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Convolutive Blind Source Separation based on

Multiple Decorrelation.
Lucas Parra, Clay Spence

Abstract| Acoustic signals recorded simultaneously in
a reverberant environment can be described as sums of

di�erently convolved sources. The task of source separa-
tion is to identify the multiple channels and possibly to
invert those in order to obtain estimates of the underling

sources. We tackle the problem by explicitly exploiting the
non-stationarity of the acoustic sources. Changing cross-
correlations at multiple times give a su�cient set of con-

straints for the unknown channels. A least squares opti-
mization allows us to estimate a forward model, identifying

thus the multipath channel. In the same manner we can
�nd an FIR backward model, which generates well separated
model sources. Furthermore, for more than three channels

we have su�cient conditions to estimate underlying additive
sensor noise powers, which could be used for further signal

enhancement.

I. Introduction

A growing number of researchers have published in re-
cent years on the problem of blind source separation. For
one, the problem seems of relevance in various application
areas such as speech enhancement with multiple micro-
phones, crosstalk removal in multichannel communications,
multipath channel identi�cation and equalization, direc-
tion of arrival (DOA) estimation in sensor arrays, improve-
ment over beam forming microphones for audio and passive
sonar, and discovery of independent sources in various bio-
logical signals, such as EEG, MEG and others. Additional
theoretical progress in our understanding of the importance
of higher order statistics in signal modeling have generated
new techniques to address the problem of identifying sta-
tistically independent signals - A problem which lays at
the heard of source separation. This development has been
driven not only by the signal processing community but
also by machine learning research that has treated the is-
sue mainly as a density estimation task.

The basic problem is simply described. Assume ds statis-
tically independent sources s(t) = [s1(t); :::; sds(t)]

T . These
sources are convolved and mixed in a linear medium lead-
ing to dx sensor signals x(t) = [x1(t); :::; xdx(t)]

T that may
include additional sensor noise n(t),

x(t) =

PX
�=0

A(�)s(t � �) + n(t) (1)

How can one identify the dxdsP coe�cients of the channels
A and how can one �nd an estimate ŝ(t) for the unknown
sources?
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Alternatively one may formulate an FIR inverse model
W ,

u(t) =

QX
�=0

W (�)x(t � �) (2)

and try to estimate W such that the model sources u(t) =
[u1(t); :::; udu(t)]

T are statistically independent.

Most of the previous work has concentrated on the prop-
erty of statistical independence, and ignores the additive
noise. We shall discuss this approaches in a separate sec-
tion II.

An alternative approach to the statistical independence
condition in the convolutive case has been touched on by
Weinstein et al. in [1]. For non-stationary signals a set of
second order conditions can be speci�ed that uniquely de-
termines the parameters A. No algorithm has been given
in [1] nor has there been to our knowledge any results re-
ported on this approach. A resent paper by Ehlers and
Schuster [2] carries that spirit in attempting to solve for
the frequency components of A by extending prior work of
Molgedey and Schuster [3] on instantaneous mixtures into
the frequency domain. They fall short however in carefully
considering the issues at hand and mistakenly confuse this
idea with simple decorrelation of multiple taps in the time
domain, which is known to be insu�cient [4], [5].

We take up this multiple decorrelations approach assum-
ing quasi-stationary signals and use a least squares (LS) op-
timization to estimate A or W as well as signal and noise
powers. In the following section we give a brief review of
approaches taken in the literature for the instantaneous
mixtures (P = 1, or Q = 1) and convolutive mixtures
(P > 1). In section III we present our approach for the
instantaneous case and point out the di�erences between
estimating the forward model A and the backward model
W . In addition to the source power one can estimate ad-
ditive sensor noise powers. Computing estimates ŝ from
a forward model A requires a further estimation step, in
particular for the case of fewer sources than sensors, i.e.
ds < dx. The least squares (LS), maximum likelihood (ML)
or maximum a posteriori probability (MAP) estimates are
given in section III-C. In a backward model W the LS op-
timization gives the inverse of the mixture and we obtain
model sources û directly. In section IV we carry over the
concept of multiple decorrelation into the convolutive case
by solving independent models for every frequency, thereby
paying particular attention to the approximation of linear
convolutions by circulant convolutions in section IV-A as
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well as the permutation issue in section IV-C. Since in-
verting a multichannel forward FIR model is in itself a
challenging task we restrict ourself in the implementations
to estimating the inverse modelW . Finally we report some
encouraging preliminary results in section V.

