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ABSTRACT

We present a probabilistic description of the Harmonic plus Noise
Model (HNM) for speech signals. This probabilistic formula-
tion permits Maximum Likelihood (ML) parameter estimation and
speech synthesis becomes a straightforward sampling from a dis-
tribution. It also permits development of a Kalman filter that tracks
model parameters such as pitch, harmonic amplitudes, and auto-
regressive coefficients. We focus here on pitch tracking for which
the estimator is highly non-linear. As aresult it is necessary to
develop an approximate Kalman filter that goes beyond extended
Kalman filtering.

1. THEHARMONIC PLUSNOISE MODEL

Since the work of McAulay and Quatieri [1] speech has been re-
peatedly modeled as the sum of harmonic sinusoids in additive
noise. Based on this model speech synthesis and morphing with
high perceptual quality has been achieved among other applica-
tions (see referencesin [2, 3]). In the Harmonic plus Noise Model
(HNM) the observed data y(t) is the sum of a harmonic compo-
nent h(t), which captures the voiced portion of the speech spec-
trum while a colored noise component, n(t) captures the unvoiced
portion of speech

y(t) = h(t) +n(t). )

The harmonic and noise processes are defined as

h(t) = Zbisi(wt) & h(t) =swt)b (2

n(t) = Za(T)n(t —1)+ce(t) < e(t)=axn(t)/c (3)

The harmonic basis is given by row vector s(¢) =
[sin(¢),...,sin(K¢),cos(¢),...,cos(K¢p)], the fundamental
frequency or pitch is w, and the amplitude of each harmonic is
given in the 2K coefficients of the column vector b. The col-
ored noise is modeled as an auto-regressive (AR) process with pa-
rametersa = [1, —a(1),...,—a(P)] andi.i.d. zero mean Gaus-
sian innovation e(t) with standard deviation ¢. Convolution is
represented by '*’. All parameters combined will be denoted as
x = [a, b, ¢,w]. These parameters change over timeand in speech
anaysisthetask isto estimate the parameters x from a set of 7" da-
tapointsy(t) = [y(t +1),...,y(t +T)]".

With definition (1) the speech signal y(t) can be interpreted
as a correlated Gaussian process with a harmonically oscillating
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mean. This description allows us to specify the joint density func-
tion of observations y given the unknown HNM parameters x as

p(ylx) = [[NV(e(®). 1) = [[V(a* (y(t) — s(wt)b),¢?)
4

where ¢ now extends over the length of 7" samples in frame y.
We ignored boundary effects of the convolution with the AR co-
efficients. \'(n, c*) represents a zero mean Gaussian distribution
with variance ¢?. The advantage of considering the HNM from a
strictly probabilistic point of view isthat one can follow the classic
formalism of probabilistic modeling, such as maximum likelihood
estimation, sampling, and filtering which we will discuss in the
following sections.

2. MAXIMUM LIKELIHOOD PARAMETER
ESTIMATION

The maximum likelihood parameter estimates are given by

% =arg maxIn p(y|x)

= arg min {Tlnc +3° (ax (y(t) — s(wt)b))? } ©

a,b,c,w i 202

Note that this minimization is a non-linear optimization prob-
lem. However, provided all other parameters are given, the solu-
tion for either a or b is alinear least squares problem with solu-
tions given by

a = Ipc (y — S(@)b, P) ©)
b= (axS®)*(axy) @)
eteGosen] o

where Ipc(n, P) represents the Pth order linear prediction or AR
coefficients of the noise, n = y — S(w)b,’ # represents the
pseudo-inverse, S(w) isamatrix containing 7" row vectors s(wt)
for different times ¢, and the convolutions '*’ with a are over the
time coordinate or columns in S and y. Equations (6) and (7)
can be iterated and are guaranteed to converge to the correct ML
solution for a given pitch w. Note that the close form solution for
the joint optimization with respect to a and b for given pitch w
has been available for some time [4, 5]. We present equations (7)
and (6) only because they may be more easely adapted to include
prior distributions in the maximum a posteriory formalism that is
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used in Kalman filtering. Estimating the optimum pitch remains
achallenging non-convex, and non-linear optimization problem as
can be seen in figure 1. Currently we do not see any other remedy
than exhaustive search to guarantee the globally optimal solution.
Simple heuristics such as ahierarchical search (starting with small
K) and limiting the search range based on past values can speed
up the search considerably.

Log liklihood of voiced frame

50 100 150 200 250
Frequency (Hz)

Figure 1: Logarithm of the likelihood (4) as a function of pitch f
for optimal &, b, ¢ at that pitch for a voiced frame corresponding
to figure 2

3. SYNTHESIS

Given parameters x, speech synthesis is a straight-forward sam-
pling from the distribution p(y|x), whereby one generates I sam-
plesof i.i.d. zero mean unit variance Gaussian noise e(¢) and uses
equations (1)-(3) to generate y. The result of the ML parameter
estimation and sampling for a voiced frame is shown in Figure 2.

