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 Schedule
Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-5: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing
Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering 
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The basic notion is that there are states described by x(t) that 
develop according to some dynamic in which the current state 
depends on the past states:

Almost exclusively we are concerned with discrete time 
dynamic, i.e. time t is measured in integer increments.*  

More generally the dynamic may be stochastic in which case we 
describe it with the conditional PDF

A dynamical model tries to capture the random process with an 
analytic expression for this conditional PDF.

* The notation, x
t
, in these slides will be different from the convention x[n] in DSP.    

Dynamic State Space Model

xt=f (x t−1 ,x t−2 ,…)

p(x t∣xt−1 , xt−2 ,…)
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A dynamical model is called Markov (of order p) if the 
dependence on the past is limited (to the last p states):

For a first order Markov model or process the dependence is 
on the immediate past:

This is represented with the following graph

p(x t∣xt−1, xt−2 ,…)=p(x t∣x t−1 ,…, xt−p)

p(x t∣xt−1 , xt−2 ,…)=p(x t∣x t−1)

x
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x
0 

p(x t∣xt−1)

Dynamic State Space Model - Markov
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In a hidden state space model the states can not be directly 
observed. Instead we observe random variable y

t
 that give us 

only indirect information about x
t
. 

The notion is that states x
t
 "emit" observation y

t
 with a certain 

probability:  

Examples:  Hidden State x Observation y
phoneme acoustic spectra
sleep state EEG waveform
position of ball blob on video
knee angle tilt sensor 
pitch frequency acoustic waveform

p( y t∣x t)

x
t 

y
t 

Dynamic State Space Model - Hidden
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Examples:  EEG Sleep States

Dynamic State Space Model - Example

Sleep stage 2
spindles 
and 

K­complex

Sleep stage 3/4
slow delta 
waves

REM
rapid eye 
movements

Awake
rapid irregular

Sleep stage 1 
Alpha activity

or slow eye 
movements
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Together this can be represented as

In a Hidden Markov Model the hidden states are 
conventionally discrete variables and the observation 
continuous. 

In a Kalman State Space Model hidden states and observations 
are Gaussian and all relations in the model,  p(y

t
|x

t
)p(x

t
|x

t-1
), are 

linear.

DSSM - Hidden Markov and Kalman Model

p(x t∣xt−1)

p( y t∣x t)
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"Transition" 
probability

"Emission" 
probability
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Estimation or Inference: 
Given model and observations y what are the hidden states x?

              Filtering                                           Smoothing

   (future observations are not given)                (all observations are given) 

Identification or Learning: 
Given all observations y what is the model p(y

t
|x

t
)p(x

t
|x

t-1
)?

DSSM - Estimation and Identification

x
1 

x
2

x
3

y
1 

y
2

y
3

x
1 

x
2

x
3

y
1 

y
2

y
3

x
1 

x
2

x
3

y
1 

y
2

y
3

x
0 

x
0 

x
0 



9

Lucas Parra, CCNY City College of New York

Estimation and Identification can both be based on the joint 
PDF of the data and hidden states

In Identification we parameterize the distributions with 
parameters   to get the joint likelihood

and find the optimal parameters with maximum likelihood 

using the EM algorithm that is based on the joint PDF.

 

DSSM - Identification or Learning

p(x1 ,… ,xT , y1,…, yT∣x0)=∏
t=1

T

p( yt∣xt) p (xt∣xt−1)

Θ̂=argmax
Θ

p( y1 ,… , yT∣Θ)

p(x1 ,… ,xT , y1 ,…, yT∣Θ)=∏
t=1

T

p ( y t∣x t ;Θ) p(x t∣xt−1;Θ)
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Estimation and Identification can both be based on the joint 
likelihood of the data and hidden states

In Estimation we use the maximum of the posterior (MAP)

For instance in Filtering

 

DSSM - Estimation or Inference

p(x1 ,… ,xT , y1,…, yT∣x0)=∏
t=1

T

p( yt∣xt) p (xt∣xt−1)

p(x1 ,… ,xT∣y1 ,…, yT )=
p (x1 ,… ,xT , y1,…, yT )

p( y1 ,… yT)

x̂t=argmax
x t

p(x t∣y1 ,…, y t)=argmax
xt

p( xt , y1 ,…, y t)
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Filtering: How exactly do we compute the likelihood of the 
current state from past and current observations for filtering?

