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 Schedule

Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-4: Linear systems (mostly discrete time)
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform

Week 5-7: Random variables and stochastic processes
Random variables
Multivariate distributions
Statistical independence

Week 8: Electrophysiology
Origin and interpretation of Biopotentials
 
Week 9-14: Examples of biomedical signal processing
Probabilistic estimation 
Linear discriminants - detection of motor activity from MEG
Harmonic analysis - estimation of hart rate in Speech
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Independent components analysis - analysis of  MEG signals
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The z-transform is a map of a discrete signal x[n] into complex 
valued function X(z) with complex valued z

For a finite sequence the z-transform is defined for all z.

For infinite sequence it is only defined for values of z for which the 
sum converges.   

z-transform is important because of the Convolution Theorem:

 z-Transform 

X (z )= ∑
n=−∞

∞

x [n ] z−n

h [n]∗x [n ]⇔ H (z ) X (z )
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 z-Transform - Convolution theorem

h [n]∗x [n ]⇔ H (z )X (z )

∑
n=−∞

∞

h [n]∗x [n] z−n
=

= ∑
n=−∞

∞

∑
k =−∞

∞

h [k ] x [n−k ] z−n

= ∑
n '=−∞

∞

∑
k =−∞

∞

h [k ] x [n ' ] z−n ' −k

= ∑
k =−∞

∞

h[k ] z−k ∑
n' =−∞

∞

x [ n' ] z−n '

=H (z ) X ( z )

Because the z-transform of the convolution ...
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 Z-Transform - Difference model

We approximated the response of an IIR system by the difference 
model 

The z-transform relates the impulse response h[k] to a[k] and b[k].
Define a[0]=1, then we can rewrite:

After z-transform on both sides we have

y [n]=−∑
k=1

P

a[ k ] y [n−k ]+ ∑
k=0

Q

b[ k ] x [ n−k ]

∑
k =0

P

a [k ] y [n−k ]=∑
k =0

Q

b [k ] x [n−k ]

A( z)Y (z )=B (z )X ( z)
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 z-Transform -rational impulse response

With the z-transform of  y[n]=h[n]*x[n] : 

We obtain

Impulse response is called rational if it can be expressed exactly as:

With a sufficient number of terms any H(z) can be approximated by 
a rational polynomial.  

H (z )=
B (z )
A(z )

=

∑
k =0

Q

b [k ] z−k

1+∑
k =1

P

a [k ] z−k

Y (z )=H ( z )X (z )

H (z )=
B (z )
A(z )

B( z )X (z )=A(z )Y ( z)=A( z) H (z ) X ( z )
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The z-transform of an ARMA filter and its inverse are

The AR part becomes the MA and the MA becomes AR:

 

Since in general b[0]1 we have to write:

b [0] x [ t ]=−∑
k =1

Q

b[ k ] x [n−k ]+∑
k =0

P

a [k ] y [n−k ]

 z-Transform - Difference model and inverse

Y (z )=
B( z )
A( z)

X ( z) X (z )=
A(z )
B( z)

Y ( z)

  b[0]x[n]  

b[k] 

  y[n] 
 

 H-1(z)b[0]  

a[k] 
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 z-Transform -rational impulse response

Note that any polynomial of order -Q can be decomposed into Q 
factors of the form, (1-z

k
z-1), with roots  z

k
.

Example: 
Factor representation of square polynomial with roots z

1
 and z

2

Coefficients of the second 
order polynomial are then:

For b[k]  z
k
 use    For z

k
   b[k] use 

>> z=roots(b/b(1)); >> b=poly(z)*b(1);

∑
k =0

Q

b [k ] z−k
=b [0]∏

k =1

Q

(1− zk z−1
)

(z−z1)(z− z2)=z 2
−z ( z1+ z 2)+ z1 z2

(1− z1 z−1
)(1− z2 z−1

)=1−(z1+ z2)z−1
+ z1 z2 z−2

b [0]=1,b[1]=−z1−z2 , b[2]=z1 z2
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 z-Transform -Pole-zero representation of IR

Since a[k] and b[k] define polynomials in z-1 this lead to the pole-
zero representation of the impulse response:

For P=0 the system is called all zeros, for Q=0 it is called all poles.