Single frame of original and resynthesized speech

50 100 150 200 250
Samples

Figure 2: \oiced speech and re-synthesized version based on ML
estimates of HNM parameters.

In a frame based description, the kth frame of speech y;, =
v (kS) isassociated with parameters x;,. Conventionally, an over-
lap of half a frame with S = T/2 is used. When data is re-
synthesized the overlapping frames can be combined with a con-
ventional overlap-add procedure. Since the harmonic basis cap-
tures phase information we do find that overlapping frames blend
in smoothly. Also note that there is no need for a distinction be-
tween voiced and unvoiced speech. The parameters will simply
adjust to represent varying magnitudes of harmonic versus noise
powers. In fact we can define a Harmonic to Noise Ratio as,
HNR = 20log,, ||h||/||n|]]. An example spectrograms for a
origina and synthesized speech segment are shown in figure 3.
The estimated pitch and associated HNR for the same segment of
speech are shown in Figure 4.
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Figure 3: Spectrogram of speech and re-synthesized version based
on ML estimates of HNM parameters.

4. TRACKING USING KALMAN FILTERING

The purpose of filtering is to obtain a smooth estimate of un-
known parameters x;, often called hidden states, given past
and current observations yx,yk—-1,..., €c. The hidden states
are assumed to represent a Markov chain, p(xi,x2,...)
I1, p(xx|xx—1), emitting at each step k an observation y; with
probability p(y|xx). The most general form of Kalman filtering
can be derived from the following maximum a posteriori (MAP)
estimation [6],

X, = arg max p(Xe|Ye, Ye—1,---) 9)

Xk
= argmax {lnp(yx|xx) + Inp(Xk|yr—1, Yk—2,.-.)}
X
(10

Here we have used Bayes rule, dropped the term
p(ye|yr—1,yYk—2,...) & it is independent of the parame-
ters, and applied the logarithm. The first term corresponds to
the conventional ML problem, while the prior distribution in
the second term biases the estimate based on past observations.
The key problem in filtering is to efficiently compute this prior
distribution, which following the Markov assumption is given by,

P(Xk|Yk—1,yk_2, - ) =
(11)
/dng71p(x;g|x1c71)p(x;g71|yk71,yk,2,...).

Notice that the second term is the posterior distribution that has
already been maximized for the previous step, k£ — 1, indicating
the recursive operation of the filtering process.

4.1. An approximate Kalman filter

In conventional Kalman filtering al distributions are assumed
Gaussian. Asaresult al past evidenceis captured inasingle Gaus-
sian prior [7, 6], and the key step in filtering consists in estimating
the mean and variance of the prior p(xk|yx—1,yk—2,...). For
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simplicity we will assume the transition probabilities p(x|xr—1)
to be zero mean Gaussian * with covariance %,

P(XE|YE—1,Yk—2,--+) =

(12)
/dxk—lN(Xk' = Xp—1, 2)P(Xp—1|Y=1, V=2, - .)

The emission probability, p(y«|xx), of the HNM is given by
(4) and in terms of parameters x it is not Gaussian. As a result
also the posterior distributions are non-Gaussian. Note that for the
optimization in (10) the value of the integral (12) is needed only
in the vicinity of the optimum value x;. Due to our Gaussian as-
sumption for the transition probability, x;, is likely to be close to
the previous optimum value x ;. Since the Gaussian distribution
far from x, is basically zero the structure of the posterior far from
%1, and therefore x;,_; isirrelevant. It istherefore fair to approxi-
mate the posterior distribution by a Gaussian around x—1, with a
covariance 3;,_; that captures the curvature of the posterior at its
maximum X _1.

P(XE|YE-1,Yk=2,...) (13)
~ /dxkle(Xk — X1, DN (xp—1 — Kpo1,55-1)  (14)
= N(xk — %51, + Zp—1) (15)

In the special casethat the noisein the model is additive to the hid-
den state x, this approximation corresponds exactly to the approxi-
mation used by the extended Kalman filter [7]. In the present case,
however, the noise is partly multiplicative (parameters a multiply
thenoise). The more general derivation above, allows an extension
of Kalman filtering to cases of non-additive noise.

The covariance ¥, captures the curvature of the posterior
around the maximum value. It can be computed by fitting a Gaus-
sian to the posterior around its maximum xy,

. 9’
st = _W (lnp(xk|yk,yk71,---))|xk:ﬁk (16)
2
=TT B PP Yias ) (@)
0 Inp(y %) SR
~ W + (E + Ekfl) (18)

In (17) we have used the same manipulations as for Equation (10)
and in (18) we have used approximation (15). The intuitive inter-
pretation of (18) isthat theiteration step from k — 1 to k increases
the covariance by X, while the evidence, y ., introduced in frame
k reducesiit.

