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ABSTRACT

We introduce a new hybrid algorithm called the generalized side-
lobe decorrelator (GSD) that combines elements of geometric
beamforming and blind source separation. On the one hand, it is
an extension of the generalized sidelobe canceller (GSC), also
known as the Griffiths-Jim beamformer, from the standard criteria
of power minimization to a decorrelation criteria. On the other
hand, it can be seen as an extension of a particular blind source
separation (BSS) algorithm for non-stationary signals to include
prior information about the location of one of the sources. How-
ever, unlike GSC, performance doesn’t degrade with leakage of
the source outside the primary beam and, unlike BSS, it performs
well independent of whether the sources are simultaneously
active. This makes it ideal for noise reduction in a continuously
running on-line operation. We demonstrate its superior perfor-
mance in a real-room audio experiment.

1.  INTRODUCTION

The fields of geometric beamforming and blind source separation
(BSS) have progressed on largely independent tracks. And yet,
even though the literature in these two areas is now quite mature
(see [1]-[4]), their assumptions, goals, and methods share many
commonalities that have not been fully explored. The fundamen-
tal starting point for both is an array of sensors, each of which
measures a different mixture of several sources. In beamforming,
it is often the case that only one source is of interest and the others
are designated as noise. In BSS, all sources that carry information
are usually of interest. However, these distinctions are largely
superficial.The goal of both fields is to filter and combine the sen-
sor signals so as to best recover the source(s) of interest. The only
fundamental differences between the two fields are the prior infor-
mation that is exploited and the criteria that is used for recovery.

When the only prior information available is that the sources
are statistically independent, then this defines the blind source
separation problem. Independence then becomes an adaptation
criteria for the filtered sensor signals. Strict independence requires
an infinite amount of data to measure, therefore in practice the cri-
teria is relaxed to some subset of higher-order statistics (HOS).

When the prior information includes the array geometry and
the angular position of a single source of interest, then this defines
a beamforming problem. Under the assumption that sources com-

ing from any other direction are noise, the sensor signals are th
filtered to minimize power subject to the constraint that a dela
sum beam points in the direction of the known source. When th
constraint is appended to the optimization criteria, there resu
the linearly constrained minimum-variance(LCMV) algorithm
introduced by Frost [5]. When the constraint is explicitly embed
ded in the architecture, there results thegeneralized sidelobe can-
celler (GSC) introduced by Griffiths and Jim [6].

However, there are many problems where the distinctio
between BSS and beamforming is not so clear. For example, c
sider the case where the prior information is the following:

(a) there are multiple sources of interest;
(b) the sources are independent;
(c) the angular position of one of the sources is known;
(d) the array geometry is known.

By themselves, (a) and (b) define the BSS problem while (c) a
(d) define a beamforming problem. Therefore, right away we c
phrase this as one of two equivalent problems: (1) how can
modify BSS to include the case when the angular location of o
of the sources and the array geometry are known? or (2) how
we modify adaptive beamforming to recover other sources
addition to the one that lies in the known direction?

We have previously considered these priors from the stan
point of the first problem formulation. That is, we began with
multiple-input/multiple-output feedforward system utilizing finite
impulse response (FIR) filters adapted under an independence
teria on the outputs. We then appended a linear constraint that
filters associated with one of the outputs represent a beamform
with a constant unit gain response in the known source directio
The resulting algorithm is calledgeometric source separation
(GSS) [7], and can be considered a HOS analog of the LCM
algorithm. From the point of view of BSS, the geometric con
straint regularizes the solutions, resolving the ambiguities due
the frequency permutation problem [7] and the indeterminacies
the case of more sensors than sources. From the point of view
beamforming, GSS solves many problems associated with the
called “leakage” problem caused by a power minimization crit
ria, which we will discuss in greater detail in a later section.

In this paper, we consider the priors from the standpoint
the second problem formulation. We propose an alternative a
more efficient way of implementing the linear constraints follow
ing the approach proposed by Griffiths and Jim in their alternati
implementation of the LCMV. In the same spirit, we call this new
algorithm thegeneralized sidelobe decorrelator (GSD).
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2.  PROBLEM STATEMENT

The problem we seek to solve is the following:N unknown source
signals are convolutively mixed and measured byM sensors

(1)

wheres is an unknown (Nx1) vector of source signals,A is an
unknown (MxN) mixing matrix of channel impulse responses, and
x is a measured (Mx1) vector. The convolution operator * here
implies both matrix multiplication and convolution. We then seek
a matrix of filters operating on the sensor measurements

(2)

such that the components of the (Nx1) outputy recover the source
signals, whereW is a (NxM) matrix of filter impulse responses.

If we stop here and define successful recovery of the signals
to be when the components ofy are independent, then this defines
the blind source separation problem. If we add other prior infor-
mation, such as the array geometry and the position of one or
more of the sources, then this defines a geometric beamforming
problem. We first review each of these as separate solutions and
then show how they can be combined.

