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 Schedule
Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-5: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing
Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering 



3

Lucas Parra, CCNY City College of New York

So far we have estimated model parameters by minimizing 
errors between a model and observations:

● Impulse response for given input and output.
● ARMA impulse response. 
● AR model coefficients assuming white noise input.

Or by measuring moments of the data:

● Mean and covariance for normal distribution
● Mean for of a Poissons process.

A systematic way of deriving algorithms to compute model 
parameters is to use a probability model and

● Maximum Likelihood (ML) estimation or
● Maximum A Posteriori (MAP) estimation

Probabilistic Estimation



4

Lucas Parra, CCNY City College of New York

Given observed data x and a PDF model p(x|) parameterized 
with model parameters the Maximum Likelihood 
estimation is

The Maximum Likelihood estimates gives the

model that make the observation most likely.

We often find the ML estimate by solving for   in:

Prob. Estimation - Maximum Likelihood

ϕ̂=arg max
ϕ

p(x∣ϕ)

∂ ln p( x∣ϕ)
∂ϕ

=0
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Sometimes prior information on the model parameters is 
available in the form of a prior probability density

This prior information can be combined with the likelihood of 
the data with Bayes' theorem

This is the conditional distribution of the parameter  after 
having observed evidence x. It is therefor called posterior 
probability density. 

 

Prob. Estimation - Maximum A Posteriori

pϕ(ϕ)

p (ϕ∣x)=
p( x∣ϕ) pϕ(ϕ)

p (x )
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The ML estimate can be biased towards the prior assumption 
using the posterior. 

This gives the maximum a posteriori (MAP) estimate 

The MAP estimate gives the 

most probable model given the observations.

Notice how this biases the ML estimate:

An important example is the Kalman filter, where the current 
estimate is biased by the past data though the previous model 
estimate.

 

Prob. Estimation - Maximum A Posteriori

ϕ̂=arg max
ϕ

p(ϕ∣x )

ϕ̂=arg max
ϕ

ln p(ϕ∣x )=arg max
ϕ

[ ln p( x∣ϕ)+ ln p(ϕ)]
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Bayesian estimation argues that a better estimator is the 
expected model given the data rather than the most likely 
model:

The difficulty often lies in executing that integral analytically. 
The expectation is then often computed using a Monte-Carlo 
simulation:

● Generate samples  distributed according to the posterior 
using Gibbs Sampling. 

● Use the sample average as an estimate of the expectation.

Prob. Estimation - Bayesian Estimator

ϕ̂=E [ϕ∣x ]=∫ d ϕ p (ϕ∣x)ϕ
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Often we are given  M samples x
1
, x

2
, ..., x

M
 independently and 

identically distributed (i.i.d.) according to p(x|). The ML 
estimate is then

Example: Assume i.i.d. normal samples x
1
,..., x

M
 drawn from 

Prob. Estimation - Maximum Likelihood

ϕ̂=arg max
ϕ

ln p( x1 , x2 ,… , x M∣ϕ)

=arg max
ϕ

∑
i=1

M

ln p(x i∣ϕ)

p (x∣μ ,σ )=
1

σ√2π
exp(−(x−μ)

2

2σ2 )≡N (x−μ ,σ)
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Setting derivatives of the log-likelihood to zero

gives the solutions

The ML estimate of the mean and covariance of a Gaussian 
PDF model are the sample mean and sample covariance.
However, notice that 

Prob. Estimation - Maximum Likelihood

∂
∂μ ∑

i=1

M

ln N ( x i−μ ,σ)=0

μ̂=
1
M

∑
i=1

M

x i

∂
∂σ∑

i=1

M

ln N ( x i−μ ,σ)=0

σ̂
2
=

1
M

∑
i=1

M

( x i−μ̂)
2

E [
̂
σ

2
]=σ

2
(M −1)/ M
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ML under Gaussian noise assumption is the same as Least 
squares (LS) !

