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ABSTRACT ing from any other direction are noise, the sensor signals are then
filtered to minimize power subject to the constraint that a delay-

We introduce a new hybrid algorithm called the generalized side- SUm beam points in the direction of the known source. When this
lobe decorrelator (GSD) that combines elements of geometricconstraint is appended to the optimization criteria, there results
beamforming and blind source separation. On the one hand, it isthe linearly constrained minimum-variancgCMV) algorithm
an extension of the generalized sidelobe canceller (GSC), alsdintroduced by Frost [5]. When the constraint is explicitly embed-
known as the Griffiths-Jim beamformer, from the standard criteria ded in the architecture, there results gemeralized sidelobe can-
of power minimization to a decorrelation criteria. On the other celler (GSC) introduced by Griffiths and Jim [6].
hand, it can be seen as an extension of a particular blind source ~ However, there are many problems where the distinction
separation (BSS) algorithm for non-stationary signals to include between BSS and beamforming is not so clear. For example, con-
prior information about the location of one of the sources. How- sider the case where the prior information is the following:
ever, unlike GSC, performance doesn’t degrade with leakage of (@) there are multiple sources of interest;
the source outside the primary beam and, unlike BSS, it performs ~ (b) the sources are independent;
well independent of whether the sources are simultaneously  (€) the angular position of one of the sources is known;

active. This makes it ideal for noise reduction in a continuously (d) the array geometry is known. _
running on-line operation. We demonstrate its superior perfor- By themselves, (a) and (b) define the BSS problem while (c) and
mance in a real-room audio experiment. (d) define a beamforming problem. Therefore, right away we can

phrase this as one of two equivalent problems: (1) how can we
modify BSS to include the case when the angular location of one
1. INTRODUCTION of the sources and the array geometry are known? or (2) how can

) . ) ) . we modify adaptive beamforming to recover other sources in
The fields of geometric beamforming and blind source separation 54dition to the one that lies in the known direction?

(BSS) have progressed on largely independent tracks. And yet,  \yg have previously considered these priors from the stand-
even though the literature in these two areas is now quite maturépoint of the first problem formulation. That is, we began with a

(see [1]-[4]), their assumptions, goals, and methods share manymtiple-input/multiple-output feedforward system utilizing finite
commonalities that have not been fully explored. The fundamen- j,se response (FIR) filters adapted under an independence cri-
tal starting point for both is an array of sensors, each of which te(ig on the outputs. We then appended a linear constraint that the
measures a different mixture of several sources. In beamforming,ijters associated with one of the outputs represent a beamformer
itis often the case that only one source is of interest and the othersitn a constant unit gain response in the known source direction.
are designated as noise. In BSS, all sources that carry informationypo resulting algorithm is callegeometric source separation
are usually of interest. However, these distinctions are largely (GSS) [7], and can be considered a HOS analog of the LCMV
superficial. The goal of both fields is to filter and combine the sen- algorithm. From the point of view of BSS, the geometric con-
sor signals so as to best recover the source(s) of intefé&tonly  gyraint regularizes the solutions, resolving the ambiguities due to
fundamental differences between the two fields are the prior infor- ;¢ frequency permutation problem [7] and the indeterminacies in
mation that is exploited and the criteria that is used for recovery. he case of more sensors than sources. From the point of view of
When the only prior information available is that the sources beamforming, GSS solves many problems associated with the so-
are statistically independent, then this defines the blind sourcecalled “leakage” problem caused by a power minimization crite-
separation problem. Independence then becomes an adaptatiofia, which we will discuss in greater detail in a later section.
criteria for the filtered sensor signals. Strict independence requires In this paper, we consider the priors from the standpoint of
an infinite amount of data to measure, therefore in practice the cri-the second problem formulation. We propose an alternative and
teria is relaxed to some subset of higher-order statistics (HOS). more efficient way of implementing the linear constraints follow-
When the prior information includes the array geometry and ing the approach proposed by Griffiths and Jim in their alternative
the angular position of a single source of interest, then this definesimplementation of the LCMV. In the same spirit, we call this new
a beamforming problem. Under the assumption that sources com-algorithm thegeneralized sidelobe decorrelat@@®SD).
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Figure 1. (ageneralized sidelobe canceli€b) generalized sidelobe decorrelator

