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 Schedule
Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-5: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing
Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering 
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A stochastic process is a random quantity that changes over 
time. More specifically it is a set of random variables sorted 
in time X[t]. Sampling a random process repeatedly gives and 
ensemble: 

Examples: Spike train, position of a particle moving randomly, 
number of bacteria in a culture, thermal noise in an amplifier, 
etc.  

Stochastic Processes
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Stochastic Process - Poisson Process 

Pr (N (t+Δ t )−N (t )=1)=νΔ t

Pr (N (t )=k )=
(ν t )k e−ν t

k !

Pr (N (t )=0)=e−ν t

Poisson process arises when we count the number of occurrences 
N(t) of independent random events where the likelihood of 
occurrence of an event is proportional to the time interval Δt.

One can proof by induction that the count follows a Poisson 
distribution with =νt

Interesting is the first induction step. For k=0 using definition and 
limes Δt 0 it is easy to see that

Which means that the ISI is exponentially distributed.
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Stochastic Process - Shot Noise 

X ( t)=∑
i=1

N

h(t )δ(t−ti)=∑
i=1

N

h (t−t i)

Shot noise we call Poisson process with events at times t
i
 

convolved with a IR.  

 

The expected value of X(t) is

Event or spike rate ν can be estimated by convolving a spike train 
with a sufficiently long IR. This in effect is what neurons do, 
where the IR is given by the post-synaptic potential (PSP). 

Sometimes (t
i
 t
i 1
) 1 is considered "instantaneous" spike rate ν (t).

E[X (t)]=ν(t)∫
−∞

∞

h(u)du
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A stochastic process x(t) is said to be a Gaussian process if  
x=[x(t

1
),x(t

2
),...,x(t

n
)]T are jointly Gaussian distributed 

In general the covariance matrix  and mean  depend on the 
time instances t

1
, t

2
, ... , t

n
.

Classic example is Brownian motion with 

Stochastic Process - Gaussian Process

p(x)=
1

√(2π)n∣∣
exp[−1

2
(x−)T −1

(x−)]

rij=B min(t i ,t j)
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If  p(x(t
1
),x(t

2
),...,x(t

n
)) does not depend on times t

1
, t

2
, ... , t

n
 the 

process is called stationary.

Any stochastic process for which the mean and covariance are 
independent of time is called Wide Sense Stationary (WSS).

A WSS process is called ergodic if the sample average 
converges to the ensemble average. With samples x[k] = x(t

k
) 

this reads:

Stochastic Process - Wide Sense Stationary

E[ f (x (t))]= lim
N→∞

1
N
∑
k=1

N

f (x [k ])
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If we have equal distant samples, x[k] = x(kT), the second 
moments correspond to the auto-correlation

For WSS stochastic processes: 

The mean is independent of time 

The Auto-correlation 

depends only on time differences 

it is symmetric,

the zero lag is the power

upper bounded by the power

Stochastic Process -Auto-correlation

r x [k , l ]=E[ x [k ] x∗ [l ]]

r x [k , l ]=rx [k−l ]

mx=E [ x [k ]]

r x [k ]=r x
∗
[−k ]

r x [0 ]≥∣rx [k ]∣
r x [0 ]=E [∣x [k ]∣2

]

r x [k ]=E [x [n+k ] x∗ [n ]]
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Assuming ergodic WSS a direct estimate of the auto-
correlation is the (unbiased) sample auto-correlation

Note that correlation is convolution with opposite sign. It can 
be computed fast with the FFT. Use xcorr()

Stochastic Process - Auto-correlation

r̂ x [k ]=
1

N−k
∑
l=1

N−k

x [ l+k ] x∗ [ l ]

x* 

x  

k   N
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Examples

Stochastic Process - Auto-correlation



11

Lucas Parra, CCNY City College of New York

For WSS the auto-correlation matrix becomes Hermitian 
Toeplitz

Important WSS process is (Gaussian) uncorrelated noise

>> randn()

Stochastic Process -Auto-correlation

Rxx=[
r x (0) rx

∗
(1) r x

∗
(2) ⋯ r x

∗
(p)

rx (1) rx (0) r x
∗
(1) ⋯ rx

∗
( p−1)

rx (2) r x(1) rx (0) ⋯ rx
∗
( p−2)

⋮ ⋮ ⋮ ⋱ ⋮
rx ( p) r x ( p+1) r x ( p+2) ⋯ rx (0)

]
Rxx=σ

2 I m x=0
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Oscillations of the correlation are best analyzed in the 
frequency domain, which leads to the Power Spectrum

One can show that P
x
(ej) is real, even and positive. 

