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Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.

Week 1-4: Linear systems (mostly discrete time)
Impulse response

Moving Average and Auto Regressive filters
Convolution

Discrete Fourier transform and z-transform

Week 5-7: Random variables and stochastic processes
Random variables

Multivariate distributions

Statistical independence

Week 8: Electrophysiology
Origin and interpretation of Biopotentials

Week 9-14: Examples of biomedical signal processing

Probabilistic estimation

Linear discriminants - detection of motor activity from MEG
Harmonic analysis - estimation of hart rate in Speech
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Independent components analysis - analysis of MEG signals
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Linear Time Invariant System (LTI)

A transformation L: y = L[x] is called linear if:
y=Llax+bx,|=aL|x |+bL|x,]

A linear system is a functional transformation of time functions L:
y(t)=L[x(t)] such that:

Y(t):L [axl(t)"'b Xz(t)]:a L[X1(t)]+bL [Xz(t)]

Note that in a linear system the current output at time t may be
influenced by past or future inputs x(t").

A linear system is called time invariant if;

y(t)=Llx(t)]] = ylt+r)=L{x(t+7)]

(shift invariant in the discrete time case) 3
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Linear system example

Consider a room that changes in temperature by y(t) as result of heat
delivered to the room as a function of time, x(t). This heat could be
electric heating x (t), or gas heating x (t) or some other form of

heating. The input-output relationship is a linear system if the
temperature change is the same under the following two scenarios:

Input Output Input Output
a x,(t) X, (1) |wear | ay,(0)
t)
inear y(®) y(
69—» gystem —+— — <> >
b X,(t) X,(t) unear 1Dy, (1)
Both heat sources are on Only one heat source is on at a
simultaneously with intensity a time, with each causing a change
and b, resulting in temperature in temperature y (t), or y_(¢).
change y(t).
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Impulse response
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A LTI system is fully characterized by the impulse response h(t).
Its output is given by the convolution of the input with the
impulse response (Proof from Kac Lecture.):

y(t)=[ dth(t)x(t—)

—00

A LTI is represented as:

x(1) i ho) y() X

h(t) is called impulse response because it is the system
response to an input impulse:

x(t)=6got)
y()=]" dth(t)s(t—7)=h(t)
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Impulse response
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Impulse response h(t) can be measured using an unit impulse:

6 ZON

B AN

Also by differentiating the output to a step input (step response):

x(t)=0(t) where  §(t)=0/0t0(t)
0 [~ 0
- (t)—fwwdTh(T)a(H)(t—T)
:f_oodTh(T)(S(t—T):h(t)
o0 e Do sa "o,

e SN
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Impulse response -discrete, causal, finite

Often we can not control the input:

x(1) h(7) y(0)

MWL WA

Easy to estimate h(t) with the following simplifications:

1. Discrete: Approximate integral with sum at discrete lags T = kAt
Sample input and output at times t = n At:

[ dTh(x)x(t=7)=3" h[k]x[n—k]

2. Assume Causal: Depends only on the past h[k]=0, k < O:
3. Assume Finite Impulse Response (FIR): h[k]=0, k > P <00

=Y h[k]x[n—k]

k=0 7
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Impulse response estimation - MA

Leads to a Moving Average (MA) representation of h[k]:

y[n]ng[k]x[n—k]

For a given Q, say Q=2, this can be rewritten as

< <

<

1]
5
3

x[1]
x|2
x|3]

S

[1]

2]]

y=Xb

X is the Toeplitz matrix of x and is used to implement convolutions.
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Impulse response estimation - MA model

Say y[n] is observed with some added error e[n]. Then we can think
of the MA as an estimate

e[n]
yln] %
x[n] bk yln]
y=Xb y=yte

For a given y and x one can identify b that minimizes the square error
as the least squares solution:

b=argmin||ly—X b||’=(X"X)"'X"y
b
b = toeplitz(x, [x(1) zeros(1l,Q)]1)\y;

And to avoid edge artifacts:
b = toeplitz(x(Q+l:end),x(Q+1:-1:1))\y(Q+1l:end); 0
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Impulse response - MA filter model
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Example: Stereo recordings of bird song in the wild and the estimated
impulse response between microphone 1 and 2.

input — mic 1 output - mic 2

“me2 | Assignment 2: Estimate

os| i} | “*%1  a MA filter for the

| -8 relationship between one
| microphone and the other

-0.57 | | Inbird-stereo.wav.

