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Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.

Week 1-4: Linear systems

Impulse response

Moving Average and Auto Regressive filters
Convolution

Discrete Fourier transform and z-transform
Sampling

Week 5-8: Random variables and stochastic processes
Random variables

Moments and Cumulants

Multivariate distributions

Stochastic processes

Week 9-14: Examples of biomedical signal processing

Probabilistic estimation

Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Independent components analysis - analysis of MEG signals
Dynamical Models - Kalman filter and Hidden Markov Models
Matched and Wiener filter - filtering in ultrasound
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Linear Discrimination
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Given samples x from two classes ¢ and c, find vector v so
that the projection y separates the two classes:

T
Y=V X+V,

class conditiormal histograms
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X, dizcriminant projection ¥
Redefine x = [1, x, x,,..., x,]"andv=[v , v, v,,.., v ]' to write
in short:
T
Y=V X
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Linear Discrimination - Logistic Regression

The goal is to find a mapping from x to class label c or at
least an expected value:

c=f(y)=f(v x)

However, since there is overlap, rather than making a fixed
determination on the class label we will build a model that
tells us what is the likelihood of a class ¢ given input x.

plcly)=plclv" x)

We will now derive an expression of the Likelihood of class
labels c¢ given projection y, which are given by input x and
parameters v. The optimal v results then from ML.
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Linear Discrimination - Logistic Regression

Consider the posterior probability p(c,| y)

p(C ‘y>: p(Y‘Cl)p(Cl) _ 1
1 p(y‘C2)p(C2)+p(y|Cl)p(Cl) 1+EX§)(_1>
We introduced here the Likelihood ratio [:
1y, Ple) ple,
P\JYIC, p(cz

For a large class of distributions, p(y|c), called exponential
family, the Likelihood ratio simplifies under certain
assumptions to (

p\C€ 1)

[=y+In
P(Cz) 5
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Linear Discrimination - Logistic Regression

For example Gaussian projections, p(y |[c) = N(y;W_,0) with
different mean for each class but the same standard deviation.

Logistic function: p (Cl ‘ y ) —

Logistic function

1+exp (-1
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Linear Discrimination - Gaussian Data

Example: 1f the two classes are Gaussian distributed with
different mean for each class but the same covariance matrix

their optimal separation is linear and solution is particularly
simple:

p(x|c)ozexp| —(x—p.) = (x—p)2]
The likelihood ration is then linear

B p("Q)P(Q)_ T by
e ple) L

where the separation vector and bias are given by the means
and covariance:

w1
V=2 (Mfuz)
1 71 1 744 p(C)
=——u; 2 Wt+-w X w,+n
2 ’ p(cz) 7
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Linear Discrimination - Logistic Regression

More generally, assume that y is distributed according to some
distribution of the exponential family, which includes Gaussian,
Bernoulli, Poission, and others.

The goal is then to find the optimal projection vector v such that
the projections, y=v'x, results in a logistic likelihood for the
class labels

1
1+exp(—vTx)

=f(v'x)

Here we have absorbed In p(c,)/p(c,) into v,

pleyly)=
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Linear Discrimination - Logistic Regression

To derive the ML solution define, c=0, and, c=1, to identify
the two different classes and denote in short p(c|y)=f. We can
write then

plely)=f(1-f)"

This is called the Bernoulli density of ¢, and f is the mean:

c=E[c]=f(v'x)

Note that the expected value we wanted to compute is
therefore given now by the logistic function.
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Linear Discrimination - Logistic Regression

Given i.i.d. samples x[k], c[k] the log-likelihood of the data is

:lan(C[k] x| k||v
—Zlnp [K]v" x[k]) p (x[K))
_ZC IInf(v x[k])+(1—c[k])In(1—f(v x[k]))

+COnSt.

And the optimum solution according to ML is

argmin L(v)

There is not close form solution for this minimum.
10
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Linear Discrimination - Logistic Regression

However, the minimum can be computed using a fast algorithm
based on Iteratively Reweighted Least Squares (IRLS). It is a
type of Newton-Raphson gradient descent algorithm called
Fisher Scoring method (McCullagh,Nelder 1983):

OL(v) | OL(v)
dvov | OV

The expected Hessian can be computed fast and converges
typically within a few iterations.

Vt+1:Vt_E

>> v = logilst(x,c); % not part of matlab

11
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Linear Discrimination - Comparison
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Gaussian solution and and minimum L(v) give different results
when when data not Gaussian or for small sample size.
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Linear Discrimination - Support Vectors

In case of perfect separability LR is not well defined.

