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Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-4: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 5-8: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions
Statistical independence and stochastic processes

Week 9-14: Examples of biomedical signal processing
Probabilistic estimation 
Linear discriminants - detection of motor activity from MEG
Harmonic analysis - estimation of hart rate in ECG
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Matched and Wiener filter - filtering in ultrasound
Independent components analysis - analysis of  MEG signals

 Schedule
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Probabilities are defined for discrete events, e.g. outcome of a 
coin flip. 

A random variable X is a map from an event eS to an 
observed real value X(e). 

The event can be thought of as a specific realization of a 
random system. X(e) is an associate observation, e.g. Patients 
body the temperature measured ad 6AM.

Random Variables
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Probability distribution defined a the probability that X

Probability density function (PDF)

Alternatively, a PDF is a real valued function with 

Expected value
Moments, Cumulants 
Poisson, Exponential (Lapace)
Normal distribution
Product and convolutions of Gaussians
Sum of random variables
Sample average (law of large numbers)
Central limit theorem

(Characteristic function if needed for any of this)

Random Variables - Probability density

FX (x )=Pr (X⩽x)

pX( x)= ∂
∂ x

F X (x)

x 

x 

1

FX (−∞)=0, F X (∞)=1

∫
−∞

∞

dx pX (x )=1, pX (x)⩾0

p(x) = “likelihood of 
finding value x”

F(x) = “Probability of finding 
value smaller than x”
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Estimate of probability density is the histogram

Where we measure the the likelihood
by counting how many samples fall within x and x + x.

>> hist(randn(1000,1))

Another way of assessing the structure 
of a pdf are moments and cumulants. 

Random Variables - Histogram

pX( x)≈
F X(x+Δ x)−F X( x)

Δ x
∝Pr (x⩽X⩽x+Δ x )

Pr (x⩽X⩽x+Δ x)
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Expected value E[f(X)] or ensemble average is defined as 

Moment m
n
 of order n is the expected value

First moment is the mean

Second moment is the power

Random Variables -Moments

mn=E [Xn
]=∫

−∞

∞

dx p (x) xn

E[ f (X )]=∫
−∞

∞

dx p(x) f (x)

m1=E[X ]=∫
−∞

∞

dx p( x) x

m2=E[X 2
]

x  m
1 
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For non-zero mean more interesting is the variance, i.e. The power 
of the deviation from the mean. 

A metric for the spread around the mean is the standard deviation 

Random Variables -Moments and Cumulants

var [X ]=E [(X−m1)
2
]=E[X2

]−(E [X ])
2

x 

 std[x]
 

 m
1 

std [X ]=√var [X ]
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Consider the Laplace transform of the PDF (up to sign of t)

Given E[etx] the PDF is fully determined by the inverse Laplace 
transform. Consider now the Taylor expansion 

Note that the expansion coefficients are  the moments of the PDF: 

We call  E[etx] therefore the moment generating function.
Given all moments E[etx] is fully determined and so is the PDF.

RV -Moment generating function

mn=
∂

n

∂ t n E [etx
]t=0=E[ xn

]

E[e tx
]=∫

−∞

∞

dx p(x )etx

E[e tx
]=∑

n=0

∞ mn

n!
t n
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Cumulants c
n 
of order n are defined as the expansion coefficients of 

the logarithm of the moment generating function:
 

Cumulants are a convenient way of describing properties of the PDF:

Assignment 6: Show that mean and variance are first two cumulants.

RV -Cumulants

cn=
∂

n

∂ t n ln E [etx
]t=0ln E [e tx

]=∑
n=0

∞ cn

n !
tn

c3=E [(x−μ)
3
] /σ

3

c4=E [( x−μ)
4
] /σ

4

c
1
 = mean

c
2
 = variance, measures spread2 around the 

mean.
c

3
  skew, measures asymmetry around 

mode (=0 for symmetric PDF)
c

4
  kurtosis, measures length of tails (=0 

for Gaussians)

c2=σ
2

c1=μ
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For a sequence of Bernoulli trials increment  N N+1 with 
probability p starting at N=0.  The probability of  N = k  after n 
trials is given by binomial distribution. 

For large n and small p so that, =np, is moderate size this can 
be approximated by the Poisson distribution:

Typical examples are photon count in 
detector, spike counts, histogram values, etc. 