2. PROBLEM STATEMENT 2.1 Generalized Sidelobe Canceller Solution

The problem we seek to solve is the followigunknown source  The fundamental principle of beamforming is that prior knowl-
signals are convolutively mixed and measured/lgensors edge of the sensor and source geometry can be exploited to design
filters that delay the sensor signals so that they add in-phase for a
desired direction, greatly increasing the sensitivity of the array to
a source in that direction. However, while the delay-sum beam-
former is optimal for a point source in the presence of spatially
diffuse noise, it is not optimal if the noise also originates from
point sources.
As we mentioned previously, one possibility for suppressing
these noise sources is the LCMV algorithm, which adaptively fil-
y(t) = W*x(t) (2) ters the sensor signals so as to minimize power, subject to a con-
straint that a delay-sum beam points in the direction of the source
such that the components of tHéx(L) outputy recover the source  of interest.
signals, wher&V is a (\xM) matrix of filter impulse responses. An alternative but equivalent approach is the GSC, shown in
If we stop here and define successful recovery of the signalsFig. 1la. It also implements a power minimization criteria on the
to be when the componentsyfre independent, then this defines filtered sensor signals. However, unlike the LCMV, the require-
the blind source separation problem. If we add other prior infor- ment that a beam point in the direction of interest is enforced in
mation, such as the array geometry and the position of one orthe architecture rather than the criteria. Specifically, the GSC uti-
more of the sources, then this defines a geometric beamforminglizes a delay-sum beam through the use of steering delays fol-
problem. We first review each of these as separate solutions andowed by a linear combiner. The linear combiner is a window that
then show how they can be combined. can be designed to vary the trade-off between main lobe width

x(t) = A*s(t) 1)

wheres is an unknown KIx1) vector of source signal#\ is an
unknown MxN) mixing matrix of channel impulse responses, and
X is a measuredMx1) vector. The convolution operator * here
implies both matrix multiplication and convolution. We then seek
a matrix of filters operating on the sensor measurements



and sidelobe energy. After the steering delays but prior to the lin-
ear combiner, th& delayed ignal Il'in ph Thi ‘SYY (@, t)‘
. . ) yed sensor signals are all in phase. This Z z (4)
is exploited to formM-1 secondary beams orthogonal to the pri- &Sy, (0 DSy v (1)
mary beam through the use of a “blocking matrix”. Each row of
the blocking matrix is constrained to sum to zero to ensure that where SYY (w,t) is the cross-power spectral density between
the resulting secondary beams will all have a null in the direction
of the primary beam. During adaptive power minimization, the
secondary beams are adapted out of the primary beam but are preguency domain using a recursive estimator, which in matrix form
vented by the blocking matrix from canceling any signal that can be written
exclusivelyresides in the primary beam.

The GSC approach has the advantage that the resulting opti-Sy (w,t) =y Syy(w,t-=T)+(1-y) Y(wt) DYH(w, t) (5)
mization can be carried out using unconstrained power minimiza-
tion, such as the least mean squares (LMS) algorithm. Unlike thewhereT is a block processing time. Stochastic gradient descent on
LCMV, the constraint is always enforced and no extra steps have(4) using (5) leads to the weight update equation in matrix form
to be taken to ensure that the filter weights don’t stray from the
constraint over time due to finite precision effects. AW = Ay S,y —Ayy] NG DBy y (6)

outputsi andj at timet. We estimateS, ,,  directly in the fre-
il

2.2 Blind Source Separation Solution where Ay, = diag[Syy] andSyy is the cross-power spectral

In order to understand what an independence criteria can accomd€nsity between the output and input, also estimated recursively:

plish, it suffices to determine the set of all operationss@uch
that the resulting signals are still independent. Clearly a reorder- Syx (@, 1) =y Syx (@, t=T)+(1-y) Y(w 1) X" (o, 1) (7)
ing of the components of does not affect their independence.

The components afcan also be separately filtered, either linearly

or nonlinearly, without affecting their independence. Thusan 3. GENERALIZED SIDELOBE DECORRELATOR

only approximates to within a permutation and filtering opera-
tion. The latter limitation means that blind source separation is
distinct from the problem of blind deconvolution. That is, blind
source separation by itself cannot recover the componensgs of
from filtered versions of themselves.

Both the GSC and BSS approaches each have their strengths and
weaknesses. While the GSC exploits the available prior geometric
information, it does not exploit the independence prior and is thus
subject to the leakage problem associated with power minimiza-
. . ) . tion. That is, any leakage of the primary source into the secondary
We have previously studied this problem for the special case .beams will result in cancellation of the primary source and a deg-

when the source signals are non-stationary processes [10]. BSS i 'Padation of the SNR improvement. This leakage can be due to any
primarily based on the assumption of statistical independence fof several factors, including: (1) array calibration errors; (2) pri-

