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Random Variables

Probabilities are defined for discrete events, €.g. outcome of a
coin flip.

A random variable X is a map from an event e€S to an
observed real value X(e).

A
X(e)
X(ez)
¢ - X(e))
R
The event can be thought of as a specific realization of a
random system. X(e) 1s an associate observation, e.g. Patients

body the temperature measured ad 6 AM.
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Random Variables - Probability density

Probability distribution defined a the probability that X
F(x) = “Probability of findin
AValue smaller than x”

Fy(x)=Pr(X<x) |
Fy(-0)=0, Fylo)=1

L P(x) = “likelihodd of

Probability density function (PDF) finding value x”

PX(X):ﬁFX(ﬂ

Alternatively, a PDF is a real valued function with

=v

J deplx)=1, pylx)>0
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Random Variables - Histogram
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Estimate of probability density 1s the histogram

F Ax|—F
pX(x)N X(x+ Ax) X(x)ocPr(x<X<x+Ax)
X

Where we measure the the likelihood Pr (x <X<x+A x)
by counting how many samples fall within x and x + Ax.

>> hist (randn (1000,1))

Another way of assessing the structure |
of a pdf are moments and cumulants.
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Random Variables -Moments
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Expected value E[f(X)] or ensemble average is defined as

Elf(X)=J deplx)fio

Moment m ot order n 1s the expected value

mn:E[X"]:jodxp(x)x”

First moment 1s the mean

mIZE[X]:idxp(x)x /

Second moment 1s the power

m,=E[X’]
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Random Variables -Moments and Cumulants

For non-zero mean more interesting 1s the variance, 1.e. The power
of the deviation from the mean.

var| X|=E[(X—m,)|=E[X*]-(E[ X])

A metric for the spread around the mean 1s the standard deviation

std| X]=Vvar| X]

>

std[x]

/HH

m,
7

=y
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RV -Moment generating function
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Consider the Laplace transform of the PDF (up to sign of ¢)

E[e“]:z drplx)e"

Given E[e"] the PDF is fully determined by the inverse Laplace
transform. Consider now the Taylor expansion

Note that the expansion coefficients are the moments of the PDF:

_ an Ix . n
m =L Be]_ = B[
Ot
We call E[e"] therefore the moment generating function.
Given all moments E[e™] is fully determined and so is the PDF.
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RV -Cumulants

Cumulants ¢ of order n are defined as the expansion coefficients of

the logarithm of the moment generating function:

o C an ix
nE[e" =) /¢ c=YnEle|_

Cumulants are a convenient way of describing properties of the PDF:

¢, = mean c,=u
¢, = variance, measures spread” around the o= 02

mean. 2
c, oc skew, measures asymmetry around ¢,= F [ (x - M)3 ] /03

mode (=0 for symmetric PDF)
' 1s (= 4 4
¢, oc kurtosis, measures length of tails (=0 ¢,= E [( X _M) ] o

for Gaussians)
Assignment 6: Show that mean and variance are first two cumulants.
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Random Variables -Poisson distribution

For a sequence of Bernoulli trials increment N — N+1 with
probability p starting at N=0. The probability of N =k after n
trials 1s given by binomial distribution.

n—k

n

k

For large n and small p so that, A=np, 1s moderate size this can
be approximated by the Poisson distribution:

PIN=k]=|"|p*(1-p)

Pois=son distnbution, A=5

0.0 —

k- o0
N e

P[N:k]: k/ =0.02

Typical examples are photon count 1n
detector, spike counts, histogram values, etc. 0

o.My
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Random Variables -Poisson distribution

The following moments are easy to compute using normalization

0 gk,
ZP ;;) o =I

Mean: Elk]=M\

Second moment: E[k*]=0 "+

Variance: var[k|=E[k’]-E[k]=)\

Fano factor: F=var k]l E[k|=

Fano-factor 1s a easy metric to assert that a count 1s not Poisson. F# 1
often used to establish that spike counts are more "interesting" than
Poisson. 11
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Random Variables -Exponential distribution

Exponential random variable has a pdf:

(ke_m, x>0

X )=
p( ) lOﬂ X<OJ

Mean: E[x:: )

Variance: yqr [x :}fz

Spike train with constant firing rate A (number of spikes per unit
time) for which the occurrence of a spike 1s independent of previous
spikes has exponentially distributed inter spike intervals (ISI).

Assignment 7:
Generate Poisson distributed samples and measure F.
Could the counts 1n the two spike trains in spike.mat be Poisson?

12
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Sampling from a continuous distribution

Goal: Generate random numbers y following a desired pdf p(y).
Approach: Draw x from an uniform distribution p(x) = const and apply
a nonlinearity y = f(x).

dy
dx

x=f2dx'p(x _f p(y')dy'=F,(y)

Result: The desired non-linear transformation is the inverse cumulative
density, or inverse of the distribution function:

y=f(x)=Fy (y)

Example: Draw N samples from exponential distribution with mean m:
dy=m/1000; y=0:dy:10*m;
p = exp(-y/m)/m;
F' = cumsum(p) *dy;
yrand = interpl(F,y,rand(N,1));

p(x)=|==|p(y)=const.

Note: This simple technique may not do a good job with the tails.
13
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Random Variables -Normal distribution

Perhaps the most important distribution 1s the normal

distribution with Gaussian PDF: RS
1 _ ( X— M)Z 03}
— 2 02 s
plx)]=—=—¢
oV2m i)

Often written in short as N ( w, o 2) . =2

This defines a density because it 1s positive and normalized

o0 0\/% 20°

2

0
-X
Which is easy to show using f dxe " =VT
14
—0
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Random Variables -Normal distribution

The moments can be computed using the moment generating

function
o0 o 1oo _(X_M)z
Ele"] = deetxp(x) = (0v2n) _fdxetxe 70
:ewmzﬁ/z
Mean: Second moment: Variance:
e dZE Ix
dE|e ] =u [26 ] =o'+u’ yar[x]=0"
dt |- A

To estimate best fitting Gaussian simply measure mean and variance!

Note that all higher cumulants are zero:

lnE[etx]:MHGthl/SZ
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Random Variables -Normal distribution

Product of Gaussians i1s a Gaussian

22 0,0
26, 20, O 63 \/ 79
e e — € 0'1.|. 0‘2
Convolution of Gaussians 1s a Gaussian

) X b=y

20° 20° 20 2 2
fdxe e T e T 03:\/01+02
—00

16
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Random Variables -Sample average
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Let X, X, ... be independently an identically drawn samples from

an arbitrary distribution with mean p and variance o”.

Consider the sample average:

Wn:lzn: Xk
R =

The Law of Large Numbers states that sample average converges
to the ensemble average

limW =E| X |
n=> oo
The Central Limit Theorem states that sample average 1s normal

lim p(W,)=N (u, 0’/n)

17
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