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Schedule

Week 1: Introduction
Linear, stationary, normal - the stuff biology is net made of.

City College of Ne@Yp

Week 1-5: Linear systems

Impulse response

Moving Average and Auto Regressive filters
Convolution

Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables

Moments and Cumulants

Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing

Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering
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Probabilistic Estimation
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So far we have estimated model parameters by minimizing
errors between a model and observations:

* Impulse response for given input and output.
* ARMA impulse response.
* AR model coefficients assuming white noise input.

Or by measuring moments of the data:

* Mean and covariance for normal distribution
* Mean for of a Poissons process.

A systematic way of deriving algorithms to compute model
parameters is to use a probability model and

* Maximum Likelihood (ML) estimation or
* Maximum A Posteriori (MAP) estimation
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Prob. Estimation - Maximum Likelihood

Given observed data x and a PDF model p(x|®) parameterized
with model parameters @ the Maximum Likelihood
estimation is

p=argmax p(x|9)
The Maximum Likelihood estimates gives the

model that make the observation most likely.

We often find the ML estimate by solving for @ in:
oln p(x(o)
=0
09
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Prob. Estimation - Maximum A Posteriori

Sometimes prior information on the model parameters is
available in the form of a prior probability density

Pq>((l))

This prior information can be combined with the likelihood of
the data with Bayes' theorem

_p(x19) py(0)
p((|)|X)— p(X)

This is the conditional distribution of the parameter @ after

having observed evidence x. It is therefor called posterior
probability density.
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Prob. Estimation - Maximum A Posteriori

The ML estimate can be biased towards the prior assumption
using the posterior.

This gives the maximum a posteriori (MAP) estimate
0=arg max p(g|x)
The MAP estimate gives the

most probable model given the observations.

Notice how this biases the ML estimate:

d=argmax In p(¢|x)=arg max|In p(x|¢ )+ In p(9)|

An important example is the Kalman fi?ter, where the current
estimate is biased by the past data though the previous model
estimate. 6
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Prob. Estimation - Bayesian Estimator

Bayesian estimation argues that a better estimator is the
expected model given the data rather than the most likely
model:

E[¢|x]=[ do p(d|x)o

The difficulty often lies in executing that integral analytically.
The expectation is then often computed using a Monte-Carlo
simulation:

e Generate samples @ distributed according to the posterior
using Gibbs Sampling.
* Use the sample average as an estimate of the expectation.
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Prob. Estimation - Maximum Likelihood

Often we are given M samples x , x , ..., x, independently and

identically distributed (i.i.d.) according to p(x|®). The ML
estimate is then

d=arg max In p(x;,Xy,..., Xyld)

M
=argmax ), In p(x,|9)
L
Example: Assume i.i.d. normal samples X peres X drawn from

1 (X—M)Z
o= — =N(x—
p(X‘M, ) ,—2 exp , 5 (X M,(i)
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Prob. Estimation - Maximum Likelihood

Setting derivatives of the log-likelihood to zero

M
0 _
m; IHN(XI—M,O)—O
a M
==, InN(x~u,0)=0

The ML estimate of the mean and covariance of a Gaussian
PDF model are the sample mean and sample covariance.

However, notice that [OZ]ZGZ(M—l)/M
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Prob. Estimation - ML and Least Squares

ML under Gaussian noise assumption is the same as Least
squares (LS) !

For example: Assume a linear relation between an input x and
an output y and allow for independent additive zero mean
Gaussian noise n:

y=AXx+n

The likelihood of the data given model parameters is then

Dy, X,¥|A,0)=p,(y—Ax|0) p,(x)

The log likelihood, L(A,0), for M data points XY s eeees X 0¥
given model A and o is then

M
L(A,0)=) InN(y—Ax,|o)+ const.
=1 10
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Prob. Estimation - ML and Least Squares

By inserting the definition of the Gaussian we obtain the
classic LS problem:

A

A=argmax L(A,o)=argmin |[Y-AX]|*
A

A

where we used our usual matrix notation for the sample
matrix X and Y. The estimated error variance is

6:argm§1x L(A,o0)
=argmin MIno*+|[Y-AX||*/(207)

Setting derivatives equal to zero yields the LS solution
A=YX (XX')'
And the obvious error estimate 62: 1 | |Y . A X ‘ | 2
Md 11
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Harmonic Analysis

We will model speech by computing ML estimate in small frames
assuming that speech has a harmonic component and a AR regular

process.
Original
Harmonic
Synthesized & _
Noise

12
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Harmonic Analysis

City College of New: York

Harmonic model is sum of sinusoids with frequency being
multiples of basic pitch frequency w

K
=Y b,sin(kot)+ c,cos(kwt)

k=1
The coeflicients b and lg o nfoﬂgl_t%e rsn(p i udgg (%{Qs% })f each
harmonic component: ; (t) ( t) h
=S W

In matrix ngﬁ%pn Wgefn%q)wrlte sm(m T) IT? bll

M | oK) snlko2) ... sn(KoT]| |t
hi21|_|sin{w sin{ K o .. sin(Kw p
[E = cosfo) cos(w2) ... cosfoT) | |¢ h=S"b
h[T]. : : ; ;

cos(wK) cos(Kw2) ... cos(KwT)| |Ck
| i 0 13
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Harmonic Analysis
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We model a given signal x[7] as a deterministic harmonic process
plus independent additive zero mean white Gaussian noise n[?]

x|t|=h[t|+ n|t]

The log likelihood of given model parameters b is then

L(b,w,0)=) InN(h(t)—x[t] |o)

_ZlnN (wt)b—x]t] |0)

b=argmax L(b,w,0)
The ML solution for b for a glven pltch  is then (a LS solutions)

—argmin ||x—S b||'=S""

b 14
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Harmonic Analysis
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The variance is again the estimation error

6°=||x=S"b||*/T

However, finding the solutions for the best pitch w is a non-convex
optimization problem!

®=arg max Lib(o),0,0)

=arg min 1x=S"(0)b(0)||'=?

Exhaustive search is really the only solution.

15
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Harmonic Analysis
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Example: Model Circadian rhythm with harmonic sine and cosine.

for i=1l:1length (f) % for all suspect fregs
phase = [0:T-1]'*[1:K]*2*pi*f(1i)/fs; % nicely scaled phase
S = [sin(phase) cos(phase)]'; % harmonic basis S
b = S'\x; % LS solution for b
s(i) = std(x-S'*Db); % Error of fit
end
[m,1]=min(s); 1./f(1) % and the winner is f (1)
Error of fit harmonicfit with K=1 Error of fit hamuonic fit with K=3
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Harmonic Analysis
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Example: Model of 16 ms of speech as harmonic process.

Errar of fit
0.35 : : : : 30 : : .
D3 — X ei thy 2
— Note that the
1 e N Gl TR
power
10 j | spectrum is
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5 . el . £ ol |
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Harmonic Analysis

Assignment 10:

Select a 16 ms segment of voiced speech (clear harmonic structure).
Model the that segment as a deterministic harmonic process.
What is you estimate for pitch frequency w?

How many harmonics (K) seem appropriate for your signal?

Measure how orthogonal the harmonic process h[t] is from the
remaining noise process n[t].

Model the remaining noise n[t] as an AR process of order P.

Show the combined model spectra (harmonic + noise) and overlay
with to the raw Fourier spectrum.

Try a few different K and P. What do you think is a good choice?

18
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