See Bruce, page 296 for dependence of h[n] on location of poles.
>> plot(filter(b(1)*poly(z),poly(p),[1 zeros(1,100)]))

A rational H(z) is stable if the poles |p
k
| < 1. Hence stability test:  

>> abs(roots(a))<1

See Bruce for proof on page 450. 

H (z ) =
B( z )
A( z )

=b [0 ]

∏
k=1

Q

(1−z k z−1
)

∏
k=1

P

(1−pk z−1
)
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 z-Transform 
Homework: Poles location and Impulse response
 
Plot the impulse response for filters with the following configuration
of poles (see below figure for definition of quadrants)
1. TWO conjugate poles, one in quadrant I and the conjugate in quadrant IV.
2. TWO conjugate poles, one in quadrant II and the conjugate in quadrant III.
3. ONE pole in quadrant I.
4. TWO conjugate poles outside of the unit circle.
The final output of your homework should be 4 figures, each figure should be the 
impulse response of each pole configuration tried.
For the zeros, you can try any combination you want.
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The Discrete Time Frourier Transform (DTFT) is the z-
transform on the unit circle

The DTFT is an invertible transformation

This is simply because 

 Discrete Time Fourier Transform (DTFT)

z=e jω
=cos (ω)+ j sin (ω)

X (e jω
)= ∑

n=−∞

∞

x [n]e− j nω

x [n ]=
1

2π
∫
−π

π

d ω X (e jω
)e j nω

∫2π
d ωe− jωn

=2πδn

1
2π

∫
−π

π

d ω X (e jω
)e j nω

=
1

2π
∑

k=−∞

∞

x [k ]∫
−π

π

d ωe− jω(k−n )
=x [n ]
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Fourier Transform Summary
Fourier transform

 (cont. time, cont. freq.)
Discrete time FT

 (disc. time, cont. freq.)

Fourier series
 (cont. time, disc. freq.)

Discrete FT
 (disc. time, disc. freq.)

F(ν)=∫
−∞

∞

dt f ( t)e− j2π ν t

f (t)=∫
−∞

∞

d ν F (ν)e j 2π ν t

X [k ]=∑
n=0

N −1

x [n ]e− j 2 kn /N

x [n]=
1
N
∑
k=0

N−1

X [k ]e j 2 kn /N

X (e jω
)= ∑

n=−∞

∞

x [n]e− j nω

x [n]=
1

2π
∫
−π

π

dω X (e jω
)e j nω

ak=
1
2T

∫
−T

T

dt x (t)e− j kω t

x (t)= ∑
k=−∞

∞

ak e
jkω t
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Discrete Fourier Transform



14

Lucas Parra, CCNY City College of New York

The following properties derive directly from the z-transform

Conjugation

Delay

Time reversal 

Correlation

Conjugate symmetry for

DTFT - Properties

x [n] X (e jω
)

X (e jω
)=X ∗

(e− jω
)

x [−n] X (e− jω
)

x [n ]∈ℝ

∑
n=−∞

∞

x [n+ k ] y∗
[n] X (e jω

)Y ∗
(e j ω

)

x [n−n0] e
− jωn0 X (e jω

)

x∗
[ n] X ∗

(e− j ω
)

DTFT
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Consider stationary oscillatory input to a LSI system h[k]:

The output is the input times the DTFT of the impulse response

The oscillation with frequency ω has been modified in phase  
and amplitude A

 

DTFT - System frequency response

x [n ]=e j nω

y [n]= ∑
k =−∞

∞

h[k ] x [n−k ]= ∑
k=−∞

∞

h [k ] e j (n−k )ω
=H (e j ω

)e j nω

 H (e j ω
)

A(ω)=∣H (e jω
)∣ (ω)=arg ( H (e jω

))

H (e j ω
)=Ae j 

H (e j ω
)e j nωe j nω
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DTFT inversion formula tells us that arbitrary input x[n] can be 
decomposed into sum of oscillations

The system response to that is given by the convolution theorem

DTFT - System frequency response

Y (e jω
)=H (e j ω

)X (e j ω
)

x [n ]=
1

2π
∫
−π

π

d ω X (e jω
)e j nω

...

