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 Schedule

Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-4: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 5-8: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions
Stochastic processes

Week 9-14: Examples of biomedical signal processing
Probabilistic estimation 
Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Independent components analysis - analysis of  MEG signals
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Matched and Wiener filter - filtering in ultrasound
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X = A S

Q: Given X can you tell what A and S is?

A: Yes! Use prior information on A and S.

 Linear Mixtures – Problem statement
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Basic physics often leads to linear mixing where
● Rows in S are sources si(t) 
● rows in X are sensors readings  xj(t). 
● rows in A are the amount the different sources i contribute to a 

sensor j due to a physical mixing process with coefficients aji.

Examples are:

X =           A *           S
Acoustic mic. array = room response * sound amplitude
Spectroscopy spectra = concentration * emission spectra
Hyperspectral image = abundance * reflection spectra
EEG electrical potential = elect. Potential * electrical coupling
MEG  magnetic field = electrical current * magnetic coupling

 Linear Mixtures – Problem statement
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Depending which prior information we get different results:

● Columns in A and rows in S orthogonal: 

Principal Component Analysis (PCA)

● Rows in S statistically independent: 

Independent Component Analysis (ICA)

● Rows in S orthogonal and white (or non-stationary): 

Multiple Diagonalization

● A and S positive: 

Non-negative Matrix Factorization (NMF)

Assignment 12: Read Lee & Seung Nature 1999, NIPS 1999

 Linear Mixtures – Prior information
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Consider an invertible linear mixture

where we denoted the inversion by W=A-1.

In Independent Component Analysis (ICA) one assumes that 
the sources s(t) are statistically independent:

To estimate the A we use again Maximum Likelihood. The 
likelihood of  i.i.d. observations x[n]=x(t

n
), n=1,...,T:

 Linear Mixtures – Independent Components

x( t)=A s (t)

p(s (t))=p(s1( t) , s2( t) ,…, sd( t))=∏
i=1

d

p (si(t))

p(x [1] ,…, x[T ]∣A)=∏
n=1

T

p (x [n ]∣A)

s( t)=W x( t)
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For any invertible transformation s = f(x), 

In particular for  s = A-1 x = W x   

The log-likelihood is then  

 Linear Mixtures – Independent Components

L(W )=ln pX(x [1 ] ,…, x[T ]∣W )=∑
n=1

T

ln px(x [n ]∣W )

=T ln ∣W∣+∑
n=1

T

ln ps(W x [n])

=T ln ∣W∣+∑
n=1

T

∑
i=1

d

ln ps(wi
T x [n])

px (x)=∣
d s
d x

∣ ps(s )

px (x)=∣W∣ ps(s)=∣W∣ ps(W x)
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We can find the maximum of L(W) with gradient ascent:

 Linear Mixtures – Gradient ascent 

∂ L(W )

∂W

*

W t+1=W t+μ
∂ L(W )

∂W
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We can find the maximum of L(W) with gradient ascent:

Stochastic gradient ascent updates for every sample n

making the assumption that that instantaneous gradient is a 
unbiased estimate of the full gradient.  

 Linear Mixtures – Stochastic gradient ascent

W t+1=W t+μ
∂ L(W )

∂W

=W t+μ∂
∂W

∑
n=1

T

L (x[n]∣W )

W t+1=W t+μ
∂ L(x[n]∣W )

∂ W
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We can find the maximum of L(W) with gradient ascent

where we have defined u =[u
1
, ..., u

d
]I with                                 .

We can always multiplying the gradient with a positive definite 
matrix, for instance WTW

If we assume high kurtosis signals (long tails) we can use 
Laplacian distribution

 Linear Mixtures – Independent Components

W t+1=W t+μ ( W−T+u [n ]xT [n] )

W t+1=W t+μ ( I+u [n] sT
[n ]) W

ui=∂ ln ps(s i)/∂ s i

ps(s)=λ
2

exp (−λ∣s∣) u(s)=−λ sign(s)
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X             =            A             *          S

i=6 

i=50 

i=20 

ith column in A  
visual 

visual 

auditory 

stimulus locked si(t) 

Magnetic fields 
measured in 
SQID sensors

Effective current 
flows in neuronal 
population

Magnetic coupling 
or attenuation due   
to geometry

 Linear Mixtures – ICA in MEG 
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Maximum Likelihood gives Principal Components if we assume:

● Sources are Gaussian, i.e.

● Mixing are rotations, i.e.  W-1 = WT

To see this set the gradient of the log-likelihood to zero: 

For a Gaussian,                                       . With 
 

Using orthogonality we obtain PCA:  

 Linear Mixtures – Principal Components

ps(s)=√(2π)σ exp(−
s2

2σ
2 )

0=T W−T+∑
n=1

T

u[n] xT [n]

u=∂ ln p(s)/∂ s=−s /σ2 Λ=diag(σ1
2,… ,σd

2)

W−T=
1
T
∑
n=1

T

Λ−1 s [n ]xT [n]=
1
T
∑
n=1

T

Λ−1W x [n ]xT [n]=Λ−1 W Rx

Rx=W T
ΛW
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Comparing results of ICA and PCA

 Linear Mixtures – ICA and PCA
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Statistical independence implies for all i❐j,t,l,n,m:

So far we have talked about same number of sensors than 
sources. In general for M sources and N sensors each  t,l,n,m 
gives M(M-1)/2 conditions for NM unknowns in A.