2.1 Generalized Sidelobe Canceller Solution

The fundamental principle of beamforming is that prior know
edge of the sensor and source geometry can be exploited to de
filters that delay the sensor signals so that they add in-phase f
desired direction, greatly increasing the sensitivity of the array
a source in that direction. However, while the delay-sum bea
former is optimal for a point source in the presence of spatia
diffuse noise, it is not optimal if the noise also originates from
point sources.

As we mentioned previously, one possibility for suppressin
these noise sources is the LCMV algorithm, which adaptively fi
ters the sensor signals so as to minimize power, subject to a c
straint that a delay-sum beam points in the direction of the sou
of interest.

An alternative but equivalent approach is the GSC, shown
Fig. 1a. It also implements a power minimization criteria on th
filtered sensor signals. However, unlike the LCMV, the requir
ment that a beam point in the direction of interest is enforced
the architecture rather than the criteria. Specifically, the GSC u
lizes a delay-sum beam through the use of steering delays
lowed by a linear combiner. The linear combiner is a window th
can be designed to vary the trade-off between main lobe wid
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Figure 1. (a) generalized sidelobe canceller; (b) generalized sidelobe decorrelator.

x t( ) A* s t( )=

y t( ) W* x t( )=
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and sidelobe energy. After the steering delays but prior to the lin-
ear combiner, theM delayed sensor signals are all in phase. This
is exploited to formM-1 secondary beams orthogonal to the pri-
mary beam through the use of a “blocking matrix”. Each row of
the blocking matrix is constrained to sum to zero to ensure that
the resulting secondary beams will all have a null in the direction
of the primary beam. During adaptive power minimization, the
secondary beams are adapted out of the primary beam but are pre-
vented by the blocking matrix from canceling any signal that
exclusively resides in the primary beam.

The GSC approach has the advantage that the resulting opti-
mization can be carried out using unconstrained power minimiza-
tion, such as the least mean squares (LMS) algorithm. Unlike the
LCMV, the constraint is always enforced and no extra steps have
to be taken to ensure that the filter weights don’t stray from the
constraint over time due to finite precision effects.

2.2 Blind Source Separation Solution

In order to understand what an independence criteria can accom-
plish, it suffices to determine the set of all operations ons such
that the resulting signals are still independent. Clearly a reorder-
ing of the components ofs does not affect their independence.
The components ofscan also be separately filtered, either linearly
or nonlinearly, without affecting their independence. Thus,y can
only approximates to within a permutation and filtering opera-
tion. The latter limitation means that blind source separation is
distinct from the problem of blind deconvolution. That is, blind
source separation by itself cannot recover the components ofs
from filtered versions of themselves.

We have previously studied this problem for the special case
when the source signals are non-stationary processes [10]. BSS is
primarily based on the assumption of statistical independence of
the source signals. For stationary signals, second-order statistics
(decorrelation) is not sufficient to identify and invert the mixing
coefficients, and higher-order statistics have to be considered.
However, for non-stationary signals, varying second-order statis-
tics provides a sufficient constraint for separation.

In the time domain, independence must be tested not only at
the same instant of time, but for all possible combinations of
delays of the components ofy. This problem can be ameliorated
by performing the separation in the frequency domain. In the fre-
quency domain, convolution becomes multiplication and (2)
becomes

(3)

Note that because the signals areassumednon-stationary, we have
written their frequency response as animplicit function of time.
We have written the (NxM) matrix of filter frequency responses,
W(ω,t), as an implicit function of time with an eye towards on-
line adaptation.

Equation (3) describesany linear system. Ultimately, we
must implement it in a specific architecture. In this paper, we use
finite impulse response (FIR) filters because this allows the actual
filtering operation to be carried out in the frequency domain.

In [8], we adopt a decorrelation criteria that is the sum of the
squares of thecoherence functionsbetween allNx(N-1)/2 distinct
pairs of outputs:

(4)

where is the cross-power spectral density betwe

outputsi and j at time t. We estimate directly in the fre-

quency domain using a recursive estimator, which in matrix for
can be written

(5)

whereT is a block processing time. Stochastic gradient descent
(4) using (5) leads to the weight update equation in matrix form

(6)

where andSYX is the cross-power spectral

density between the output and input, also estimated recursive

(7)

3.  GENERALIZED SIDELOBE DECORRELATOR

Both the GSC and BSS approaches each have their strengths
weaknesses. While the GSC exploits the available prior geome
information, it does not exploit the independence prior and is th
subject to the leakage problem associated with power minimiz
tion. That is, any leakage of the primary source into the second
beams will result in cancellation of the primary source and a de
radation of the SNR improvement. This leakage can be due to a
of several factors, including: (1) array calibration errors; (2) pr
mary source location error; (3) a main beam that is narrower th
the primary source, caused by a large array aperture; (4) spa
aliasing lobes, caused by an insufficiently spaced sensor array;
reverberation, caused by reflections of the primary source com
from directions outside the primary beam.

BSS, on the other hand, can clearly separate in the prese
of leakage but does not exploit all available prior information
Also, when there are more sensors than sources, the separa
problem is highly underdetermined. Furthermore, when the se
ration is performed in the frequency domain, the permutation a
scaling problem exists at every frequency band.