H(exp(jω
1
)) 

H(exp(jω
2
)) 

H(exp(jω
3
)) 

X(exp(jω
1
)) 

X(exp(jω
2
)) 

X(exp(jω
3
)) 

DTFT   DTFT-1 
x[n]   y[n]  



17

Lucas Parra, CCNY City College of New York

Example:  a[1] = -0.9,  b[0] = 0.1:

     Time domain response                         Frequency domain response
>> plot(filter(b,a,u))    >> freqz(b,a)

DTFT - System frequency response

H (z)=
0.1

1−0.9 z−1
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Goal: Highpass filter the DC drift in EEG 
with minimal latency and memory.

>> filterDesigner

Solution: Select IIR filter, 2nd order 
Butterworth  with cutoff at 1Hz. 

For IIR filter, save filter coefficients as 
“second order sections” and gain (SOS,G) 
and use sosfilt() instead of filter().

>> y=sosfilt(SOS,x)*prod(G);

SOS are 2nd order ARMA filters applied 
in sequence, which is numerical more 
robust than single ARMA of large order.  

DTFT - Filter design example

Downside to DC 
removal is long 
phase delay for 
eye blinks.
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Design a 60Hz notch filter (all frequencies have unit gain except 
60Hz). You can use filterDesigner at first, but then use matlab code 
to design the filter. Test this with the signal stored in gamma.mat. 
There is a variable called osc. The first channel has strong 60Hz 
noise.

signal = osc(:,1);

Apply the notch filter to this signal and show the spectrogram 
before and after using the 'spectrogram' function. (2 graphs)

Also show the magnitude, phase and impulse response (3 graphs).

Also show the signal itself before and after filtering, in the same 
graph (1 graph). So in total you will have 6 graphs.

If you are using an IIR filter apply the filter using the 'sosfilt' 
function. If you are using FIR filter, use the 'filter' function. 

Assignment – design 60Hz notch filter
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DTFT – Group delay

Phase delay j(ω) corresponds to delay in time, t, that is frequency 
dependent:

To avoid phase distortions it is desirable to have a constant group 
delay, i.e. all frequency components are delayed by the same amount 
in time. This can be achieved with a linear phase:

n(ω)=
ϕ(ω)
ω

 t(ω)=
n(ω)

f s

Group delay in samples Group delay in time

n (ω)=
noω
ω =no

f = ω
2π

f s
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A filter is said to have zero phase if it introduces no phase delay

True for all symmetric FIR filters:  

A filter is said to have linear phase if 

Linear phase corresponds to shift in time. Because delay in time 
corresponds to a multiplication with a linear phase term:

DTFT - Zero phase and linear phase

H (e jω
)=∣H (e jω

)∣e j 0
=∣H (e jω

)∣

h [−n]=h*
[n]

xn0
= x [n+ n0] ⇒ X n0

(e jω
)=e

jωn0 X (e jω
)

H (e j ω
)=∣H (e jω

)∣e
j ω n0

Y (e jω
)=∣H (e j ω

)∣e jωn0 X (e j ω
)=∣H (e jω

)∣X n0
(e jω

)
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● A filter with linear phase delays all frequencies by the same 
amount. 

● If we add a constant delay to a zero phase filter we obtain a 
linear phase filter.

● The shift in time can be removed if the filter can be non-causal. 
In which case we get a zero phase filter.

Example: delay here 11 samples 

DTFT - Linear Phase
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If the filter is allowed to be non 
causal a quick fix is to apply the 
filter to the time inverted signal 
resulting in a zero phase filter: 

>>  filtfilt(b,a,x) 

DTFT - Pragmatic filter design example

Y (e jω
)=∣H (e j ω

)∣
2

X (e jω
)
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Assignment 4: 
Use sptool() to design 10Hz bandpass filter (5Hz bandwidth) to 
measure the power of alpha activity in EEG.  
1. IIR filter of low order AND
2. FIR with linear phase
Show corresponding impulse response, magnitude and phase response. The 
last two should look like freqz output, but, implement this yourself using fft 
(abs and angle).  Apply this to the EEG signal posted on the web site 
(EEG_128Hz.txt). Show signal before and after filtering (one channel is 
enough). 