The auto-correlation can be recovered with the inverse 
Fourier transform

Stochastic Process - Power spectrum

Px (e
j
)=∑

k=−∞

∞

r x [k ]e
− jk 

r x [k ]=
1

2π∫−π

π

d Px (e
j
)e jk 
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In particular, the total power is given by

the power spectrum is sometimes called spectral density 
because it is positive and the signal power can always be 
normalized to r(0) =(2π)-1.

Example: Uncorrelated noise has a constant power spectrum 

Hence it is also called white noise.

Stochastic Process - Power spectrum

r [k ]=E[ x [n+k ] x∗[n] ]=σ2
δ (k )

Px (e
j
)=∑

k=−∞

∞

σ
2
δ (k )e− jk

=σ
2

r x [0 ]=E [∣x [k ]∣2
]=

1
2π∫−π

π

dPx (e
j
)
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The power spectrum captures the spectral content of the 
random sequence. It can be estimate directly from the Fourier 
transform of the data:

This estimate improves in the mean with increasing N. 

Remember that when estimating auto-correlation and power 
spectrum we implicitly assume WSS processes! 

Stochastic Process - Power spectrum

P̂x (e
j
)=

1
N
∣X (e j

)∣
2

X (e j
)=∑

k=0

N−1

x [k ] e− jk

Px (e
j
)= lim

N→∞
E[ P̂x(e

j
)]
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Unfortunately, the direct estimate is inconsistent, i.e. its variance does 
not converge to 0 for increasing N.  

A classic heuristic, called the periodogram,  is to smooth neighboring 
frequencies: Compute Fourier transform for window of size N/K and 
average over K windows. Additionally do some windowing: pwelch()

Stochastic Process - Power spectrum
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The effect of filtering on the statistics of a stochastic process:

Filtering corresponds to convolution of the autocorrelation 

Stochastic Process - Filtering

y [n]=∑
k=−∞

∞

h[k ] x [n−k ]

r y [k ]=∑
l=−∞

∞

∑
m=−∞

∞

h [l ]r x [m−l+k ]h∗ (m)

=r x [k ]∗h[k ]∗h∗ [−k ]

  y[n]    x[n] 
 h[k] 

  r
x
[n]  

h[k] h*[-k] 
  r

y
[n]    r

yx
[k] 
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With the convolution theorem of the Fourier transform we find 
for the power spectrum

Or in the z-domain

Stochastic Process - Filtering

P y (e
j
)=Px (e

j
)H (e j

)H∗
(e− j

)=Px (e
j
)∣H (e j

)∣
2

 P
yx

(ej) 
 H(ej)  H*(ej) 

 P
y
(ej)  P

x
(ej) 

 |H(ej)|2P
x
(ej)  P

x
(ej) 

 |H(ej)|2  

Py (z )=Px( z)H (z)H
∗
(1 /z∗)
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Filtering shapes the  power spectrum 

Stochastic Process - Filtering

abs(fft(h,N)).^2

pwelch(x*sqrt(pi),128)
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"The power spectrum gives the spectral content of the data."
To see that consider the power of a signal after filtering with a 
narrow bandpass filter around 

0
.

Stochastic Process - Spectral Content

E[∣y [n]∣2
]=

1
2π∫−π

π

d∣H (e j
)∣

2 Px (e
j
)

=
1
2π

∫
0−Δ /2

0+Δ/2

dP x (e
j
)

≈Δ
2π

Px (e
j0)

Δ


0

π

H(ej)
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Colored noise process x[n] is filtered white noise v[n]

If h[n] is causal and invertible, x[n] is called a regular process 
and v[n] the corresponding innovation process with power σ

v

2.

