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Response Error Correction - A Demonstration of

Improved Human-Machine Performance Using
Real-Time EEG Monitoring

Lucas C. Parra, Clay D. Spence, Adam D. Gerson and Paul Sajda

Abstract— We describe a brain computer interface (BCI)
system, which uses a set of adaptive linear preprocessing
and classification algorithms for single-trial detection of Er-
ror Related Negativity (ERN). We use the detected ERN as
an estimate of a subject’s perceived error during an alterna-
tive forced choice visual discrimination task. The detected
ERN is used to correct subject errors. Our initial results
show average improvement in subject performance of 21%
when errors are automatically corrected via the BCI. We
are currently investigating the generalization of the overall
approach to other tasks and stimulus paradigms.

Keywords— Brain Computer Interface, Error Related Neg-
ativity, single-trial detection, electroencephalography, eye
blink removal

I. ADAPTIVE HUMAN-COMPUTER INTERFACE

The performance of a human subject executing a task
while interacting with a computer can be highly variable,
depending upon such individual factors as level of alertness,
reaction speed, working memory capacity, and capacity to
perform parallel tasks. Most current human-computer in-
terfaces (HCI) do not adapt to the physiological or psycho-
logical state of the user. The goal of an adaptive interface
is to estimate variables correlated with human performance
and adapt the HCI accordingly (e.g. adjust speed of dis-
play, provide appropriate cues, automatically correct er-
rors, etc.) Several behavioral and physiological measures,
such as reaction time, eye motion, and pupil dilation, have
been proposed as variables having utility for adapting an
HCI [1], [2]. More recently, research in neuroimaging has
identified electroencephalography (EEG) signals that are
correlated with attention [3], memory encoding [4], mo-
tor imagery [5], perceived error and/or conflict [6], percep-
tion/recognition [7] and which therefore might be useful for
such adaptation.

In this paper we describe a brain computer interface (B-
CI) capable of monitoring a subject’s cognitive state as-
sociated with specific observable events. We argue that
this information can be used to adapt the HCI, and ulti-
mately maximize performance. As an example we demon-
strate our initial results using a high throughput, alterna-
tive forced choice visual discrimination task. In this task a
subject discriminates between two visual stimuli by press-
ing one of two buttons. When subjects attempt to mini-
mize their response time they often commit errors that are
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perceived shortly after the button-push response.! Inter-
estingly, such perceived errors are accompanied by a nega-
tive fronto-central deflection in the EEG signal. This signal
is known as the error related negativity (ERN) [9]. Single-
trial detection of the ERN has been proposed as a means
of correcting communication errors in a BCI system [10].
For off-line processing we have recently reported, using a
simple linear classifier, up to 79% correct detection of the
ERN within 100 ms of the erroneous response [8].

In this paper we describe a BCI system, which uses the
detected ERN to correct erroneous responses of subjects so
as to minimize the overall human-machine error rate. In
particular, we focus on a set of adaptive, linear algorithms
for data preprocessing and ERN detection. The algorithms
are designed for single-trial, on-line processing and run in
real-time on data that is streaming from a 64 channel EEG
system through Ethernet. The latency of the total system
is approximately 230 ms which is primarily constrained by
the 200 ms integration time required for ERN detection.

BCI systems are currently being developed primarily as
a communications means for severely motor impaired sub-
jects. We are currently exploring other applications of the
proposed real-time monitoring. For instance, we argue that
one may be able to increase the speed of visual search for
image analysts by detecting the activity associated with
fast visual recognition. Single-trial detection of this activi-
ty permits bypassing slow motor response thereby increas-
ing human performance as we have demonstrated in a rapid
visual serial presentation (RSVP) paradigm [11].

II. ADAPTIVE LINEAR ON-LINE REAL-TIME PROCESSING

We describe in the following two sections novel algo-
rithms for EEG eye blink removal and denoising. These
algorithms preserve the ERN signal and in fact improve
detection accuracy as presented in section II-C. In all cas-
es we first remove baseline drifts, most likely due to slow
skin conductivity changes, by filtering each channel with
a recursive linear high-pass filter (2nd order Butterworth
with 1 Hz cutoff frequency).