Random Variables -Poisson distribution

P[N=k ]=
λ

k e−λ

k !

P[N=k ]=(nk ) pk
(1−p)

n−k
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The following moments are easy to compute using normalization

Mean:

Second moment:

Variance:

Fano factor:

Fano-factor is a easy metric to assert that a count is not Poisson. F 1 
often used to establish that spike counts are more "interesting" than 
Poisson.

Random Variables -Poisson distribution

∑
k=0

∞

P [k ]=∑
k =0

∞
λ

k e−λ

k !
=1

E[k2
]=λ

2
+λ

var [k ]=E [k2
]−E [k ]

2
=λ

F=var [k ]/ E[k ]=1

E[k ]=λ
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Exponential random variable has a pdf:

Mean:

Variance:

Spike train with constant firing rate  (number of spikes per unit 
time) for which the occurrence of a spike is independent of previous 
spikes has exponentially distributed inter spike intervals (ISI).  

Assignment 7: 
Generate Poisson distributed samples and measure F. 
Could the counts in the two spike trains in spike.mat be Poisson? 
 

Random Variables -Exponential distribution

p(x)={λ e−λ x , x≥0
0, x<0 }

E[ x ]=λ
−1

var [x ]=λ
−2
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Sampling from a continuous distribution
Goal: Generate random numbers y following a desired pdf p(y).
Approach: Draw x from an uniform distribution p(x)  const  and apply 

a nonlinearity y f(x).   

Result: The desired non-linear transformation is the inverse cumulative 
density, or inverse of the distribution function:

Example: Draw N samples from exponential distribution with mean m:
dy=m/1000; y=0:dy:10*m; 
p = exp(-y/m)/m; 
F = cumsum(p)*dy;
yrand = interp1(F,y,rand(N,1));

Note: This simple technique may not do a good job with the tails. 
     

y=f (x )=FY
−1

( y)

p(x)=|dy
dx|p( y)=const .

x=∫0

x
dx ' p(x ' )=∫

−∞

y
p ( y ' )dy '≡FY ( y )
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Perhaps the most important distribution is the normal 
distribution with Gaussian PDF:

Often written in short as                     . 

This defines a density because it is positive and normalized

Which is easy to show using 

Random Variables -Normal distribution

p(x)=
1

σ√2 π
e
−

( x−μ)
2

2σ
2

∫
−∞

∞

dx e−x2

=√π

∫
−∞

∞

dx
1

σ √2π
exp(−

(x−μ)
2

2σ
2 )=1

N (μ ,σ2
)
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The moments can be computed using the moment generating 
function

Mean:                               Second moment:                          Variance:

To estimate best fitting Gaussian simply measure mean and variance! 

Note that all higher cumulants are zero:

Random Variables -Normal distribution

( d E [etx
]

dt )
t=0

=μ

E[e tx
] = ∫

−∞

∞

dxe tx p(x) = (σ√2π)
−1
∫
−∞

∞

dx etx e
−
(x−μ)

2

2σ
2

=eμ t+σ
2 t 2

/2

( d2 E [etx
]

dt2 )
t=0

=σ
2
+μ

2
var [x ]=σ

2

ln E [e tx
]=μ t+σ

2 t 2
/2
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Product of Gaussians is a Gaussian

Convolution of Gaussians is a Gaussian

 

Random Variables -Normal distribution

∫
−∞

∞

dx e
−

x2

2σ1
2

e
−

( y− x)2

2σ 2
2

∝e
−

y2

2σ3
2

e
−

x2

2σ 1
2

e
−

x2

2σ2
2

=e
−

x2

σ3
2 σ3=

σ1σ2

√σ1
2
+σ2

2

σ3=√σ1
2
+σ2

2
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Let X
1
, X

2
, ... be independently an identically drawn samples from 

an arbitrary distribution with mean μ and variance σ2. 

Consider the sample average:

The Law of Large Numbers states that sample average converges 
to the ensemble average 

The Central Limit Theorem states that sample average is normal 

Random Variables -Sample average

lim
n→∞

W n=E [Xk ]

lim
n→∞

p(W n)=N (μ ,σ2
/n)

W n=
1
n
∑
k =1

n

X k
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