Occurs often when we have very few samples and/or high
dimensions. In that case is it better to chose the separation that
maximizes the margin to support vectors.

LA
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Linear Discrimination - Performance
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The performance of a binary classification problem is typically
evaluated with a Receiver Operator Characteristic (ROC)

curve. :
Moving threshold sweeps a curve of true

positive rate versus false positive rate

class conditional histograms \ ROGC Curve
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true positive rate
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discriminart varaible false positive rate

Az: Area under the ROC curve measures performance
independent of threshold. It is 0.5 for chance performance.
fc: Fraction correct (1-error rate) is conventionally measured

where tp=1-fp. It is 0.5 for chance performance. 14
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Linear Discrimination - Leave-One-Out

Note that the performance on the training data is biased and
always better than the performance on unseen data.

Therefore ROC and Az has to always be computed on unseen
test data!

If there is not sufficient data available to separate into training
and test set one should use the leave-one-out procedure:

1. For each sample k

Find the optimal v on all data exept c[k],x[k].

Use this optimal v to compute the leave-one-out class
likelihood p( c[k] | v'x[k]).

2. Compute Az using leave-one-out class likelihoods.

15
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LD - Application to EEG and MEG

Conventional Event Related Potentials (ERP) averages over
trials to increase signal to noise ratio.

The goal is to detect single trials without averaging over trials
or over time. We substitute trial averaging by spatial integration.

X(?)

With Linear discrimination we can now compute spatial weights
v which maximally discriminate sensor array signals x(t) for
two different conditions observed at times ¢t and t,. 16
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LD - Application to EEG and MEG
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Example: Find motor planing activity in MEG

Predict button press from 122 MEG sensors with linear
discriminator w such that y(r) differs the most during 100 ms
to 30 ms prior to lett (¢,) and right (z,) button push.

discriminating component ROC left vs. right
5 - 1
. O
c 0.8¢
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Tt = 02y
e Az=0.93
5L . . 0 -
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{ false positive rate
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LD - Application to EEG and MEG
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Localization of discriminating component: What 1s the electrical
coupling a of the hypothetical source y that explains most of the
activity X? X y
Least squares solution: a-— T

yy

where X has one column per sample, and y 1s a vector with all
samples. X has to be zero mean across samples.

Strong coupling indicates low attenuation. Intensity on these
“sensor projections” a indicates closeness of the source to the
Sensors.

18
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LD - Detection of Motor Planing and Imagery

Prediction of explicit finger tap (59 EEG sensors, 250-100ms prior)

discriminating component scalp prn]emmn ROC left vs. right datect.

_ Activity of explicit
| and imagined
motor action have

similar spatial

e /95/ distribution.
0 .

-15 -1 05 0 05 SublemSGE 0 05 1

Detection of imagined finger tap (59 EEG sensors, 800 ms)

discriminating component scalp projection ROC left vs. right detect. TransmiSSion Of

binary information
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‘ 0.4 // results in

N i 0.2 communication at
~2p SR Az=0.90

. o 12 bits/minute.
0 05 1 1.5 subject PJM 0 05 1




Lucas Parra, CCNY City College of New:York

LD - Detection of Error Related Negativity

Error Related Negativity (ERN) occurs following perception of
errors. It 1s hypothesized to originate in Anterior Cingulate and
to represent response conftlict or subjective loss.

Example: Erikson Flanker task

< <LK <<

Discrimination of error versus correct response (64 EEG
sensors, 100ms)

discriminating component scalp projection ROC correct vs. error detect.
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LD - Detection of Readiness Potential
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In preparation of motion there is a potential buildup in the 200
ms prior to motion over motor areas. It 1s called readiness
potential. When differentiating left/right one observed a
lateralized readiness potential.

arror/correct Az 086 leftinght Az 0.74 RF Az 091
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LD - Detection of Readiness Potential
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Assignment 11:

Load eeg-ern.mat or generate overlapping random variables
x1 and x2.

If you use eeg-ern.mat note that for every trail (78 for x1
and 300 for x2) there are each 25 samples. Consider them all as
1.1.d. samples.

Find a linear discriminator that discriminates between x1 and
x 2 assuming Gaussian distributions.

Plot resulting v and show ROC and Az value on training data.
Optional:
Display scalp projection a using scalp (coord, a)

Show ROC curve and Az with the average y over 25 samples of

each trial.
22
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