For example: Assume a linear relation between an input x and 
an output y and allow for independent additive zero mean 
Gaussian noise n:

The likelihood of the data given model parameters is then 

The log likelihood, L(A,σ), for M data points x
1
,y

1
, ...., x

M
,y

M
  

given model A and σ is then

 

Prob. Estimation - ML and Least Squares

y=A x+ n

p x , y ( x , y∣A ,σ)=pn( y−A x∣σ) px( x )

L( A ,σ)=∑
i=1

M

ln N ( y i−A x i∣σ)+ const.
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By inserting the definition of the Gaussian we obtain the 
classic LS problem: 

where we used our usual matrix notation for the sample 
matrix X and Y. The estimated error variance is 

Setting derivatives equal to zero yields the LS solution

And the obvious error estimate

 

Prob. Estimation - ML and Least Squares

Â=arg max
A

L( A ,σ)=arg min
A

∣∣Y−A X∣∣
2

σ̂=arg max
σ

L( A ,σ)

=arg min
σ

M lnσ
d
+∣∣Y−A X∣∣

2
/(2σ

2
)

Â=Y X T
( X X T

)
−1

σ̂
2
=

1
M d

∣∣Y− Â X∣∣
2
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We will model speech by computing ML estimate in small frames 
assuming that speech has a harmonic component and a AR regular 
process. 

Harmonic Analysis

 Harmonic

 Noise

Original

Synthesized 
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Harmonic model is sum of sinusoids with frequency being 
multiples of basic pitch frequency 

The coefficients b
k
  and c

k
 encode the amplitude and phase of each 

harmonic component: 

In matrix notation we can write

Harmonic Analysis

h (t)=∑
k=1

K

bk sin (k  t)+ ck cos (k  t)

[
h[1]
h [2]
⋮

h[T ]
]=[

sin() sin ( 2) … sin(T )

⋮ ⋮ ⋮
sin( K ) sin( K 2) … sin (K T )

cos() cos ( 2) … cos(T )

⋮ ⋮ ⋮

cos( K ) cos( K 2) … cos (K T )
]
T

[
b1

⋮
bK

c1

⋮
cK

]
h (t)=sT

( t)b

h=ST b

b sin (α)+ ccos (α)=a sin (α+ ϕ)
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We model a given signal x[t] as a deterministic harmonic process 
plus independent additive zero mean white Gaussian noise n[t]

The log likelihood of x[t] given model parameters b is then

The ML solution for b for a given pitch  is then (a LS solutions)

Harmonic Analysis

x [ t ]=h[ t ]+ n[ t ]

L(b , ,σ)=∑
t

ln N (h (t)−x [ t ] ∣σ)

=∑
t

ln N (sT
( t) b− x [t ] ∣σ)

b̂=arg max
b

L (b , ,σ)

=arg min
b

∣∣x−ST b∣∣2
=S−T x
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The variance is again the estimation error

However, finding the solutions for the best pitch  is a non-convex 
optimization problem!

Exhaustive search is really the only solution.

Harmonic Analysis

σ̂
2
=∣∣x−S T b̂∣∣2

/T

̂=arg max


L (b̂ () , ,σ)

=arg min


∣∣x−ST
() b̂()∣∣

2
=?
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Example: Model Circadian rhythm with harmonic sine and cosine.

for i=1:length(f)                      % for all suspect freqs
  phase = [0:T­1]'*[1:K]*2*pi*f(i)/fs; % nicely scaled phase
  S = [sin(phase) cos(phase)]';        % harmonic basis S' 
  b = S'\x;                            % LS solution for b
  s(i) = std(x­S'*b);                  % Error of fit
end
[m,i]=min(s); 1./f(i)                  % and the winner is f(i)

Harmonic Analysis
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Example: Model of 16 ms of speech as harmonic process. 

Harmonic Analysis

Best fit at 
=165Hz

Note that the 
power 
spectrum is 
additive for 
orthogonal 
processes.
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Assignment 10: 
● Select a 16 ms segment of voiced speech (clear harmonic structure).
● Model the that segment as a deterministic harmonic process.
● What is you estimate for pitch frequency ?
● How many harmonics (K) seem appropriate for your signal? 

● Measure how orthogonal the harmonic process h[t] is from the 
remaining noise process n[t]. 

● Model the remaining noise n[t] as an AR process of order P.
● Show the combined model spectra (harmonic + noise) and overlay 

with to the raw Fourier spectrum.
● Try a few different K and P. What do you think is a good choice?

Harmonic Analysis


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