A. Robust eye blink removal with principal componen-
t analysis

The muscle activity of eye blinks generates strong elec-
trical signals that are linearly superimposed with smaller
magnitude signals of interest (e.g. the ERN). We present
here a novel algorithm for eye blink removal. Conventional

1 For more detailed description of the experimental paradigm see [8]
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algorithms detect eye blinks to simply discard the corre-
sponding segment of data. This is not feasible in practice
given the frequent eye motion in most real world situations.
A better approach is to subtract the artifacts using linear
regression algorithms (e.g. [12]). Existing methods typical-
ly use electro-oculogram (EOG) electrodes as a reference.
Unfortunately in addition to eye motion, EOG signals also
contain frontal cortical activity which should not be sub-
tracted. We construct a better reference signal using a
linear combination of all electrodes thereby increasing the
power of the eye blink activity in the reference.

Let x(t) be the observed EEG sensor reading, y(t) the
eye blink signal, and s(¢) the remaining signal of interest,

(1)

The linear coupling of the eye blink source y(t) with the
EEG sensors is denoted as a. The arbitrary scale in the
factorization, ay(t), can be constrained by setting, a’a =
1. Given a, we can generate a new signal X(¢), which only
contains the signal of interest when the orientation of the
eye blink is removed,

x(t) = ay(t) + s(¢) .

%(t) = (I —aa®)x(t) = (I — aa’)s(t). (2)
Only source signals that are exactly collinear with a are re-
moved. All other source signals will have at least a residual
contribution to %(t) and may be detected with appropriate
algorithms.

The key challenge lies in estimating the coupling a. Re-
cent work suggests to use independent component analysis
(ICA) in order to identify such linear projection associated
with EEG artifacts [13]. In our experience, however, ICA
methods have not proven robust when applied on-line. For-
tunately, during eye blinks the activity y(t) is large com-
pared to the signals of interest, s(¢). This is in particular
true for frontal electrodes and electro-oculogram (EOG)
signals commonly acquired with EEG. The projection a
can therefore be identified using principal component anal-
ysis (PCA) for which a number of robust on-line algorithms
are available.

Our method partitions the 64 recorded channels into t-
wo sets: (1) the EOG and frontal electrodes containing
strong eye blink signals and (2) the remaining parietal,
temporal, and occipital electrodes with weaker eye blink
signal contributions. Let us denote this partitioning with,
x(t) = [x1(t),x2(t)], and correspondingly a = [a;, as]. We
propose to identify a; as the first principal component of
x1 (t) estimated during eye blinks as demonstrated in Fig-
ure 1. Given the coupling a; we obtain an estimate for
the eye blink signal as, § = al'x(t), since §(t) ~ y(t) for
the case that y(t) < a”s. The partitioning further weights
the eye muscle activity in the estimate §. The remaining
coupling factors a; can be determined with conventional
regression, i.e. as the linear predictors of xy given §(t).
Interestingly the update equations for the principal com-
ponents aj, and the regression coefficients as have the same
analytic form and can be combined into a single on-line up-
date equation. After normalizing with the output power to
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Fig. 1. Eye-blink detection and subtraction using first principal com-
ponent. Top left: EOG channel before and after subtraction of eye
blinks. Right: Scatter plot of the activity in EOG electrode and a
frontal electrode during the same 10s time interval. Solid line shows
the orientation of the first principal component estimated during eye
blinks. Bottom left: Power magnitude (upper trace) and time aver-
aged skew (center trace) of the power in frontal and EOG electrodes,
as well as eye blink detector output (lower trace).

accelerate convergence with a constant learning rate u, the
update becomes,

Rxx, (t)a
aTRy, 5, ()a /)’

where Ry, (t) and Ry, x, () are the corresponding portions
of a running estimate of the covariance of x during eye
blinks, e.g. Rxx(t) = YRxx(t — 1) + (1 — 7)x(t)x] () with
a forgetting factor v. For the required eye blink detection
we use the instantaneous magnitude, and a time averaged
skew of the power in x; (). A blink is detected when these
quantities cross a predetermined threshold.