II. Previous work on blind source separation

Early work in the signal processing community had sug-
gested decorrelating the measured signals, i.e. diagonal-
izing measured correlations for multiple time delays [6],
[4]. For an instantaneous mix, also referred to as the con-
stant gain case, it has been shown that for non-white signal
decorrelation of multiple taps are su�cient to recover the
sources [7], [8]. Early on however it was clear that for con-
volutive mixtures of wide-band signals this solution is not
unique [4], [5], and in fact may generated source estimates
that are decorrelated but not statistically independent. As
clearly pointed out by Weinstein et.al. in [1] additional
conditions are required. In order to �nd separated sources
it seems one would have to capture more than second or-
der statistic, since indeed statistical independence requires
that not only second but all higher cross moments vanish.
Comon formulated the problem of an instantaneous lin-

ear mix, clearly de�ning the term Independent Component
Analysis, and presented an algorithm that measures in-
dependence by capturing higher statistics of the signals
[9], [10]. Previous work on DOA estimation had already
suggested higher order statistics [11], [12], [13]. Cardoso
suggested to consider the eigenstructure of 4th order cu-
mulants for blind separation [14]. Herault and Jutten [15]
were the �rst to capture higher statistic by decorrelating
nonlinear transformations of the signals. Pham [16] and
later Bell and Sejnowski [17] presented a simple algorith-
mic architecture which in e�ect density estimation [18], [19]
and is based on prior knowledge of the cumulative density
function of the source signals. Amari make modi�cations to
the update equations to dramatically improve convergence
and computational costs [20].
In the convolutive case Yellin and Weinstein [21], [22]

established conditions on higher order multi-tap cross mo-
ments that allow convolutive cross talk removal. Nguyen
Thi and Jutten [23] gave simpler algorithms to estimate the
forward model A based on multi-tap third and forth order
cross moments. Although the optimization criteria extend
naturally to higher dimensions, these researchers have con-
centrated on the two dimensional case since there a multi-
channel FIR forward model can be inverted with a properly
chosen architecture using the estimated forward �lters. For
higher dimensions however �nding a stable approximation
of the forward model remains an open question.
In contrast the density estimation approaches mentioned

before generalize to the convolutive case by estimating an
FIR backward modelW that directly tries to generate inde-
pendent model sources [24], [25]. They resemble equations
obtained from multidimensional extensions of the Busgang
blind equalization method [24]. Maximum likelihood den-
sity estimation derivations of this type of algorithm are
given by [26], [27].

All these techniques are shown to work satisfactorily in
computer simulations but perform poorly for real record-
ings. One could speculate that the densities may not have
the hypothesized structures, the higher order statistics may
lead to estimation instabilities, or the violation of the sta-
tionarity condition cause problems.
Our present work makes no assumptions about the cu-

mulative densities of the signals and limits itself to more
robust second order statistics wile explicitly exploiting non-
stationarity and a colored signal spectra.

III. Instantaneous Mixture

As laid out in the previous section the instantaneous case
has been worked out for some time now and a multitude
of approaches have been suggested. We present it here in
order to lay out some basic ideas, which will be used again
in the convolutive case. Part of our treatment of additive
sensor noise estimates may go beyond previous work.

A. Forward model estimation

For an instantaneous mixture, i.e. P = 1, the forward
model (1) simpli�es to,

x(t) = As(t) + n(t) (3)

We can formulate the covariance Rx(t) of the measured
signals at time t with the assumption of independent noise
as

Rx(t) �


x(t)xT (t)

�
=A



s(t)sT (t)

�
AT +



n(t)nT (t)

�
�A�s(t)AT +�n(t)

(4)

Since we assume decorrelated sources at all times we pos-
tulate diagonal covariance matrixes �s(t). We also assume
independent noise at each sensor, i.e. diagonal �n(t).
Note that any scaling and permutation of the coordinates

of �s(t) can be absorbed by A. Therefore we see that
the solution is only speci�ed up to an inherently arbitrary
permutation and scaling, as is well known. We are free
to choose the scaling of the coordinates in s. For now we
choose Aii = 1 ; i = 1; :::; ds, which places ds conditions on
our solutions.
For non-stationary signals a set of K equations (4) for

di�erent times t1; :::tK gives then a total of Kdx(dx +
1)=2+ds constraint on dsdx+dsK+dxK unknown param-
eters A;�s(t1); :::;�s(tK);�n(t1); :::;�n(tK).