Show resulting filters,

input, estimated output
and residual signals for
varying Q. Select the
“best” Q in your
judgment. Estimate the
microphone spacing based
on the MA filter estimate.

10

0 0.5 1 0 0.5 1
time (s) time (s)

input/cutput impulse response, Q=500
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Adaptive Noise Canceling

One can use this model estimation to remove noise from data. Assume
signal x[t] is a noise reference signal containing only noise, and y(t) is
the signal of interest contaminated by noise that is distorted by some

y(t)=s(t)+h(t)«n(t)

The goal of noise canceling is to find h[t] so that we can recover the
signal s[t] by minimizing the power of s(i)

s(t)=y(t)=h(t)*n(t)
y() + s(t)
2

>

n(t) <

. hyﬁ

11



Lucas Parra, CCNY

Error

0.98

096}
0.94r
092

0.9
0

City College of New York

Model order selection

To select the correct 'model order' Q one typically computes model
error for a training data and separate test data. For different model
orders. The optimal model order is the one that minimizes the error on
the test data, i.e. that best generalizes to unsee data.

| | | | original In this example, local field
estmatel  potential data recorded in a
1  hippocampal slice is to be
predicted from a reference
' electrode in the slice bath but
) outside the tissue. This
. . . . electrode only picks up noise.

Therefore, the residual signal
is the signal of interest.

train
test ]
O  optimal model

Assignment 2 (continued):
| | Reproduce this experiment
008 | with the data gamma . mat

50 100 150 0 0.02 0.04 0.06 0.08 12
Model order Q Time (s)
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Model order selection
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Assignment 2 (model order selection):

* Find the impulse response from one recording to the other.

* Try different lengths Q for the FIR model.

* For each Q: Compute the least squares estimate on the training data
and test performance on test data, using 5 fold cross validation.

* Display train and test set performance as function of model order.

* Determine the model order with the lowest test set error and display

the corresponding FIR and residual, as well as predicted an
estimated output.

13
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Temporal Response Function
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The response of EEG to sound envelope can be estimated with the
same approach as the impulse response, which is often referred to as
Temporal Response Function.
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Here it is estimated from 500s of simultaneous audio and EEG recording from one subject, displayed as an image
for all 64 channels. Noticed that we estimated response prior to time zero, by shifting input relative to output by
250ms. This data is saved as audio_eeg.mat. The sound envelope can be simply estimated by taking absolute
value and smoothing. If the EEG is at slower resolution then on can just down sampling to the lower EEG
sampling rate:

>> envelope = resample(abs(audio), length(eeqg), length(audio));

14
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Convolution implementation

Assignment: convolution implementation
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* Implement an MA with filter, conv, toepliz and explicitly with a for
loop (example below) generating “valid” and “full” samples at the
output, which means the output will have length (L-max(P,Q)+1) or
L respectively, with L being the length of the input signal and Q,P
the filter order.

* Implement the ARMA equations with filter(), and explicitly with a
for loop generating “same” samples at the output. You can assume
that the “history” of input and output are zero.

L=100; Q=3; X = randn(L,1); b = rand(Q+1,1);

example: "same" implementation of MA
= zeros(size(x)); initialize sums with zero
r n=1:1length(x) for all output samples
for k=1:1length(b) sum over delays
if n-k+1>0 s handle the starting edge
y(n) = y(n) + b(k)*x(n-k+1);
end
end

© o° 0P o°

N

end

15
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Impulse response - discrete, causal, infinite

In case of Infinite Impulse Response (IIR) it may be beneficial to
represent h[l] indirectly with an Auto Regressive (AR) filter:

y[n]:x[n]—éa[k]y[n—k]
h_[k] ******** |
x[n] _ y[ng

However, h[t] may not be stable! Filter h[k] is stable if:

i h[k]|<oo

k =—o0 16
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Impulse response - ARMA filter
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More generally an Infinite Impulse Response (IIR) can be represented
by an ARMA filter (also called difference equation):

2 Q
y[n]z—éa[k]y[n—kh% blk]x[n—k]

Since ARMA filter is LSI there is a corresponding h[k] that characterizes
the system impulse response.