Figure 1 shows a scatter plot of the signals of two elec-
trodes in the set x; and the corresponding orientations in
a; as they have been identified a few seconds after observ-
ing only a single blink. Eye blinks last for approximate-
ly 100 ms, which at 250 Hz sampling rate corresponds to
about 25 samples to estimate Ryx(t). Only a few hun-
dred iterations of (3) are required for convergence, i.e. 2-3
seconds after that eye blink. Subsequent eye blinks are
accurately subtracted as seen in Figure 1. We find that
a; does not change much in the course of an experimen-
t, and only a few eye blinks are required for an accurate
estimation of the covariance matrixes. We can therefore
set the detector thresholds and learning constant to very
conservative values.

Aa=—p (a - (3)

B. Denoising the ERN wusing temporal Hidden-Markov-
Trees

One challenge in detecting the cognitive state of a sub-
ject via single-trial EEG is the inherently low signal to
noise ratio (SNR). In developing denoising algorithms for



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. XX, NO. Y, MONTH 2003 3

improving the SNR, it is critical to obtain accurate noise
estimates as well as exploit properties of the signal which
preserve its structure. For the purpose of detection noise is
defined here as temporal activity in the EEG that is unre-
lated to the ERN. We therefore develop a statistical noise
model using the activity during some unrelated baseline pe-
riod. This model is then used to remove noise during the
time period of the evoked response. We expect the wavelet
transform of evoked potentials, as with many other types
of natural signals [14], to exhibit the persistence of large
or small coefficients across scale and the clustering of coef-
ficients within scale. In addition, observations on the dis-
tribution of wavelet coefficients of EEG evoked potentials
reveal that the coeflicients have near zero mean and long
tails—.e. they are super-Gaussian (see Figure 2A). Here
we propose to estimate noise statistics by modeling such
signal properties with a hierarchical probability model.

Super-Gaussian distributions may be approximated us-
ing a two state, zero mean, Gaussian mixture model in
which the large number of small coeflicients are modeled
with a low variance Gaussian, and the small number of
large coeflicients are modeled with a high variance Gaus-
sian (Figure 2B). To efficiently describe the statistics of
wavelet coefficients, each coefficient is associated with a
hidden state variable that describes whether the coefficient
is in either a high or low variance state (Figure 2C).

In order to model the conditional relationships described
by persistence properties of wavelet coefficients, hidden s-
tate variables are linked across scales. Coeflicients within s-
cale are assumed to have the same probability density func-
tion, an approximation referred to as “tying” within scale.
Figure 2D shows the hidden Markov Tree (HMT), which
was first developed by Crouse et al. [14] and represents a
graphical model of a set of dependencies between wavelet
coefficients. The HMT, and similar models, have been used
for a wide variety of signal and image processing applica-
tions including classification, segmentation, compression,
synthesis and denoising [15], [16], [17], [18].

The parameters of the two state zero mean HMT con-
sist of, (1) the probability mass function p; describing the
high/low variance state of the wavelet coefficients of the
coarsest scale, (2) the state transition matrices describing
persistence between adjacent scales and (3) the variances
of the Gaussian mixture model, 07 and o%.

These parameters can be estimated using a mod-
ified Baum-Welch/upward-downward expectation maxi-
mization algorithm [19]. For the data shown in Figure 3 we
find that after training the transition matrices across scale
are not uniformily distributed between states. This con-
firms the modeling assumption of the persistence of large
or small coeflicients across scale.

We follow the denoising methods outlined in [14]. As-
sume that the relationship between the wavelet coefficients
of the observed EEG signal wf, clean signal y¥, and noise

n¥ may be described as,

wf =y +nf, (4)

where the subscript 4 indicates the ith wavelet coefficien-

t and the superscript k indicates it comes from the kth
wavelet tree. Assuming independent Gaussian white noise,
we can estimate the state dependent clean signal variance
o?, from the noisy signal variance ”yzm,

on)+ ()

where m indicates the state and (z)4 indicates a rectifica-
tion allowing for only zero and positive values of its argu-
ment.? In the results we present, an estimate of noise vari-
ance is derived from the variance of the finest scale wavelet
coefficients. However this estimate can be adjusted to use
only a specific subspace of the wavelet basis, depending up-
on prior knowledge of the noise source or interfering signal.

