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Abstract

In the square linear blind source separation problem, one must �nd
a linear unmixing operator which can detangle the result xi(t) of
mixing n unknown independent sources si(t) through an unknown
n� n mixing matrix A(t) of causal linear �lters: xi =

P
j aij � sj .

We cast the problem as one of maximum likelihood density estima-
tion, and in that framework introduce an algorithm that searches
for independent components using both temporal and spatial cues.
We call the resulting algorithm \Contextual ICA," after the (Bell
and Sejnowski 1995) Infomax algorithm, which we show to be a
special case of cICA. Because cICA can make use of the temporal
structure of its input, it is able separate in a number of situations
where standard methods cannot, including sources with low kur-
tosis, colored Gaussian sources, and sources which have Gaussian
histograms.

1 The Blind Source Separation Problem

Consider a set of n indepent sources s1(t); : : : ; sn(t). We are given n linearly dis-
torted sensor reading which combine these sources, xi =

P
j aijsj , where aij is a

�lter between source j and sensor i, as shown in �gure 1a. This can be expressed
as

xi(t) =
X
j

1X
�=0

aji(�)sj (t� �) =
X
j

aji � sj
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Figure 1: The left diagram shows a generative model of data production for blind
source separation problem. The cICA algorithm �ts the reparametrized generative
model on the right to the data. Since (unless the mixing process is singular) both
diagrams give linear maps between the sources and the sensors, they are mathe-
matically equivalent. However, (a) makes the transformation from s to x explicit,
while (b) makes the transformation from x to y, the estimated sources, explicit.

or, in matrix notation, x(t) =
P
1

�=0A(�)s(t � �) = A � s: The square linear blind
source separation problem is to recover s from x. There is an inherent ambiguity
in this, for if we de�ne a new set of sources s0 by s0i = bi � si where bi(�) is some
invertable �lter, then the various s0i are independent, and constitute just as good a
solution to the problem as the true si, since xi =

P
j(aij � b

�1
j ) � s0j : Similarly the

sources could be arbitrarily permuted.

Surprisingly, up to permutation of the sources and linear �ltering of the individual
sources, the problem is well posed|assuming that the sources sj are not Gaussian.
The reason for this is that only with a correct separation are the recovered sources
truly statistically independent, and this fact serves as a su�cient constraint. Under
the assumptions we have made,1 and further assuming that the linear transforma-
tion A is invertible, we will speak of recovering yi(t) =

P
j wji � xj where these

yi are a �ltered and permuted version of the original unknown si. For clarity of
exposition, will often refer to \the" solution and refer to the yi as \the" recovered
sources, rather than refering to an point in the manifold of solutions and a set of
consistent recovered sources.

2 Maximum likelihood density estimation

Following Pham, Garrat, and Jutten (1992) and Belouchrani and Cardoso (1995),
we cast the BSS problem as one of maximum likelihood density estimation. In the
MLE framework, one begins with a probabilistic model of the data production pro-
cess. This probabilistic model is parametrized by a vector of modi�able parameters
w, and it therefore assigns a w-dependent probability density p(x0;x1; : : : ;w) to a
each possible dataset x0;x1; : : :. The task is then to �nd a w which maximizes this
probability.

There are a number of approaches to performing this maximization. Here we apply

1Without these assumptions, for instance in the presence of noise, even a linear mixing
process leads to an optimal unmixing process that is highly nonlinear.



the stochastic gradient method, in which a single stochastic sample x is chosen from
the dataset and �dlogp(x;w)=dw is used as a stochastic estimate of the gradient
of the negative likelihood

P
t�dlogp(x(t);w)=dw.

2.1 The likelihood of the data

The model of data production we consider is shown in �gure 1a. In that model, the
sensor readings x are an explicit linear function of the underlying sources s.