Note that the derivation of this approximate Kaman iteration
is completely independent of the current HNM model.

1In making a Gaussian assumption on transition probabilities we are
roughly stating that the parameters change from frame to frame symmetri-
cally around their current value and that the distribution of those changesis
unimodal and can be captured well by the square magnitude of the changes.
For example we assume with this that the pitch is equally likely to go up or
down and the amount of change iswell captured by the standard deviation.
In reality the pitch may in average have a net drift and it is reasonable to
assume different behaviors within voiced and unvoiced sections. Due to
space limitations amore thorough discussion of the assumptions and more
complex aternatives have to be omitted.
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4.2. Pitch tracking

In principle, the Hessian in (18) can be computed for all HNM pa-
rameters. For simplicity, in this work, we focus on pitch only. If
the parameters a, b, and ¢ change sufficiently fast from frame to
frame so that the corresponding entries in 3 are very large, it is
in fact justified to ignore the effect of past values on the current
estimate. The covariance matrix 33, then reduces to a one dimen-
sional variance 6, and is updated for each frame using Equation
(18). The first term in (18) can be computed from (4). Omitting
subscript k we can write,

0w?

Plp(ylx) _ 9 ~e(t;%)
= 3 (19)
t

- cl (@ (B"s(@t)t))” - e(t: %)@+ (B 8(@t)1")))

(20)

With the approximate prior (15) and variance computed
through (18) and (20) we can now compute the MAP estimate of
the pitch according to (10).

2 o 2
Wi = a.rgma.x{—Tlné,C _ Z ex(t) _ (Wr — @p—1) }

! 3 267
(21)
. . (we — dr-1)”
= | —— 22
arngnln{ né, (wr) + 22T (22)

In computing ey, (t) theoptimal ¢ from (8) has been inserted. Note
also that the ML optimal a, Bk for given pitch wy, have to be used
when computing é(wy,) which in fact we emphasized by writing
the dependency on wy, explicitly.

HNM Pitch estimation in voiced sections identified by laryngograph signal
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Figure 4: Pitch estimate using ML estimator and approximate
Kalman pitch tracking shown together with 'truth’ data obtained
from laryngographic recordings. The corresponding HNR shows
negative values during noise sections for which pitch information
is not meaningfully defined and for which in fact no pitch truth
data is available.
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4.3. Experiments

We ran the approximate Kalman filter pitch tracking and ML es-
timator on 60 seconds of speech data for which truth data on the
pitch was available in the form of laryngograph recordings [8].
In figure 4 the results of the ML estimator and the approximate
Kaman filtering are shown. We search for the optimal pitch with-
in one standard deviation, 6, of the prior expected pitch @y ;.
The adaptive 7, guarantees that we search in an appropriate re-
gion. If the Harmonic to Noise Ratio is sufficiently small (HNR
< -6 dB) Wy isset to some default value asit is meaningless to
track pitch during a noise only section. Both estimators accurate-
ly track the laryngograph data. More detail is shown in Figure 5
where one can see that the Kalman filter smoothes the estimated
pitch. The standard deviation, o, for the transition probabilities
in (18) was assumed to be 5 Hz for voiced frames with HNR >
0dB and 25 Hz otherwise. One should note that the laryngograph
data may not always lead to correct pitch estimates. For instance,
in the example shown on figure 5 it is very unlikely that the true
pitch goes down to 50 Hz. Nevertheless, we used the pitch re-
sulting from laryngograph recordings as truth data to quantify the
estimation error. The distribution of the error for both estimators
is shown in Figure 6. We note that the approximate Kaman filter
makes less gross errors while maintaining the magnitude of smal-
| deviations essentially the same than the ML estimator (standard
deviation of 2.8 Hz for Kalman vs. 2.6 Hz for ML). The estima-
tion bias (0.5 Hz) lieswithin the step-size we used for the optimum
pitch search (1 Hz).

Pitch estimation in a single voiced sections
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Figure5: Detail fromfigure 4 on pitch estimate using ML estimator
and approximate Kalman pitch tracking.

5. CONCLUSION

We have demonstrated that a rigorous probabilistic treatment of
the harmonic plus noise model alows straightforward parameter
estimation without the need to classify frames of data into voiced
or unvoiced nor to divide the spectrum into some arbitrary way.
It also alows the application of the Kalman filter formalism. The
non-linearity of the model made it necessary to develop a more
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Figure 6: Histogram of pitch estimation error for the ML and ap-
proximate Kalman estimator.

general Kalman formalism that goes beyond conventional extend-
ed Kalman filtering. In this work the tracking parameters are as-
sumed known but a more complete analysis may allow the estima-
tion of tracking parameters using an EM algorithm[6]. In principle
this can set the foundation for formant segmentation and recogni-
tion based on perceptually meaningful HNM parameters.
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