1. Assuming
all conditions are linearly independent we will have su�-
cient conditions if,

Kdx(dx + 1)=2 + ds � dsdx + dsK + dxK (5)

1We will write in the remainder in brief �s(k) = �s(tk) and �s =
�s(t1); :::;�s(tK ) whenever possible. The same applies to �n(t) and
Rx(t)
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It is interesting to note that in the square case, ds =
dx, there are not su�cient constraints to determine the
additional noise parameters unless dx � 4. If we assume
zero additive noise in principleK = 2 is su�cient to specify
the solution up to arbitrary permutations.
In the square case the solutions can be found as a non-

symmetric eigenvalue problem as outlined in [3]. The dif-
�culty with such algebraic solutions however is that one
does not have perfect estimates of Rx(t). At best one can
assume quasi-stationary signals and measure the sample es-
timates R̂s(t) within the stationarity time. If we interpret
the inaccuracy of that estimation as measurement error

E(k) = R̂x(k)� �n(t)�A�s(k)A
T (6)

it is reasonable to estimate the unknown parameters by
minimizing the total measurement error for a su�ciently
large K,

Â; �̂s; �̂n = argmin
A;�s;�n;Aii=1

KX
k=1

kE(k)k2 (7)

The matrix norm here is the sum of the absolute val-
ues. Note that kEk2 = Tr(EEH ). This represents a least
squares (LS) estimation. To �nd the extrema of the LS
cost E =

P
k=1

��KE(k)�� in (7) let us compute the gradi-
ents with respects to its parameters2

@E

@A
= �4

KX
k=1

E(k)A�̂s(k) (8)

@E

@�̂s(k)
= �2 diag �AE(k)AT � (9)

@E

@�̂n(k)
= �2 diag (E(k)) (10)

While we can explicitly solve (10)=0 and for square and
invertible A also (9)=0 we will have to use an iterative
algorithm to �nd the extrema with respect to A using the
gradients in (8).

B. Normalization conditions

In the previous section we proposed to �x the arbitrary
scaling by �xing the diagonal parameters Aii = 1. For
the non-square case however this normalization may seem
somewhat arbitrary. One could in such a case demand in-
stead that kajk = 1; j = 1; :::; ds with aj = [A1j ; :::; Adxj ]

T .
Instead of the gradients given in (8) one has to then con-
sider their projections onto the hyper-planes de�ned by
kajk = 1. The projections operator for the jth column

of @E=@A is P
(1)
j = I�aja

T
j . Or we can write a constraint

gradient

@E

@A

����
kajk=1

=
@E

@A
�A diag

�
AT

@E

@A

�
(11)

2The diagonalization operator here zeros the o�-diagonal elements,

i.e. diag(M)ij =

�
Mij ; i = j
0; i 6= j

C. Estimation of source signals

In the case of a square and invertible mixing Â the sig-
nal estimates are trivially computed to be ŝ = Â�1

x. In
the non-square case for ds < dx we can compute the LS
estimate,

ŝLS(t) = argmin
s(t)

kÂx(t)� s(t)k = (ÂT Â)
�1
ÂTx(t) (12)

If we assume the additive noise to be Gaussian, not nec-
essarily white, nor stationary we can compute the maxi-
mum likelihood (ML) estimate

ŝML(t) = argmax
s(t)

p(x(t)js(t); Â; �̂n(t))

= (ÂT �̂n(t)
�1
Â)

�1

ÂT �̂n(t)
�1
x(t)

(13)

If we further assume the signal to be Gaussian, again
not necessarily white, nor stationary we can compute the
maximum a posteriori probability (MAP) estimate

ŝMAP (t) = argmax
s(t)

p(x(t)js(t); Â; �̂n(t); �̂s(t))