Sufficient conditions if we use multiple:

use sources assumed  resulting algorithm
n, m  nonGaussian ICA
t nonstationary multiple decorrelation
l nonwhite multiple decorrelation

 Linear Mixtures – Multiple diagonalization

E[ si
n
(t )s j

m
(t+l)]=E[si

n
(t)] E [s j

m
(t+ l)]
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For stationary non-white sources we have:

Which is diagonal assuming second order independent sources. 
The measured cross-correlation R

x
(l) = E[x(t) xT(t+l)] is then

Combing these equations for two time delays  l=l
1
,l

2
 leads to a 

generalized eigenvalue problem for A,

Warning: Generalize Eigenvalue not robust to noise!
For increased stability diagonalize multiple delays l. This is known 
as the SOBI algorithms (second order blind identification)

 Linear Mixtures – Multiple diagonalization

Rx(l)=A R s(l) AT

Rx(l1)Rx
−1

(l2) A=AΛs(l1)Λs
−1

(l2)

Rs(l)=E [s (t) sT
(t+ l)]
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For non-stationary white sources we have:

Which is diagonal assuming second order independent sources. 
The measured cross-correlation R

x
(t) = E[x(t) xT(t+l)] is then

Combing these equations for two time intervals  t=t
1
,t

2
 leads to a 

generalized eigenvalue problem for A,

This is equivalent to “Common Spatial Pattern”, which 
diagonalizes two covariance matrices measured at different times)
Warning: Generalize Eigenvalue not robust to noise!

 Linear Mixtures – Multiple diagonalization

Rx( t)=A R s(t) AT

Rx( t1)Rx
−1

( t2) A=AΛs(t 1)Λs
−1

(t 2)

Rs(t )=E[ s (t ) sT
( t)]
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For non-Gaussian sources we have:

From this one can derive for a linear combination of  4-order 
tensors (cross-cumulants) with symmetric matrix M 

The following diagonalization condition

This can again - in combination with diagonal covariance - be 
combined to a generalized eigenvalue equation. 

And again, for stability one should use use more than two 
cumulants, which leads to the “JADE” algorithms.

 Linear Mixtures – Multiple diagonalization

Cx=A C s( AT A) AT

E[ si
u s j

v
]=E[si

u
] E[s j

v
] , i≠ j

C s(M )=E[ sT M s s sT
]−Rs Trace(M Rs)−2 Rs M Rs
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Comparing different diagonalization criteria

 Linear Mixtures – Multiple diagonalization
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 Linear Mixtures – Multiple diagonalization

X             =            A             *          S
Electrical 
potentials on the 
skull surface

Large scale potential 
of  neuronal 
population

Electric coupling or 
attenuation due to 
tissue resistance
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 Linear Mixtures – Multiple diagonalization

Example: 6D Local Field Potentials

[W,D]=eig(R);

R=X(t2,:)*X(t2,:)'; 
Q=X(t1,:)*X(t1,:)';

S=W'*X;

[W,D]=eig(R,Q);
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 Linear Mixtures – Multiple diagonalization

Stimulus triggered evoked responses of these LFP (averaged over 
multiple repeats) for different spatial projections of the data: 
Y = WT X, with baseline covariance Q and stimulus covariance R: 

W=eye(6)
[U,D]=eig(Q);
W=(I-U(:,6)*U(:,6));

[U,D]=eig(R);
W=U;

[U,D]=eig(R,Q);
W=U;
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r (t)=wT x(t )

 Linear Mixtures – Maximum SNR component 

Assume we are looking for a linear response r(t)

which has maximal power during specific times t
1
 as compared 

to the power of baseline activity during times t
2
. That is, we are 

looking for a linear component w that maximize the power ratio 
or signal to noise ratio (SNR)

With the usual definition, R
x
(t) = E[x(t) xT(t)]. The solution if 

given by the maximum generalized eigenvector. Hence, the first 
component in the previous approach with two stationarity times 
has maximum SNR.

ŵ=argmax
w

E [r2(t1)]

E [r2(t2)]
=argmax

w

wT Rx(t 1)w

wT Rx(t 2)w
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 Linear Mixtures – Maximum SNR component 

Comparing BSS based on non-stationarity and non-white in MEG

auditory  locked

t1 t2    

m
SN

R
 r

(t
)  

B
SS

 s
9(

t)
 

9th column in A 

"inverse" of w
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Assignment: source separation

Use PCA, and multiple diagonalization to generate various projections of EEG data. 
1. Load the file eeg-vep.mat from the class webpage. It should have epoched data with 

160 channels, 545 samples and 116 trials saved in variable eeg. 
2. Stack up the trials so that you have a data matrix of channels by samples (160 x 1630).
3. Compute the covariance and from this principal components of this data. Show the 

eigenvalue spectrum (on a dB scale). Display first principal component (the 
eigenvector with the strongest eigenvalue) on the scalp using the topoplot() function 
using the corresponding location file provided on the website.

4. Project the data onto the first two principal component and display the result as an 
images of trials by samples (116x545 for each of the two components). Also show the 
average across trials for the two components (two curved using plot). 

5. Repeat steps 2 trough 4 using instead the first and second half of the samples (samples 
1:272 and 273:545) to obtain two covariance matrices. Find the eigenvectors that 
diagonalize both these matrices (generalized eigenvectors). 

6. Repeat step 5 but now using the covariance of all the data and as the second correlation 
matrix use the the cross-correlation of the data with a version of the data that is delayed 
by K samples (try different delays). Be sure to symmetrize this matrix with 
Rxy=0.5*(Rxy+Rxy'); 

In total you should have 3 figures with results for 3 different techniques (steps 4, 5 and 
6). For each method combine plots with subplot into single figure. Label all axis and use 
milliseconds on the time axis. 
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