Its power spectrum is continuous and given by 

The inverse filter 1/H(z) is called the whitening filter of x[n]. 

Stochastic Process - Regular process

  x[n]    v[n]  
h[n] 

 P
x
(ej)=σ

v

2|H(ej)|2  P
v
(ej) =σ

v

2 
 |H(ej)|2  

 v[n]    x[n] 
 1/H(z)  

Px (e
j
)=σv

2
∣H (e j

)∣
2
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A process x[n] is called predictive or singular if it can be 
predicted exactly from a linear combination of its past:

Examples are sinusoids or sums thereof:
 

The spectrum of a predictive process has only discrete lines:

Stochastic Process - Predictive process

x [n]=∑
k=1

∞

a[k ] x [n−k ]

Px (e
j
)=∑

k=1

∞

αkδ(−k )

x [n]=∑
k=1

∞

Ak ei nk+ϕ k
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The Wold decomposition theorem tells us that any WSS 
process x[n] can be decomposed into a sum of a regular 
process x

r
[n] and predictive process x

p
[n]:

 

where the processes are orthogonal:

Hence the spectrum of any WSS is composed of a continuous 
component with invertible H(z) plus discrete lines: 

Stochastic Process - Wold decomposition

x [n]=x p[n]+ xr [n]

E[ x p[n] xr
∗
[m] ]=0

Px (e
j
)=∣H (e j

)∣
2
+∑

k=1

∞

αk δ(−k )
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Note that for orthogonal processes the power spectrum is 
additive.

If 

with 

Then

Stochastic Process - Wold decomposition

z [n]=x [n]+ y [n]

E[ x [n] y∗ [m ]]=0

Pz (e
j
)=Px (e

j
)+P y (e

j
)
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Spectrogram: Power spectrum with strong spectral 
component can be estimate on short sequences, and hence, 
followed as it develops over time.

Example: Speech            >> specgram(x);

Assumption: WSS within each small window

Stochastic Process -Spectrogram

Note harmonic 
components
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An important regular process is the ARMA process: white 
noise v[n] filtered with a rational transfer function

Example: 

Stochastic Process - ARMA process

H (z )=
B(z )
A (z)

  x[n]  

a[k] 

 v[n]  


 h[k]  
 b[k] 

H (z )=
1+0.9025 z−2

1−0.5562 z−1
+0.81 z−2
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ARMA modeling means to find a[k], and b[k] that approximate 
an observed P

x
(ej) for a given x[n]

Note that now the input is not given. Instead only statistical 
assumptions on the input are know (white WSS process).

Stochastic Process - ARMA modeling

  x[n] 
 

a[k] 

  v[n] 
 

  h[k] 
 b[k] 

Px (e
j
)=
∣B(e j 

)∣
2

∣A (e j
)∣

2

x [n]=−∑
l=1

P

a[ l ]x [n−l ]+∑
l=0

Q

b [l ] v [n−l ]
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We derive now statistical conditions for a[k] and b[k]. Multiply 
the difference equation by x*[n -k] and take the expectation: 

with cross-correlation:

Using 

we obtain (non-linear) conditions for a[k] and b[k]

Stochastic Process - ARMA modeling

∑
l=0

P

a[ l ]rx [k−l ]=∑
l=0

Q

b[ l ]rvx [k−l ]

rvx [k−l ]=E[v [n−l ] x∗ [n−k ] ]

x [n]=h[n]∗v [n]

E[ v [n ]v∗[m ]]=δ(n−m)

∑
l=0

P

a[ l ]rx [k−l ]=∑
l=0

Q

b[ l ]h∗ [ l−k ]
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These conditions are called the Yule-Walker equations

 

In matrix form and using Hermitian symmetry of  the auto-
correlation we can write for lags 0...L:

Since c[k] depend on h[k] these equations are non-linear in a[k] 
and b[k]. They simplify for Q=0, i.e. AR model only. 