= (ÂT �̂n(t)
�1
Â+ �̂s(t)

�1
)
�1

ÂT �̂n(t)
�1
x(t)

(14)

Note however that the resulting estimates may not be
decorrelated. Assuming the model is correct and we found
the correct estimate Â � A,



ŝLS ŝ

T
LS

� � 

ss
T
�
+ (ÂT Â)

�1
ÂT�nÂ(Â

T Â)
�1

(15)

Since the second term may not be diagonal the result-
ing estimates can be correlated. However this should be no
major concern since the correlation is entirely due to corre-
lated noise and the signal portion of the estimates remains
decorrelated.

D. Backward model

Instead of estimating a forward model and then from
that further estimating the source signal one may directly
try to estimate a backward model in the form of (2) with
the objective of generating separated model sources ŝ(t),
which we de�ne as

ŝ(t) �WAs(t) (16)

We are looking therefore for a W that inverts A. This
will be in particular relevant for the convolutive case which
we will discuss in the following section. In analogy with the
previous discussions and using de�nition (16) and assuming
(3) we have,



ŝ(t)ŝ(t)T

�
=W (Rx(t)� �n(t))W

T (17)
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We will search for W such that


ŝ(t)ŝ(t)T

�
diagonalizes

simultaneously for K di�erent times3. The LS estimate is
then,

E(k) =W (R̂x(k)� �n(k))W
T � �s(k)

Ŵ ; �̂s; �̂n = argmin
W;�s;�n;Wii=1

KX
k=1

kE(k)k2
(18)

In analogy to the discussion in section III-A we can �nd
the solutions with an iterative gradient algorithm.

IV. Convolutive Mixture

In the previous section we described how one can treat
the case of instantaneous mixtures by decorrelating the co-
variance matrices at several times. This approach requires
non-stationary sources. The problem can also be treated by
decorrelating the cross-correlation at di�erent taps. This
requires that the signals be non-white rather than non-
stationary. This is the approach traditionally take in the
literature [4], [3], [8], [1]. For the convolutive case neither
one by itself is su�cient due to the larger number of pa-
rameters one wishes to estimate. The crucial insight of
this work is that in the convolutive case one can consider
multiple taps and multiple times and assume non-white
and non-stationary signals. Then again we obtain su�-
cient conditions to estimate all parameters.
As suggested for other source separation algorithms our

approach to the convolutive case is to transform the prob-
lem into the frequency domain and to solve simultaneously
a separation problems for every frequency [28], [29], [25],
[2]. The solution for each frequency would seem to have an
arbitrary permutation. The main issues to be addressed
here are how to obtain equations equivalent to (4) or (17)
in the frequency domain, and how to choose the arbitrary
permutations for all individual problems consistently. We
will take up these issues in the following sections.

A. Cross-correlations, circular and linear convolution

First consider the cross-correlations Rx(t; t + �) =

x(t)x(t + �)T

�
. For stationary signals the absolute time

does not matter and the correlations depend on the rela-
tive time, i.e. Rx(t; t+ �) = Rx(�). Denote with Rx(z) the
z-transform of Rx(�). We can then write

Rx(z) = A(z)�s(z)A(z)
H +�s(z) (19)

where A(z) represents the matrix of z-transforms of the
FIR �lters A(�), and �s(z), and �n(z) are the z-transform
of the auto-correlation of the sources and noise. Again they
are diagonal due to the independence assumptions.
For practical purposes we have to restrict ourself to a

limited number of sampling points of z. Naturally we will
take T equidistant samples on the unit circle such that we

3Similar considerations to those given for (15) show that decorre-
lating u(t) rather than ŝ(t) may not lead to the correct solution in
the presence of sensor noise

can use the discrete Fourier transform (DFT). For periodic
signals the DFT allows us to express circular convolutions
as products such as in (19). However, in (1) and (2) we
assumed linear convolutions. A linear convolution can be
approximated by a circular convolution if P � T and we
can write approximately

x(t; �) � A(�)s(t; �) + n(t; �); for P � T (20)

where x(t; �) represents the DFT of the frame of size T
starting at t, [x(t); :::;x(t + T )], and is given by x(t; �) =PT�1

�=0 e
�i2���

x(t + �) and corresponding expressions for
s(t; �) and A(�).
We limit the estimates of the cross-correlations to a given

estimation time. For non-stationary signals those estimates
will be dependent on the absolute time and will indeed vary
from one estimation segment to the next.