To overcome these deficiencies, we combine aspects of
generalized sidelobe canceller and blind source separation to
ate an algorithm we call the generalized sidelobe decorrela
(GSD), shown in Fig. 1b. Like the GSC, it consists of steerin
delays that place all the sensor signals in-phase, a linear comb
that forms the primary beam, and a blocking matrix that form
secondary orthogonal beams. However, unlike the GSC, inste
of adopting a power minimization criteria that adapts the secon
ary beams out of the primary beam, we adopt across-powermini-
mization criteria, as described in Section 2.2, thatdecorrelatesthe
secondary beams from the primary beam. This allows for remo
ing leakage of the primary source into the secondary beams, wh
the blocking matrix guarantees the integrity of the primary bea
independent of whether the sources are active.

Y ω t,( ) W ω t,( ) X ω t,( )⋅=

J
SYiYj

ω t,( ) 2

SYiYi
ω t,( )SYjYj

ω t,( )
----------------------------------------------------

i j,
∑

t
∑=

SYiYj
ω t,( )

SYiYj

SYY ω t,( ) γ SYY ω t T–,( ) 1 γ–( ) Y ω t,( ) YH ω t,( )⋅+=

W∆ ηΛYY
1– SYY ΛYY–[ ] ΛYY

1– SYX⋅ ⋅ ⋅–=

ΛYY diag SYY[ ]=

SYX ω t,( ) γ SYX ω t T–,( ) 1 γ–( ) Y ω t,( ) XH ω t,( )⋅+=
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4.  EXPERIMENT

We conducted an acoustic experiment designed to demonstrate
the superior performance of the algorithm for noise reduction. A
2-D rectangular sensor array of dimension 10 cm x 7 cm was
formed, corresponding to the dimensions of a personal digital
assistant (PDA), using inexpensive omnidirectional lapel micro-
phones (Audio-Technica ATR35S).

The array was located in a room of dimension 3.0 m x 3.6 m
x 2.3 m. A loudspeaker was placed 0.5 m directly in front of the
array, which was used to replay a quiet recording of a male speak-
ing 300 short commands over a period of twenty minutes, with a
pause of ~2-3 seconds between commands. The recording was
automatically segmented into speech/non-speech for the purpose
of measuring signal to noise ratio (SNR), and the speaker had pre-
viously trained an automatic speech recognition system for the
purpose of measuring speaker-dependent command error rate
(CER). The recognizer and all algorithms operated at 11.025 kHz.

Also in the room but in the corner and facing the wall ~2.5 m
from the array, a loudspeaker played babble (the sounds of many
voices). Outside the room, another loudspeaker played a record-
ing of street noises. The nominal SNR at the microphones was
1.2 dB, which corresponded to a CER of 77.6%. We then applied
four on-line adaptive algorithms to the array signals, the results of
which are shown in Table 1.

Because the source was directly in front of the array, the
fixed delay-sum beam could be obtained by a simple averaging of
the four sensors. Although the fixed beam does not provide much
SNR improvement, it does provide significant CER improvement.
This is partly because it does not distort the speech at all.

Next, we implemented the GSC using a “Walsh” blocking
matrix (see [6]) to form three secondary beams orthogonal to the
primary delay-sum beam. The secondary beams were adapted out
of the primary beam using the frequency domain LMS algorithm
with filter sizes of 512 taps. Although there is improvement in the
SNR, there is degradation in the CER relative to the delay-sum
beam, most likely due to spectral distortion of the speech.

Next, we applied BSS on the 4 raw inputs signals, using the
algorithm of Section 2.2, using 2 outputs and filter sizes of 512
taps. Although BSS provides a small SNR improvement over
GSC, the algorithm completely destroys the recognition perfor-
mance. Part of the problem is that BSS requires that the sources
be simultaneously active, and thus the filters start to degrade dur-
ing the silent periods between commands. In addition, the fre-
quency permutation problem can distort the speech spectrum.

Finally, we applied our new hybrid GSD by performing BSS
on the fixed delay-sum beam and blocking matrix outputs usi
filter sizes of 512 taps, and obtained very encouraging results
addition to obtaining the largest SNR improvement of any of th
algorithms, the CER was a very respectable 5.4%, approach
the single microphone CER of 2.0% in a quiet environment.

5.  CONCLUSIONS

We introduced a new algorithm called the generalized sidelo
decorrelator that combines elements of geometric beamform
and blind source separation. It solves the leakage problem of
generalized sidelobe canceller and allows for recovering oth
sources in addition to the one that lies in the known direction.
also allows blind source separation to run continuously indepe
dent of whether the sources are simultaneously active.

Although the BSS algorithm we have used is based on dec
rrelation of nonstationary signals, we could equally have us
higher-order statistics in the separation criteria. Finally, instead
relying on prior knowledge of the primary source location, w
could use a direction of arrival (DOA) finding algorithm to locate
the strongest source. We shall consider all these in future pape
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Table 1.Results of real-room experiment.

Algorithm SNR CER

none 1.2 dB 77.6%

fixed delay-sum beam 1.3 dB 19.4%

generalized sidelobe canceller 3.0 dB 73.9%

blind source separation 3.6 dB 100.0%

generalized sidelobe decorrelator 4.6 dB 5.4%
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