Starting with p(x
0
,  ) we apply the following (Kalman) recursion:

 

DSSM - Estimation or Inference

p(x t , yT ,…, y1)

p(x t−1 , y t−1 ,…, y1)→p( xt , y t ,…, y1)

p(x t , y t ,… , y1)

=p( y t∣xt) p(x t , y t−1,… , y1)

=p( y t∣xt)∫d xt−1 p(x t∣x t−1) p(x t−1 , y t−1 ,…, y1)
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Smoothing: How exactly do we compute the likelihood of the 
current state from all observations?

With the following we can use the previous recursion up to t

and need now a backwards recursion starting with p(y
T
|x

T
) 

DSSM - Estimation or Inference

p(x t , yT ,…, y1)

p( y t−1 ,…, yT∣xt−1)← p( y t ,…, yT∣x t)

p( y t−1 ,…, yT∣xt−1)

=p( y t−1∣xt−1) p ( y t ,…, yT∣xt−1)

=p( y t−1∣xt−1)∫ d x t p( y t ,…, yT∣x t) p( xt∣x t−1)

p(x t yT ,…, y1)=
p ( y t ,…, yT∣xt)

p ( y t∣x t)
p (xt , y t ,…, y1)
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In a Kalman State Space Model the hidden states depend on the 
previous states linearly with additive zero mean white Gaussian 
state transition noise w: 

The observations depend on the current state also linearly with 
additive zero mean white Gaussian sensor or observation noise v. 

Hence

DSSM - Kalman Filter

xt=Ax t−1+w

p(x t∣xt−1)=N (xt−Ax t−1 ,Σw)

p( y t∣x t)=N ( y t−C xt , Σv )

y t=C xt+v
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The model that corresponds to a Kalman filtering has Gaussian 
transition probabilities and Gaussian emission probabilities:  

DSSM - Kalman State Space Model

p( y t∣x t=n)=N ( y t−C x t ,Σv )
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p(x t∣xt−1)=N (xt−Ax t−1 ,Σw)
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In Kalman filtering all probabilities are Gaussian because the 
convolution and product of Gaussians is Gaussian:

This joint likelihood is therefore Gaussian 

with mean 

and covariance

where we defined the prediction covariance
 
The Kalman filter (MAP) estimate is in fact that mean

DSSM - Kalman Filter

p(x t , y t ,… , y1)

=p ( y t∣x t)∫ d x t−1 p (xt∣x t−1) p (xt−1, y t−1 ,… , y1)

=N ( y t−C xt , Σv)∫ d x t−1 N (x t−A xt−1 , Σw ) N (x t−1− x̂ t−1 , Σ̂t−1)

=N (xt− x̂ t , Σ̂t)

x̂t=Σ̂t C
T
Σv

−1 y+Σ̂t Σ̄t
−1 A x̂t−1

Σ̂t
−1

=CT
Σv

−1 C+Σ̄t
−1

Σ̄t≡Σw+A Σ̂t−1 AT

x̂t=argmax xt
p (xt , y1 ,… , y t)
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Example: Estimating the changing frequency of a noisy sinusoid. 

DSSM - Kalman Filter

Given the 
instantaneous 
frequency estimate, 
x

t
, we compute the 

Kalman filtered 
estimates using A=1, 
C=1, and and 
appropriate  

w
 and  


v
.