tZe sour::et.3|gn.als. lt:or foFat'OT?ry.j'gqals’ szc.ond-;);ﬂer S.ta.t'St'C%ary source location error; (3) a main beam that is narrower than
( ec;fc_)r_re 6; ion) Ids ?]0 hsu 'Cfn ? It' etn |fyhan '?Vel; € m!g'ngdthe primary source, caused by a large array aperture; (4) spatial
Eoe cien : an ;gt_er-or ers al Istics have to ; ans' terf ‘aliasing lobes, caused by an insufficiently spaced sensor array; (5)
i owever_,d or non-ﬁs_ a |otnary stlgr_latsf, varying ?_econ -order statis- reverberation, caused by reflections of the primary source coming
ICS provides a sullicient constraint for separation. from directions outside the primary beam.
In the time domain, independence must be tested not only at .
. ) . L BSS, on the other hand, can clearly separate in the presence
the same instant of time, but for all possible combinations of . . L ;
. . of leakage but does not exploit all available prior information.
delays of the components gf This problem can be ameliorated .
. T . Also, when there are more sensors than sources, the separation
by performing the separation in the frequency domain. In the fre- oo .
. . o problem is highly underdetermined. Furthermore, when the sepa-
qguency domain, convolution becomes multiplication and (2) ~_.~ " . ; .
ration is performed in the frequency domain, the permutation and
becomes . .
scaling problem exists at every frequency band.
Y(w,t) = W(w,t) DX(wt) (3) To overcome these deficiencies, we combine aspects of the
generalized sidelobe canceller and blind source separation to cre-
Note that because the signals assumedhon-stationary, we have  ate an algorithm we call the generalized sidelobe decorrelator
written their frequency response as iamplicit function of time. (GSD), shown in Fig. 1b. Like the GSC, it consists of steering
We have written theNxM) matrix of filter frequency responses, delays that place all the sensor signals in-phase, a linear combiner
W(wt), as an implicit function of time with an eye towards on- that forms the primary beam, and a blocking matrix that forms
line adaptation. secondary orthogonal beams. However, unlike the GSC, instead
Equation (3) describeany linear system. Ultimately, we  of adopting a power minimization criteria that adapts the second-
must implement it in a specific architecture. In this paper, we use ary beams out of the primary beam, we adoptass-powemini-
finite impulse response (FIR) filters because this allows the actualmization criteria, as described in Section 2.2, thetorrelateghe
filtering operation to be carried out in the frequency domain. secondary beams from the primary beam. This allows for remov-
In [8], we adopt a decorrelation criteria that is the sum of the ing leakage of the primary source into the secondary beams, while
squares of theoherence functionsetween alNx(N-1)/2 distinct the blocking matrix guarantees the integrity of the primary beam
pairs of outputs: independent of whether the sources are active.



4. EXPERIMENT Finally, we applied our new hybrid GSD by performing BSS
) ) ] on the fixed delay-sum beam and blocking matrix outputs using

We conducted an acoustic experiment designed to demonstratgjjier sizes of 512 taps, and obtained very encouraging results. In
the superior performance of the algorithm for noise reduction. A aqgition to obtaining the largest SNR improvement of any of the
2-D rectangular sensor array of dimension 10 cm x 7 cm was algorithms, the CER was a very respectable 5.4%, approaching
formed, corresponding to the dimensions of a personal digital {he single microphone CER of 2.0% in a quiet environment.
assistant (PDA), using inexpensive omnidirectional lapel micro-
phones (Audio-Technica ATR35S).

The array was located in a room of dimension 3.0 m x 3.6 m 5. CONCLUSIONS

25: Tv.h'iaérlwovl:/gzziaelijetrom;:sIzla;edui%tsrg(‘::rléf:tl)(l);gfrn?ar\}tec: taek_We introduced a new algorithm called the generalized sidelobe
Y, playaq 9 P decorrelator that combines elements of geometric beamforming

ing 300 short commands over a period of twenty minutes, with a . .
. and blind source separation. It solves the leakage problem of the
pause of ~2-3 seconds between commands. The recording was . : .
eneralized sidelobe canceller and allows for recovering other

automahcglly stegmented. Into s_peech/non-speech for the pUIrpos(gources in addition to the one that lies in the known direction. It
of measuring signal to noise ratio (SNR), and the speaker had pre-

. . . o also allows blind source separation to run continuously indepen-
viously trained an automatic speech recognition system for the . .
dent of whether the sources are simultaneously active.

purpose of measuring speaker-de_pendent command error rate Although the BSS algorithm we have used is based on deco-
(CER). The recognizer and all algorithms operated at 11.025 kHz. . - .
rrelation of nonstationary signals, we could equally have used

Also in the room but in the corner and facing the wall ~2.5 m higher-order statistics in the separation criteria. Finally, instead of

from the array, a loudspeaker played babble (the sounds of manyrelying on prior knowledge of the primary source location, we

y0|ces). OutS|de_ the room, anqther loudspeaker played a record'could use a direction of arrival (DOA) finding algorithm to locate
ing of street noises. The nominal SNR at the microphones was

) . “>the strongest source. We shall consider all these in future papers.
1.2 dB, which corresponded to a CER of 77.6%. We then applied
four on-line adaptive algorithms to the array signals, the results of

which are shown in Table 1. 6. ACKNOWLEDGEMENTS
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