In this model of the data production, there are two stages. In the �rst stage, the
sources independently produce signals. These signals are time-dependent, and the
probability density of source i producing value sj(t) at time t is fj(sj(t)jsj(t �
1); sj(t� 2); : : :). Although this source model could be of almost any di�erentiable
form, we used a generalized autoregressive model described in appendix A. For
expository purposes, we can consider using a simple AR model, so we model sj(t) =
bj(1)sj(t� 1)+ bj(2)sj(t� 2)+ � � �+ bj(T )sj(t�T ) + rj , where rj is an iid random
variable, perhaps with a complicated density.

It is important to distinguish two di�erent, although related, linear �lters. When
the source models are simple AR models, there are two types of linear convolutions
being performed. The �rst is in the way each source produces its signal: as a linear
function of its recent history plus a white driving term, which could be expressed
as a moving average model, a convolution with a white driving term, sj = b0j � rj .
The second is in the way the sources are mixed: linear functions of the output of
each source are added, xi =

P
j aji � sj =

P
j(aji � b

0

j) � rj . Thus, with AR sources,
the source convolution could be folded into the convolutions of the linear mixing
process.

If we were to estimate values for the free parameters of this model, i.e. to estimate
the �lters, then the task of recovering the estimated sources from the sensor output
would require inverting the linear A = (aij), as well as some technique to guarantee
its non-singularity. Such a model is shown in �gure 1a. Instead, we parameterize
the model by W = A�1, an estimated unmixing matrix, as shown in �gure 1b.
In this indirect representation, s is an explicit linear function of x, and therefore
x is only an implicit linear function of s. This parameterization of the model is
equally convenient for assigning probabilities to samples x, and is therefore suitable
for MLE. Its advantage is that because the transformation from sensors to sources
is estimated explicitly, the sources can be recovered directly from the data and the
estimated model, without invertion. Note that in this inverse parameterization, the
estimated mixture process is stored in inverse form. The source-speci�c models fi
are kept in forward form. Each source-speci�c model i has a vector of parameters,
which we denote w(i).

We are now in a position to calculate the likelihood of the data. For simplicity we use
a matrix W of real numbers rather than FIR �lters. Generalizing this derivation to
a matrix of �lters is straightforward, following the same techniques used by Lambert
(1996), Torkkola (1996), A. Bell (1997), but space precludes a derivation here.

The individual generative source models give

p(y(t)jy(t � 1);y(t� 2); : : :) =
Y
i

fi(yi(t)jyi(t� 1); yi(t� 2); : : :) (1)



where the probability densities fi are each parameterized by vectors w(i). Using
these equations, we would like to express the likelihood of x(t) in closed form,
given the history x(t � 1);x(t � 2); : : :. Since the history is known, we therefore
also know the history of the recovered sources, y(t � 1);y(t � 2); : : :. This means
that we can calculate the density p(y(t)jy(t � 1); : : :). Using this, we can express

the density of x(t) and expand bG = log p̂(x;w) = log jWj +
P

j log fj(yj(t)jyj(t �

1); yj(t � 2); : : : ;w(j)) There are two sorts of parameters which we must take the
derivative with respect to: the matrix W and the source parameters w(j). The
source parameters do not inuence our recovered sources, and therefore have a
simple form

d bG
dwj

= �
dfj(yj ;wj)=dwj

fj(yj ;wj)

However, a change to the matrix W changes y, which introduces a few extra terms.
Note that d log jW j=dW = W�T , the transpose inverse. Next, since y = Wx, we
see that dyj=dW = (0jxj0)T , a matrix of zeros except for the vector x in row j.
Now we note that dfj(�)=dW term has two logical components: the �rst from the
e�ect of changingW upon yj(t), and the second from the e�ect of changingW upon
yj(t� 1); yj(t� 2); : : :. (This second is called the \recurrent term", and such terms
are frequently dropped for convenience. As shown in �gure 3, dropping this term
here is not a reasonable approximation.)

dfj(yj(t)jyj(t� 1); : : : ;wj)

dW
=

@fj
@yj(t)

dyj(t)

dW
+
X
�

@fj
@yj(t� �)

dyj(t� �)

dW

Note that the expression
dyj(t��)

dW
is the only matrix, and it is zero except for the

jth row, which is x(t� �). The expression @fj=@yj(t) we shall denote f
0

j(�), and the

expression @fj@yj(t� �) we shall denote f (�)(�). We then have

d bG
dW

= �W�T �

�
f 0j(�)

fj(�)

�
j

x(t)T �

1X
�=1

 
f
(�)
j (�)

fj(�)

!
j

x(t� �)T (2)

where (expr(j))j denotes the column vector whose elements are expr(1); : : : ; expr(n).