After finding a good filter take note of the parameters, and use the 
corresponding filter design function to compute the  ARMA filter 
coefficients. To find the corresponding filter function use for instance:
>> lookfor chebyshev
3. Apply filter to all EEG channels and display power in the 10Hz band 
across channels. Power is defined as 

>> Power = mean(abs(y).^2);

DTFT - Pragmatic filter design

P y=
1
T
∑
t=1

T

|y (t)|2
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A pair of filters (real and complex values) that has compact 
support in time and frequency domain and 90o phase delay – also 
know as Morlet wavelets: 

Gabor Quadrature Pair Filter (Morlet wavelets)

h(t )=exp ( jωo t)exp (−
t 2

2 t 2 )

H (e jω
)∝exp(−

(ω−ωo)
2

2ω
2 )

 t ω=
1
2

Time-Frequency Product:
(optimal value for this filter)
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Gabor Quadrature Pair Filter (Morlet wavelets)

f = 30Hz
f
s
= 250Hz

Q=1

2 t

2 ω

Q= ω
 ω

Q-factor: (determines number of oscillations)
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Gabor Quadrature Pair Filter (Morlet wavelets)
function b=gaborfir(fc,fs,Q)
df = fc/Q; % bandwidth in Hz,
dt = 1/df;
t  = (-3*dt*fs:3*dt*fs)'/fs;
b  = 1/sqrt(pi/2)/fs/dt*exp(-t.^2/2/dt^2).*exp(sqrt(-1)*2*pi*fc*t);

fs = 250; % sampling rate in Hz
fc = 10; % center frequency in Hz
Q  = 1;  % Q-factor = f/df;
b = gaborfir(fc,fs,Q);

subplot(2,1,1); 
plot(t,[real(b) imag(b)]); axis tight
title('Temporal filter'); xlabel('time (s)');
fbin = (0:length(b)-1)/length(b)*fs;

subplot(2,2,3); 
plot(fbin,db(abs(fft([real(b) imag(b)])))); axis tight
xlim([0 fs/2]); ax=axis; ylim([-80 ax(4)]); grid on
title('Magnitude response'); xlabel('freq (Hz)'); ylabel('Gain (dB)')

subplot(2,2,4); 
plot(fbin,180/pi*angle(fft(ifftshift([real(b) imag(b)])))); axis tight
xlim([0 fs/2]); ax=axis; ylim([-180 180]); grid on
title('Phase response (excluding delay)'); xlabel('freq (Hz)');
ylabel('Phase (deg)')
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Assignment

Alpha power
Create a bandpass filter for alpha activity (~10 Hz). Filter the data 
and estimate at what times the person has their eyes open
and closed (alpha activity is stronger when the eyes are closed).
The output of the homework should be a figure with the following 
panels.
1) PSD before and after filtering in one figure.
2) Magnitude response of the filter
3) Phase response of the filter
4) Show the instantaneous amplitude and instantaneous frequency.
5) Signal before and after filtering with vertical lines indicating
the moments where the eyes are open or closed.
The data is online stored as alpha.mat



29

Lucas Parra, CCNY City College of New York

Assignment

Spectrogram vs wavelets 

1)Use Morlet wavelets to band-pass a signal. 
2)Use multiple center frequencies separated by ½ octave
3)Save the the instantaneous amplitude for all frequencies
4)Display the amplitudes as an image (freq, time). 
5)Compared that to a spetrogram  (as in your previous homework).
6)When doing the spectrogram be sure to multiply with a windowing 

function prior to the FFT. 
7)Display both time-frequency results for the signal in speech.wav    
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Analytic signal

ya(t)= y (t)+i
1
π t

∗ y( t)

For a band-passed signal y(t) one can estimate an instantaneous 
power, phase and frequency from the “analytic signal”:

The convolution in the second (complex) term is known at the 
Hilbert transform: 

H [ y (t)]=
1
π t

∗y (t)=
1
π ∫

−∞

∞

dt '
1
t

y (t−t ')

>> ya = hilbert(y)
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Instantaneous power, phase, frequency

t

( t)

∣ya(t )∣
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Instantaneous power, phase, frequency

Instantaneous power:
 
Instantaneous phase:

Inst. angular frequency:

Inst. Temporal Freq:

All this only makes sense for band-pass signals.