An estimate of the clean signal wavelet coefficients y¥,
given the noisy wavelet coefficients and state variables is
given by,

2 _ 2
Oim = (7i,m -

2

g;

,m
gl L R C)
On Uz’,m

BYF W] = w}, S} =m] =

Marginalizing over the state variable S¥ results in

o2
E_ k

yz |W Zp S m|w ) 0_2 +0_ w;, (7)

where w¥ is a vector representing all coefficients in the kth

tree. Given these estimates for the clean signal wavelet
coefficients, the inverse wavelet transform is applied to re-
construct the signal.

Examples of original and HMT denocised EEG signals,
after eye blink removal, are demonstrated in Figure 3 for a
10s segment of data. For the single-trial analysis the HMT
denoising is applied to a short segment of data of about 500
ms around the event of interest (button push). The HMT
parameters are estimated for each channel from a single
event at the beginning of the experiment.

C. ERN detection with linear discriminant analysis

We have previously reported [8] off-line single trial de-
tection of ERN, in a time window 0-100ms following the
button-push response, with an accuracy of A, = 0.79+0.05
using a linear classifier on 64 electrodes.

In addition to the preprocessing methods just described,
we have looked to improve detection accuracy by adding
a second detection interval of 100ms following the conven-
tional time window of 0-100 ms after the response. The
input to the linear classifier is a combination of two time
windows of 64 leads (128 inputs). To improve classification
and reduce the effect of high frequency noise, we bootstrap
the data by selecting multiple samples within a single trial
as training data. At 250Hz sampling rate the 200ms fol-
lowing the response results in 25 training samples, each of
dimension 128.

Our on-line detector is a Gaussian classifier and can be
adapted by simply updating the mean and covariance es-
timates for the two classes using the most recent sample.

2This rectification can cause deviation from linearity. However, in
practice it is not a factor since the difference is almost always positive.
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Fig. 2. Overview of the HMT. (A) Marginal distribution of evoked
response EEG wavelet coefficients showing large peak and long tail-
s (kurtosis=17.5). (B) Two state Gaussian mixture model for the
marginal distribution of evoked response EEG. (C) Graphical rep-
resentation of state dependencies on observed wavelet coefficients
(white nodes are hidden variables, black nodes are observed). (D)
hidden Markov tree indicating the dependencies between scales.
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Fig. 3. Results of single-trial denoising using the HMT. (Top) original
(noisy) signal after eye blink removal. (Bottom) clean signal denoised
using HMT. Shown are the signals and wavelet decompositions.
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Fig. 4. ERN detection using linear discrimination combining the time
intervals 0-100ms and 100-200ms after response. (left) Discriminating
component and (center) scalp projection graphs results were obtained
with off-line linear classification. Similar results are obtained with on-
line adaptation.(right) Single-trial ROC results compare A, for off-
line (LOO), on-line and using only Fc, electrode. Note that on-line
and off-line are comparable.

With equal covariance for the two classes (errors/corrects)
this results in linear classification. The advantage of lin-
ear classification is that we can compute the coupling of
the discriminating source activity with the sensors. This
provides a spatial map of the origin of the discriminat-
ing activity. The results obtained for a typical subject are
shown in Figure 4. The previously described fronto-central
negativity is observed during the 100ms following the re-
sponse. In addition, a more prolonged bilateral posterior
positivity is observed for correct trials, which further im-
proves discrimination. The single-trial discrimination per-
formance for the 7 subjects analyzed in [8] increases to
A, = 0.90 £ 0.04 when using off-line linear preprocessing,.
Note the processing sequence: eye blink removal, followed
by HMT denoising, followed by linear classification. The
largest jump in performance was due to the eye blink re-
moval (A4, increases from 0.79 to 0.89). HMT denoising
increased A, from 0.89 to 0.90.The performance for on-line
processing® is A, = 0.91+0.03, where performance is mea-
sured by predicting the classification of the next sample
using only past data.