17
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ARMA model: Equation error vs Output error

Fitting and ARMA filter to input-output data is more complicated than
for an MA filter. Fitting depends what source of error is assumed:

Equation error - AR with external input (ARX) model

e[n]

x[n] L + yln]

blk] >
\L a[k] J
Output error -~ OE model
e[n]

x[n] . - % + YEn]

\L Cl[k] <

18
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ARMA model: Equation error vs Output error

y|n]is observable A
y|n]is a model estimate )’[n]—y[n]+e[n]

ARX model - linear in a[k], there is no recursion:

Q

y[n]=—k; alk]y[n—k]+2_ b[k]x[n—k]

k=0

OE model — non-linear in a[k], there is a feedback recursion:

Q
a[k]y[n—k]+I§) blk|x|n—k]

19
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ARX model
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Error is added inside of the recursion, and preceding y[n] are observable.
So it can used are part of the regression. Minimizing square error results
in simple least-square linear regression with input and previous output

dre regressors. e[n]
x[n] ik yln] i+ y[n] )
o " yln]=ylnl+e[n]
L T J
P
y[n]: ; [ n k +Z b ]

Same approach as in MA filter, but now concatenatmg Toeplix matrix X
with a Toepliz matrix Y of y[t-1], y[t-2] ... y[t-P].

ba = [X YI\y; ... or in matlab: arx.m
20
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Output Error model
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Error is added after the ARMA structure, and ARMA filter output is not
observable. Now parameters a[k] contribute non-linearly to a minimum
error criterion.

e|n]
dnl y[n] i+ g
i alk] <
p Q
y[n]:—;a[k]y[n—k]% b[k]x[n—k]

Can be solved with error-back propagation (Shynk 1989) or general
purpose non-linear optimization (Ljung 1999) ... in matlab: oe.m

John Shynk, 1989, Adaptive IIR filter, IEEE ASSP Magazine
Lennart Ljung. System Identification: Theory for the User, 2™ edition: Prentice-Hall PTR, 1%919


https://doi.org/10.1109/53.29644
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Impulse response - ARMA filter

City College of New York

Assignment 3:

A) Show that an ARMA filter is a linear system. You may assume
y[n]=0 for n<1, i.e. Zero memory as initial condition.

B) Optional question: Is an ARMA filter shift invariant?

Hint for part A: Use proof by induction. Base the induction by proving
linearity for n<1. In the induction step assume linearity for n-1, n-2, n-

3, ... and then prove it for n using the definition of the ARMA filter.

Definitions: [

Linearity: With x[n|=c,x,[n]+c,x,[n] show that y[n|=c, y,[n]+c,y,[n]
22
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Impulse response -ARMA filter
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Q

Y[n]=—k§ alk]y[n—k]+ 2, b[k]x[n—K]

k=0
>> y = filter (b, a, x) ;

Note the ambiguity in this representation of the impulse response.
For example one can represent h(k) = c* as

b(k)=c",Q— owanda=0,P =0
or as
b(0)=1,0 = O0anda(l)=-c, P=1

Advantage of the AR representation: Smaller number of parameters.

Disadvantage: Stability in not guaranteed! Test with
>> abs (roots(a) )<l

23
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Convolution

h{n]*x|n| = i hl k| x|n—k|

k=—o0

City College of New York

Using this definition one can show the following properties:

Commutative:
h
x[n] hin] = ] x[n] L
Distributive: hin]
> n
Al ek, = . %ﬂ
B
nj
Associlative:
x[n] x[n]
hn] *kln] — » = hin] k[n] —»
24
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Impulse response - ARMA inverse
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Notice the symmetry of the ARMA f{ilter definition:

P Q
I;)G[k]Y[”—k]Zéb[k]x[n—k]

where a[0]=1. The inversion of h[n] is given then by

Q p
b[o]x[n]:—kzz’I b[k]x[n—k]JrI;)a[k]y[n—k]

yinl b{OJ[n]

. alk ﬁ ‘ .
bIk] J

B 3 25
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Impulse response - FIR Inverse

What is the causal inverse g[k] to a causal FIR h[k]?

******************** o[k]
x[n] hikd yln] " x[n] i
,,,,,,,,,,,,,,,,,,,,,, .
Since convolutions is associative S [ n ]: Z h[ k ] g [ n— k]
k=0
After rearranging terms: g [n] Z h ]

Therefore, the causal inverse of a causal FIR filter is the 1mpulse
response to the corresponding AR filter:

8[n] i g[n]A[0]
h(k] <

26
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