Stochastic Process - ARMA modeling

∑
l=0

P

a[ l ]rx [k−l ]=∑
l=0

Q− k

b [l+k ]h∗ [ l ]≡c [k ]

[
r x [0] r x

∗
[1] rx

∗
[2] ⋯ r x

∗
[P]

r x [1] r x [0] rx
∗
[1] ⋯ r x

∗
[P−1]

⋮ ⋮ ⋮ ⋮

r x [Q ] r x [Q−1] r x [Q−2] ⋯ r x[Q−P ]
rx [Q+1] rx [Q ] r x [Q−1] ⋯ r x [Q−P+1]
⋮ ⋮ ⋮ ⋮

r x [L] r x [L−1] r x [L−2] ⋯ r x [L−P ]
] [

1
a[1]
a[2]
⋮

a [P]
]=[

c [0]
c [1]
⋮

c [Q ]
0
⋮
0
]
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For Q=0 the Yule-Walker equations simplify to 

 

In matrix form and using Hermitian symmetry of  the auto-
correlation we obtain the AR normal equations:

Which are a set of linear equations for the unknown a[k].

Stochastic Process - AR modeling

∑
l=0

P

a[ l ]rx [k−l ]=∣b[0]∣2
δ(k )

[
r x [0 ] rx

∗
[1] r x

∗
[2] ⋯ r x

∗
[P]

r x [1] rx [0] r x
∗
[1] ⋯ r x

∗
[P−1]

r x [2] r x [1] r x [0] ⋯ r x
∗
[P−2]

⋮ ⋮ ⋮ ⋱ ⋮
rx [P] rx [P−1 ] r x [P−2] ⋯ rx [0]

] [
1

a [1]
a [2]
⋮

a[P]
]=[
∣b[0]∣2

0
0
⋮
0

]
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The AR normal equations can be rewritten as:

Linear equations with Toeplitz Hermitian form can be solved 
efficiently with the Levinson-Durbin  recursion. 

Computes the auto-correlations and solves this linear equation:

>> a = lpc(x,P);
 

Stochastic Process - AR modeling

[
rx [0] r x

∗
[1] ⋯ r x

∗
[P−1]

r x [1] r x [0] ⋯ r x
∗
[P−2]

⋮ ⋮ ⋱ ⋮
rx [P−1] r x [P−2] ⋯ rx [0]

] [
a [1]
a [2]
⋮

a[P]
]=−[

rx [1]
r x [2]
⋮

r x [P]
]

Rxx a=−r x
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The goal of linear prediction is to predict sample x[n] from its 
past P samples:

And a[k] are called the linear prediction coefficients (LPC).
The prediction error is given by 

 The LPC that minimize the expected error

satisfy the same linear equations as the AR model parameters:

which we obtain by taking derivatives with respect to a*[k]. 

Stochastic Process - Linear prediction

e [n]=x [n]− x̂ [n]

a=argmin E [∣e [n ]∣2
]

∑
l=0

P

a[ l ]rx [k−l ]=ϵ δ(k )

x̂ [n]=−∑
k=1

P

a[k ] x [n−k ]

ϵ=E[∣e [n]∣2]
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In matlab all this is done with: 

>> [a,e] = lpc(x,P);
>> b = sqrt(e);

The error process e[n] represents the "new" or "innovative" 
part over the linear prediction, hence the name  innovation 
process. 

One can show that the innovation in linear prediction is white 
and uncorrelated to the prediction,

Stochastic Process - LPC and Wold Decomp.

E[e [n]e∗ [m ]]=δ(n−m)

E[e [n] x̂∗ [m ]]=0
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Assignment 9:
• Pick either speech or heart rate

>> load hrs.mat; x=hrs; 
>> [x,fs]=audioread('speech.wav');x=x(5501:6012);

• Generate an AR model by solving normal equations.
• Plot an estimated power spectrum together with the AR 

model spectrum.
● Show the innovation process and its power spectrum.
• Compute the LPC coefficient using lpc(x,P)
• Compare your AR results with LPC.
• Show the linear prediction estimation error.
• Compute the signal to noise ratio (SNR) of your LPC model:

• Show SNR in dB as a function of model order P.

Stochastic Process - AR and LPC

SNR=
∑n

∣x̂ [n ]∣2

∑n
∣e [n]∣2
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