III. CORRECTING ERRORS USING THE DETECTED ERN

Using the detected ERN to correct human response er-
rors requires choosing a threshold on the output of the lin-
ear classifier so as to minimize the number of errors, Fuwm,
made by the combined human-machine system. This is
the number of errors, Ey, made by the subject alone, mi-
nus the number of those errors detected by our BCI sys-
tem, plus the number of correct responses by the subject
that were incorrectly classified as errors by our BCI sys-
tem. Denote by frg the fraction of subject errors detected
by the BCI system (True Errors), and by frg the frac-

3The on-line version does not yet include the HMT denoising.
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tion of correct subject responses incorrectly classified as
errors by our BCI system (False Errors). We can write
Eum = Eu(1 — fre) + Cufre. However, 1 — frg = frc,
the fraction of subject errors that were incorrectly classi-
fied as correct responses (False Correct). The number of
human-machine errors is therefore Fy frc + Cy frg, which
is the total number of classifier errors.

If we construct a classifier that estimates the class prob-
ability, we minimize the number of errors by assigning new
trials to the class with the highest probability under the
classifier. In terms of the log-odds-ratio, we minimize the
error rate by choosing a threshold of zero. Since we em-
ploy Gaussian models with equal covariance matrices for
the class distributions, the log-odds ratio is a linear func-
tion of the input. However, if the actual class distributions
do not fit our model distributions, our linear discriminator
is only an approximation to the true log-odds ratio, and the
optimal threshold may differ from zero. This appears to be
the case for this set of experiments, as we see in Figure 5.

In our on-line implementation, we choose an optimal
threshold by keeping a record of the outputs of the lin-
ear discriminator for the last one hundred trials of both
correct and erroneous responses. We then search for the
threshold that minimizes the error rate on these sets, i.e.,
Ey frc + Cu fre- We estimate frc and fpg from the out-
puts we have saved, and keep count of Ey and Cy from the
trials we have seen thus far. The threshold is applied to a
new sample that is not part of this training set. Table I
summarizes the results for each subject. An experiment
consists of about 600 button push responses of which 5-
20% are incorrect. The middle column show the error rate
before correction. The average relative reduction in error
rate for 7 subjects under on-line processing is 21.4% +21.7.
Note the large variance indicates very large improvements
for some subjects and no improvement or slight degrada-
tions in performance for other subjects.

In a practical applications the error correction system
will not have access to the correct response. The param-
eters for the linear classifier and the detection threshold
must be derived from an initial training sequence and are
kept constant during operation. The performance numbers
reported here reflect this scenario in that we report classi-
fication performance on the current trial using a classifier
that is trained only on information from previous trials.

IV. CONCLUSION

We have described a set of linear preprocessing and clas-
sification algorithms for providing an accurate single-trial
estimate of the ERN, an EEG signal which has been found
to correlate with perceived error. The goal of measuring
the ERN is to monitor a subject’s task specific error rate
and adapt an HCI to maximize overall performance. We
have shown initial results for both off-line and on-line cor-
rection of subject errors for an alternative forced choice
visual discrimination task. Future work will investigate
generalization of the approach to other tasks, particularly
those which require more complex adaption of the HCI.

Q

0 . . . . . .
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Fig. 5. Total human-machine performance after correcting human
response errors based on ERN detection as a function of classifier
threshold. Note that the minimum is not at zero, indicating that the
underlying distributions deviate from Gaussian.

TABLE 1
SUMMARY OF ON-LINE ERROR CORRECTION FOR EACH OF 7 SUBJECTS

Subject original error % error
1D rate in % reduction®
327 6 23
330 10 -6
403 15 -1
404 15 49
405 13 27
409 14 47
410 18 12

&Negative values indicate degradation in performance.
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