P(t)=∣ya(t )∣
2

( t)=arg( ya(t))

ω( t)=∂( t)/∂ t

P(t)=∣ya(t )∣
2

f (t)=
1

2π

∂(t )
∂ t
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Coherence in a frequency band

Coherence is usually defined in the frequency domain. It can be 
computed from band-pass analytic signals:

where x* is the complex conjugate of x. The real part captures 
the instantaneous correlation. The imaginary part captures the 
correlation of 90° delayed signals. The absolute value here 
captures correlation at any delay, i.e. the coherence. 

In matlab this is simply  

C xy=
|∑t

xa
∗
(t) ya(t)|

√∑t
|x a(t)|

2∑t
|ya(t )|

2

b  = gaborfir(fc,fs,1);
xa = filter(b,1,x);
ya = filter(b,1,y);
C  = abs(corr(xa,ya));
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The Discrete Fourier Transform (DFT) is the sampled DTFT

The N-point DFT  is defined for a signal of length N :   (analysis)

with inverse N-point DFT:   (synthesis)

Note that specifying X[0]...X[N-1] implies a synthesized periodic 
signal outside n = 0...N-1: 

 Discrete Fourier Transform (DFT)

X (e jω
)ω=2πk / N=X [k ]

x [n ]=
1
N
∑
k=0

N −1

X [k ]e j 2π kn /N

X [k ]=∑
n=0

N −1

x [n]e− j 2π kn/ N

x [n ]=x [n mod N ]
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Windowing 

 -N                0                N-1       

 x 

Implicitly, the DFT assumes are periodic signal and thus 
the analysis and thus the analysis equation will capture a 
potential discontinuity and the period end. 

To avoid such artifactual high frequency content one should 
“window”, i.e. multiply the time signal with a windowing 
function that makes a smooth transition.

Examples are Hanning and Hamming windows.  

=



36

Lucas Parra, CCNY City College of New York

Effect of windowing in the frequency domain

1)It removes artefactual high-frequency content due to 
edges (because it removed edges of periodic repetition).

2)It “smooths” the spectrum across frequencies (because 
product in time domain is that same as convolution in 
frequency domain).
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In signal processing we always work with the DFT since we can 
compute Frourier transform only for discrete frequencies. 

Important result on computational cost: While computing DFT 
values X[k], k=1...N, would seem to take N2 operations there is an 
efficient method called Fast Fourier Transform (FFT) of order: 

N log
2
 N

>> X =  fft(x);  
>> x = ifft(X);

With this one can implement convolution in log
2
(P) operations per 

sample rather than P!

 Discrete Fourier Transform - FFT
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Because X[k] corresponds to a periodic x[n] with period N the 
convolution of two signals is equivalent to a circular convolution:

That is, the circular convolution "wraps around" 

It can be implemented with a circular Toeplitz matrix:

 DFT - circular convolution

h [n]∘ x [n ]=∑
k=0

N −1

h [k ] x [(n−k )mod N ]

h  

 -N                0                N-1       

 x 

[
y [0]

y [1]

y [2 ]

⋮
y [N−1]

]=[
h[0] h [N −1] h [N−2] ⋯ h[1]

h[1] h[0] h[N−1] ⋯ h [2]

h [2] h[1] h [0] ⋯ h [3]

⋮ ⋮ ⋮ ⋱ ⋮

h[N −1] h[N −2] h[N−3 ] ⋯ h [0]
] [

x [0 ]

x [1]

x [ 2]

⋮
x [N−1]

]
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The convolution theorem for the DFT corresponds now to a 
circular convolution:

We can use this for a fast implement the linear convolution

 DFT - circular convolution

y [n]=h [n]∘ x [n ] ⇔ Y [k ]=H [k ] X [k ]

y [n]=h [n]∗x [n ]
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The N-point circular convolution with filter h[n] of length P 
corresponds to the linear convolution for the last N-P samples. The 
first P samples do not correspond to the linear convolution as the 
filter h[k] multiplies with values in the next period.

