understand its effect a filter that does not affect the 
magnitude of any frequency, but only its phase, i.e. |H|2=1:

Therefore H* corrects the phase effects of H. 

Wiener Filtering

ŝ( x , y)=FT−1[ σ s
2 H *

∣H∣
2
σ s

2
+ σN

2 ]∗g (x , y )

Ŝ=H * G=H * H S=S

∑
x'=−∞

∞

g [x+ x ' ]h∗
[x ' ] ⇔ G (k )H ∗

(k )
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Sometimes one would like to find all the occurrences of a 
pattern h(x,y) in an image:

We want to find the locations x
o
,y

o
 where the image g(x,y) 

matches the pattern h(x,y):

Template matching

xo , yo=argmin
x' , y '

∑x y
∣g ( x+ x ' , y+ y ' )−h(x , y )∣

2
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The minimum is achieved at the maximum of of the 
correlation between g and h.

Note that the correlation in the frequency domain can be 
computed at a product with H* 

(The Wiener filter does a form of matching)

Template matching

cgh( x ' , y ' )=∑x y
g ( x+ x ' , y+ y ')h (x , y )

xo , yo=argmax
x ' , y '

c gh(x ' , y ' )

∑
x'=−∞

∞

g [x+ x ' ]h∗
[x ' ] ⇔ G (k )H ∗

(k )



23

Lucas Parra, CCNY City College of New York

In summary: compute the correlation and find its maxima.

Template matching

H*
g(x, y) c(x', y') Search peaks

and threshold

x
o
, y

o
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