R̂x(t; �) =
1

N

N�1X
n=0

x(t+ nT; �)xT (t+ nT; �) (21)

We can then write for such estimates

R̂x(t; �) = A(�)�s(t; �)A
H (�) + �n(t; �) (22)

If N is su�ciently large we can assume that �s(t; �) and
�n(t; �) can be modeled as diagonal again due to the in-
dependence assumption. For equations (22) to be linearly
independent for di�erent times t and di�erent � it will be
necessary that �s(t; �) changes over time and frequency,
i.e. the signal are non-stationary and non-white.

B. Backward model

Given a forward model A it is not guaranteed that we
can �nd a stable inverse. In the two dimensional square
case the inverse channel is easily determined from the for-
ward model [1], [23]. It is however not apparent how to
compute a stable inversion for arbitrary dimensions. In
this present work we prefer to estimate directly a stable
multipath backward FIR model such as (2). In analogy to
the discussion above and to section III-D we wish to �nd
model sources with cross-power-spectra satisfying4,

�s(t; �) =W (�)
�
R̂x(t; �)� �n(t; �)

�
WH(�) (23)

In order to obtain independent conditions for every time
we choose the times such that we have non-overlapping es-
timation times for R̂x(tk; �), i.e. tk = kTN . But if the
signals vary su�ciently fast overlapping estimation times

4W (�) represents the DFT with frame size T of the time domain
W (�). In what follows time and frequency domain are identi�ed by
their argument � or �.
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could have been chosen. A multipath channel W that sat-
is�es these equations for K times simultaneously can be
found, again with an LS estimation5

E(k; �) =W (�)(R̂x(k; �)� �n(k; �))W
H (�)� �s(k; �)

Ŵ ; �̂s; �̂n = argmin
W;�s;�n;

W (�) = 0; � > Q;
Wii(�) = 1

TX
�=1

KX
k=1

kE(k; �)k2

(24)

Note the additional constraint on the �lter size in the
time domain. Up to that constraint it would seem the var-
ious frequencies � = 1; :::; T represent independent prob-
lems. The solutions W (�) however are restricted to those
�lters that have no time response beyond � > Q � T .
E�ectively we are parameterizing Tdsdx �lter coe�cients
in W (�) with Qdsdx parameters W (�). The LS solutions
can again be found with a gradient descent algorithm. We
will �rst compute the gradients with respect to the complex
valued �lter coe�cientsW (�) and discuss their projections
into the subspace of permissible solutions in the following
section.
For any real valued function f(z) of a complex valued

variable z the gradients with respect to the real and imagi-
nary part are obtained by taking derivatives formally with
respect to the conjugate quantities z

� ignoring the non-
conjugate occurrences of z� [30].

@f(z)

@<(z) + i
@f(z)

@=(z) = 2
@f(z)

@z�
(25)

Therefore the gradients of the LS cost in (24) are,

@E

@W �(�)
=

KX
k=1

E(k; �)W (�)BH (k; �)

+EH(k; �)W (�)B(k; �) (26)

@E

@�̂�
s(k; �)

=� diag (E(k; �)) (27)

@E

@�̂�
n(k)

=� diag
�
WH(�)E(k; �)W (�)

�
(28)

B(k; �) �R̂x(k; �)� �n(k; �) (29)

With (27)=0 one can solve explicitly for parameters
�s(k; �), while parameters �s(k; �);W (�) may be com-
puted with a gradient descent rule.