Hence, y[n] computed with the product, H[k] X[k], of the DFTs 
corresponds to the linear convolution for n=N-P+1...N.

 DFT - linear and circular convolution

 h[0]...h[P-1] 

 x[0] ... x[N-1]  x[0] ... x[N-1] 
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The overlap and save method for computing the linear 
convolution using the FFT for a filter of length N consists in:

1. Compute the 2N point FFT of segment x[n-N]... x[n+N-1]
2. Multiply by the 2N point FFT of h[0]...h[N-1]
3. Invert the result with IFFT 
4. Save the last N samples into y[n]...y[n+N-1]
5. Increment n by N  and return to 1.

Assignment 5: 
•  Implement linear convolutions with "overlap and save" method, 

and apply to random signal x with some arbitrary filter h. 
Compare this result (y

os
) with a linear convolution implemented 

with Toeplitz matrix multiplication (y
toep

), and filter() 

function (y
filt

). Plot results y
os

, y
toep

, y
filt

. Should be the same.
• Graph speed of all three methods (using tic; toc;) for 

N=2^n, n=1..10, where N is the size of the filter.

 DFT - linear convolution with "overlap-save"



42

Lucas Parra, CCNY City College of New York

What is the relation between the continuous time Fourier transform 
(CTFT) of a continuous time signal x(t) given by,

and the DTFT, X(ejω) of the signal sampled at frequency f
s
=1/T,  x[n] 

= x(nT)? 

* See Oppenheim and Schaefer for derivation (the classic SP book) 

Sampling - Sampling Theorem*

X c(Ω)=∫
−∞

∞

dt x (t)e− jΩ t

x (t )=
1

2π
∫
−∞

∞

d Ω X c(Ω)e jΩt

X (e jω
)= ∑

n=−∞

∞

x [n]e− j nω
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According to the Sampling Theorem the relation is:

The DTFT repeats the CTFT with a period 2π.

Contributions above π  will overlap with different period!

Sampling - Sampling Theorem

X (e jω
)=

1
T

∑
k =−∞

∞

X c( ωT +
2π k

T )

ππ  ω

Xejω

π/Tπ/T  Ω

X
c
Ω

Sampling frequency

Nyquist frequency
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Under which conditions can we determine continuous time  x(t) 
from discrete time x[n], t=nT? 

If the signal is bandlimited:  

Then we can determine X
c
(Ω) from X(ejω) according to the 

Sampling Theorem: 

In that case we can determine x[t] X(ejω) X
c
(Ω) x(t). 

After some algebra:

x(t) is x[n] convolved with

Sampling - Sampling Theorem

x (t )= ∑
n=−∞

∞

x [n ]sinc ( t−nT
T )

X (e
jω
)=

1
T

X c (
ω
T )

X c(ω/T )=0, ∣ω∣≥π

sinc( t)=sin (π t) /(π t )
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Use the sampling theorem to reconstruct a signal with high 
temporal resolution from its low-frequency sampled version:

1. At a high sampling rate, say 1kHz, generate the following 5 
signals signals: 
● Sinusoids at frequencies f=30, 45, and 60 Hz.
● Gaussian random noise low-pass filtered with stop-band 

frequency of 40Hz and stop-band frequency of 100Hz. 
1. Subsample these 5 signals at a low sampling rate, say 100Hz. 
2. Reconstruct the 1kHz signals from the sub-sampled signals.
3. Show the original 1kHz, the sub-sampled and the reconstructed 

signals.
4. Give the error of you reconstruction as % of variance in the 

signal for each example (in total you should have 5 numbers 
giving the % error). 

5. For which of the 5 signals above to you expect a vanishing 
error and for which may there be a significant reconstruction 
error?  Be sure your results agree with that. 

Assignment 
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Because of the sampling theorem always!:

Make sure you lowpass filter the signal to half the sampling 
frequency (Nyquist) before you sample.

If  you can not filter prior to sampling make sure that you choose 
the sampling frequency to be twice the highest frequency that 
contains significant signal power.

Do not down sample by simply taking every other sample. First 
lowpass filter then subsample. Better  yet, use either

>> x = resample(x,P,Q);
>> x = decimate(x,Q/P);

Sampling 

Lowpass
filter A/D DSP D/A
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