2.2 The natural gradient

Following Amari, Cichocki, and Yang (1996), we follow a pseudogradient. Instead of
using equation 2, we post-multiply this quantity by W TW . Since this is a positive-
de�nite matrix, it does not a�ect the stochastic gradient convergence criteria, and
the resulting quantity simpli�es in a fashion that neatly eliminates the costly matrix
inversion otherwise required. Convergence is also accelerated.

3 Experiments

We conducted a number of experiments to test the e�cacy of the cICA algorithm.
The �rst, shown in �gure 2, was a toy problem involving a set of processed de-
liberately constructed to be di�cult for conventional source separation algorithms.
In the second experiment, shown in �gure 3, ten real sources were digitally mixed
with an instantaneous matrix and separation performance was measured as a funci-
ton of varying model complexity parameters. These sources have are available for
benchmarking purposes in http://www.cs.unm.edu/~bap/demos.html.
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Figure 2: cICA using a history of one time step and a mixture of �ve logistic densities
for each source was applied to 5,000 samples of a mixture of two one-dimensional
uniform distributions each �ltered by convolution with a decaying exponential of
time constant of 99.5. Shown is a scatterplot of the data input to the algorithm,
along with the true source axes (left), the estimated residual probability density
(center), and a scatterplot of the residuals of the data transformed into the estimated
source space coordinates (right). The product of the true mixing matrix and the
estimated unmixing matrix deviates from a scaling and permutation matrix by
about 3%.
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Figure 3: The performance of cICA as a function of model complexity and gradient
accuracy. In all simulations, ten �ve-second clips taken digitally from ten audio CD
were digitally mixed through a random ten-by-ten instantanious mixing matrix. The
signal to noise ratio of each original source as expressed in the recovered sources is
plotted. In (a) and (b), AR source models with a logistic noise term were used, and
the number of taps of the AR model was varied. (This reduces to Bell-Sejnowski
infomax when the number of taps is zero.) Is (a), the recurrent term of the gradient
was left out, while in (b) the recurrent term was included. Clearly the recurrent
term is important. In (c), a degenerate AR model with zero taps was used, but the
noise term was a mixture of logistics, and the number of logistics was varied.

4 Discussion

The Infomax algorithm (Baram and Roth 1994) used for source separation (Bell and
Sejnowski 1995) is a special case of the above algorithm in which (a) the mixing is
not convolutional, so W (1) = W (2) = : : : = 0, and (b) the sources are assumed to
be iid, and therefore the distributions fi(y(t)) are not history sensitive. Further,
the form of the fi is restricted to a very special distribution: the logistic density,



the derivative of the sigmoidal function 1=(1+ exp��). Although ICA has enjoyed
a variety of applications (Makeig et al. 1996; Bell and Sejnowski 1996b; Baram and
Roth 1995; Bell and Sejnowski 1996a), there are a number of sources which it cannot
separate. These include all sources with Gaussian histograms (e.g. colored gaussian
sources, or even speech to run through the right sort of slight nonlinearity), and
sources with low kurtosis. As shown in the experiments above, these are of more
than theoretical interest.

If we simplify our model to use ordinary AR models for the sources, with gaussian
noise terms of �xed variance, it is possible to derive a closed-form expression for
W (Hagai Attias, personal communication). It may be that for many sources of
practical interest, trading away this model accuracy for speed will be fruitful.