C. Permutations and constraints

The above unconstrained gradients can not be used as
such but have to be constrained to remain in the subspace

5In short we write again �s(k; �) = �s(tk; �) and �s =
�s(t1 ; �); :::;�s(tK ; �) whenever possible. The same applies to
�n(t; �) and Rx(t; �)

of permissible solutions with W (�) = 0 for � > Q � T .
This is important since it is a necessary condition for equa-
tions (23) to hold to a good approximation.
Additionally, and this is a crucial point that may have

not been realized in previous literature, not all possible
permutations of frequencies will lead to FIR �lters which
satisfy that constrain. Note that any permutation of the co-
ordinates for every frequency will lead to exactly the same
error E(k; �). The total cost will therefore not change if
we choose a di�erent permutation of the solutions for every
frequency �. Obviously those solutions will not all satisfy
the condition on the length of the �lter. E�ectively, requir-
ing zero coe�cients for elements with � > Q will restrict
the solutions to be smooth in the frequency domain, e.g.,
if Q=T = 8 the resulting DFT corresponds to a convolved
version of the coe�cients with a sinc function 8 times wider
than the sampling rate.
It is therefore crucial to enforce that constraint by start-

ing the gradient algorithm with an initial point that sat-
is�es the constraints, and then following the constrained
gradient. The normalization condition that avoid trivial
solutions of the LS optimization have to be enforced si-
multaneously. The constrained gradients are obtained by
applying the corresponding projection operators. The pro-
jection operator that zeros the appropriate delays for every
channel Wij = [Wij(0); :::;Wij(�); :::;Wij(T )]

T is

P (2) = FZF�1 (30)

where the DFT is given by Fij = 1=
p
Te�i2�ij , and Z is

diagonal with Zii = 1 for i < Q and Zii = 0 for i � Q.
The projection operator that enforces unit gains on diag-
onal �lters Wii(�) = 1 is applied simply by setting the
diagonal terms of the gradients to zero. These projections
are orthogonal and can be applied independently of each
other. This stands in contrast to the normalization con-
straint outlined in section III-B. That projection operator
is not orthogonal to P (2) and care has to be taken to ap-
ply a proper projection that maps the gradient to the joint
subspace of P (1) and P (2). A simple, though admittedly
ine�cient, solution is to apply P (1) and P (2) successively
and repeatedly to the gradients until convergence. In our
simulations 3-5 iterations where su�cient. The so obtained
constrained gradient can be used in a gradient update of
the �lter parameters.

V. Experimental results

The main di�culty in assessing the quality of a separa-
tion from real recordings is that the true sources are not
available in general. And even if they were it would be
di�cult to relate the power of crosstalk given the scaling
ambiguity of the solutions. One is therefore limited to lis-
tening experiments or to a performance measure of some
subsequent processing such as automatic speech recogni-
tion.
The experiments performed this far are limited to hear-

ing test. We used two channels recordings in a typi-
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cal o�ce environment with ventilator noise in the back-
ground. We use approximately 10-15 sec of 16 bit record-
ings sampled at 8 KHz or 16 KHz. We applied parameters
T = 1024; Q = 128; N = 20 or T = 2048; Q = 256; N = 10
which leads to about K = 3:::6 windows depending on the
amount of data. We assumed constant noise powers, i.e.
�n(t; �) = �n(t

0; �). In general we �nd the separation to
work well at high signal to noise rations. In particular for
the recording provided by Lee [25] we get a signi�cantly
improved separation of the two speakers as compared to
the algorithms given in [25], [26] (see �gure 1). Both these
algorithms represent a multi-path equalization with some
implementation di�erences. As opposed to that the present
algorithm does not lead to whitened model sources, and no
post-processing is required.
When the number of sources is larger than the number

of microphones the algorithm fails as expected. The con-
founding additional sources can also just be background
noise. Therefore we observe that in noisy environments the
algorithms performs less favorably since the noise sources
do not represent independent sensor noise.
Currently we are working on evaluating the result on a

speech recognition task under the presence of a interfering
source.
The restriction to stereo recordings is purely technical

and not related to the algorithm and will be addressed
next.

VI. Conclusion

A large body of work has been done in the last two
decades on the problem of blind source separation. We
have concentrated on the rather general case of recovering
convolutive mixtures of wideband signals for less or equal
number of sources than sensors. Most of the concepts in
this work where borrowed from previous work. The main
contributions are: We explicitly use the property of non-
stationary and non-white signals. Careful considerations
of how to measure second order statistics in the frequency
domain allows us to obtain a constraint LS cost that is op-
timal at the desired solutions. The constraint on the �lter
size solves the permutation problem of wideband signals.
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