Note that the filter 
estimate lags behind. 
Can be avoided by 
using Kalman 
smoothing.
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Example: 2D Tracking

DSSM - Kalman Filter
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To find good model parameters such as A,C, etc. we maximize 
the data log likelihood 

It is convenient to consider the following lower bound which is 
valid for any distribution q(X):

The inequality is known as  Jensen's inequality.

Identification or Learning - EM Algorithm

L(Θ)=log p(Y∣Θ)=log∫ d X p(Y , X∣Θ)

=log∫d X q(X)
p(Y , X∣Θ)

q(X)

≥∫ d X q(X) log
p(Y , X∣Θ)

q(X)
≡F (q ,Θ)

Θ̂=argmax
Θ

p( y1 ,… , yT∣Θ)=argmax
Θ

log p(Y∣Θ)
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The EM algorithm maximizes this lower bound

E  step:

M step:
 
The E step is equivalent with computing the likelihood of the 
hidden states given the observations and current parameter 
values. With this likelihood we compute the Extected value of 
the complete data log likelihood: 

Hence the name E step. 

In the M step we Maximize the lower bound                       with 
respect to . Hence the name M step. 

Identification or Learning - EM Algorithm

Θk+1=argmax
Θ

F (qk+1 ,Θ)

qk+1=argmax
q

F (q ,Θk )=p(X∣Y ,Θk)

F(Θk ,Θ)=∫d X p (X∣Y ,Θk ) log p (Y , X∣Θ)+const .

F(Θk ,Θ)
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E  step: Find a distribution q(X) such that F(q,
k
) is maximal. 

Turns out that this is, q
k+1

(X)=p(X|Y,
k
), and one can show 

that F(
k
,

k
)=L(

k
). Hence F(q,) is tangential to L() at 

k
.

M step: Maximize F(q
k+1

,) with respect to 
 

L(Θ)

F(qk+1 ,Θ)

ΘΘk

Identification or Learning - EM Algorithm

Θk+1
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Typical HMMs have discrete states and Gaussian emissions 
probabilities: 

DSSM - Hidden Markov Model 

p( y t∣x t=n)=N ( y t−μn ,Σn)
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p(x t=n∣x t−1=m)=
pnm

∑n
pnm
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Filtering and smoothing example

DSSM - Hidden Markov Model 
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E  step: For an Hidden Markov Model (HMM) an efficient 
algorithm for computing the likelihood of the hidden state 
variables is the Baum-Welsh algorithm. It uses a forward 
and a backward pass that are exactly the filtering and 
smoothing recursions discussed above. In the E Step the 
current parameter values 

k 
are used.

M step: Given these likelihoods the next best parameters for 
the transition probabilities and emission probabilities are 
obtained by setting the derivatives of the total log likelihood 
to zero and solving for new parameters 

k+1
. 

 

Identification or Learning - HMM
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Consider for example the transition probabilities p(x
t
|x

t-1
). 

Recall that HMM typically have discrete states x
t
. The 

transition probability can then be parametrized directly as

M Step: Setting the derivative of the joint log likelihood with 
respect to p

nm 
 equal zero gives

E Step: We compute with the filtering and smoothing 
algorithm the required probability in the following expression

Identification or Learning - HMM

p(x t=n∣x t−1=m)=
pnm

∑n
pnm

pnm=∑
t=1

T

p( xt , x t−1 ,Y )

p(x t ,x t−1 ,Y )=p ( y t ,…, yT∣xt) p(x t∣xt−1) p(x t−1 , y t−1 ,…, y1)
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Assignment 14:

Read Roweis, Ghahramani, "A Unifying Review of Linear 
Gaussian Models", Neural Computation, Vol. 11, No. 2, 1999.

Select a data set from your own research that you would like 
to analyze with one of the methods presented in any of the 
classes thus far. Save the relevant data in a .mat file on CD. 

We will select one or more data sets from students and 
analyze is together during class. 

Optional: Make your best effort and try the method yourself 
and save a corresponding matlab script on the same CD. 

For next class
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