4.1 Weakened assumptions

It seems clear that, in general, separating when there are fewer microphones than
sources requires a strong bayesian prior, and even given perfect knowledge of the
mixture process and perfect source models, inverting the mixing process will be
computationally burdensome. However, when there are more microphones than
sources, there is an opportunity to improve the performance of the system in the
presence of noise. This seems straightforward to integrate into our framework.
Similarly, fast-timescale microphone nonlinearities are easily incorporated into this
maximum likelihood approach.

The structure of this problem would seem to lend itself to EM. Certainly the individ-
ual source models can be easily optimized using EM, assuming that they themselves
are of suitable form.

References

A. Bell, T.-W. L. (1997). Blind separation of delayed and convolved sources. In
Advances in Neural Information Processing Systems 9. MIT Press. In this
volume.

Amari, S., Cichocki, A., and Yang, H. H. (1996). A new learning algorithm for blind
signal separation. In Advances in Neural Information Processing Systems 8.
MIT Press.

Baram, Y. and Roth, Z. (1994). Density Shaping by Neural Networks with Ap-
plication to Classi�cation, Estimation and Forecasting. Tech. rep. CIS-94-
20, Center for Intelligent Systems, Technion, Israel Institute for Technology,
Haifa.

Baram, Y. and Roth, Z. (1995). Forecasting by Density Shaping Using Neural
Networks. In Computational Intelligence for Financial Engineering New York
City. IEEE Press.

Bell, A. J. and Sejnowski, T. J. (1995). An Information-Maximization Approach
to Blind Separation and Blind Deconvolution. Neural Computation, 7 (6),
1129{1159.

Bell, A. J. and Sejnowski, T. J. (1996a). The Independent Components of Natural
Scenes. Vision Research. Submitted.



Bell, A. J. and Sejnowski, T. J. (1996b). Learning the higher-order structure of a
natural sound. Network: Computation in Neural Systems. In press.

Belouchrani, A. and Cardoso, J.-F. (1995). Maximum likelihood source separation
by the expectation-maximization technique: Deterministic and stochastic im-
plementation. In Proceedings of 1995 International Symposium on Non-Linear

Theory and Applications, pp. 49{53 Las Vegas, NV. In press.

Lambert, R. H. (1996). Multichannel Blind Deconvolution: FIR Matrix Algebra and

Separation of Multipath Mixtures. Ph.D. thesis, USC.

Makeig, S., Anllo-Vento, L., Jung, T.-P., Bell, A. J., Sejnowski, T. J., and Hillyard,
S. A. (1996). Independent component analysis of event-related potentials
during selective attention. Society for Neuroscience Abstracts, 22.

Pearlmutter, B. A. and Parra, L. C. (1996). A Context-Sensitive Generaliza-
tion of ICA. In International Conference on Neural Information Processing

Hong Kong. Springer-Verlag. Url ftp://ftp.cnl.salk.edu/pub/bap/iconip-96-
cica.ps.gz.

Pham, D., Garrat, P., and Jutten, C. (1992). Separation of a mixture of indepen-
dent sources through a maximum likelihood approach. In European Signal

Processing Conference, pp. 771{774.

Torkkola, K. (1996). Blind separation of convolved sources based on information
maximization. In Neural Networks for Signal Processing VI Kyoto, Japan.
IEEE Press. In press.

A Fixed mixture AR models

The fj(uj ;wj) we used were a mixture AR processes driven by logistic noise terms,
as in Pearlmutter and Parra (1996). Each source model was

fj(uj(t)juj(t� 1); uj(t� 2); : : : ;wj) =
X
k

mjk h((uj(t)� �ujk)=�jk)=�jk (3)

where �jk is a scale parameter for logistic density k of source j and is an element
of wj , and the mixing coe�cients mjk are elements of wj and are constrained byP

kmjk = 1. The component means �ujk are taken to be linear functions of the
recent values of that source,

�ujk =
X
�=1

ajk(�) uj(t� �) + bjk (4)

where the linear prediction coe�cients ajk(�) and bias bjk are elements of wj .
The derivatives of these are straightforward; see Pearlmutter and Parra (1996) for
details. One complication is to note that, after each weight update, the mixing
coe�cients must be normalized, mjk  mjk=

P
k0 mjk0 :


