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Abstract 

The maximization of the Mutual Information between the stochastic outputs 
neurons and the clamped inputs is used as unsupervised criterion for training a 
Boltzmann Machine. The resulting learning rule contains two terms com- 
sponding to the Hebbian and anti-Hebbian learning, The two terms are 
weighted by the amount of transmitted information in the learning synapse, 
giving an information-theoretic interpretation to the proportionality constant 
given in the biological rule of Hebb.The anti-Hebbian term causes the conver- 
gence of weights. Simulation for the encoder problem demonstrates optimal 
performance of this method. 

1.0 Introduction 
Boltzmann Machines [l] are a class of stochastic neural networks which applied the principles 
of statistical mechanics to implement a kind of recurrent network witlh symmetrical connec- 
tions which is capable to learn in a supervised fashion a given probabillity distribution. Boltz- 
mann Machines can be seen as a generalization of the Hopfield networks by including hidden 
units. The learning algorithm derived for these stochastic networks rehtes in an efficient way 
the Boltzmann distributions with information theory for supervised training. On the other 
hand, Linsker [2-41 applied a well known concept from the information theory. He has pro- 
posed an optimization principle, called infomax, according to which synaptic weights develop 
in such a way that the mutual information between input and cutput layers of a cortical net- 
work is maximized under constrained boundary conditions. It has been proved that statisti- 
cally salient input features can be optimally extracted from a noisy input by maximizing the 
mutual information. Some algorithms were developed for maximizing mutual information by 
using probabilistic linear neurons [4] or non-linear neurons in a probabilistic winner-take-all- 
network [3]. In the linear case the infomax principle is related to the: Principal Component 
Analysis which is recovered when deterministic networks are used (nckse of the output equal 
zero) and the covariance of the input noise is a diagonal matrix. 'The aim of the present work is 
to define for the Boltzmann Machine an unsupervised learning paradigm based on the maxi- 
mization of the mutual information. In this way we extend the infomax principle for probabi- 
listic non-linear neurons and for networks which include hidden neurons and recurrences. The 
learning algorithm yields an interesting weighted combination of Hebbian and anti-Hebbian 
rule. The weighted coefficients can be interpreted by the infomax principle. The algorithm is 
tested by using the encoder problem and optimal data compression is obtained by using the 
proposed algorithm. 
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2.0 Theoretical Formulation 
Let as define a neural network composed by stochastic binary units Si, taking output value 
Si = 1 with probability p and value Si = -1 with probability 1 - p .  The probability p is 
given by, 

Stochastic Units defined in this way describe the effect of thermal fluctuations in a system of 
Ising spins and is known as Glauber dynamic. The parameter z in equation 2.1 is related with 
the inverse of the temperature. If the connections wij between the neurons are symmetric, than 
an energy function can be defined and the Boltzmann-Gibbs distribution from the statistical 
mechanics gives the probability of finding the system in a determined state { S} . Let us label 
the states of the input units by y, of the output units by a and of the hidden units by P.Then 
the Boltzmann-Gibbs distribution of the states of the hidden and output neurons states for a 
fixed input pattern y can be written as, 

where ZY is the partition function and Hap/’the energy function given by, 

The unsupervised learning that we introduce in this paper for a stochastic network described 
by equation 2.2 consists in maximizing the transfer of information from the input neurons to 
the output neuron. That means that a message y coded in the input layer should be transmitted 
through the stochastic neurons so that the code given by the averaged thermal value of the out- 
put neurons contains the most information included in the original message y. A measure of 
the transmitted information is given by the “Mutual Information” [SI that in our case can be 
written as, 

(2.4) 

where P is the probability distribution of the input patterns and Pa,y is the probability distri- 
bution ofthe possible configurations of the output neurons given that pattern y is presented at 
the input (Conditional probability), In order to maximize the mutual information we perform 
gradient ascendent corrections on the weights. This yields following learning rule, 

where q is a learning constant. The derivative in equation 2.5 can be calculated after some 
algebra, 
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Using equation 2.3 we obtain, 

Introducing the symbol ( x )  for the average value of x ,  then we can write the learning rule 
combining equation 2.5-2.7 as, 

The interpretation of the obtained unsupervised learning rule is j,nteresting. A Hebbian k m  is 
given by the S ~ e / y S ~ b ~ y i n  equation 2.8 and is the actual correlation between the neurons in 

I-lebbian term given by the averaged comlation between the neurons.These terms are the 
weighted sum over all possible states, where the weighting factor is a measure for the informa- 
tion transmitted from neuron to neuron in each possible state 

the state ap given that y is presented at the input. The second term -(,Si pb’y SJ 9’7) is an anti- 
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3.Q Results and Simulations 
In order to see the convergence of the learning we simulate first the leaning evolutiun for one 
neuron with one input. The two possible inputs 1 and - 1 were presented with equal probability. 
The results for this very simple experiment are shown in figwre 1. Tlhe maximization of the 
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mutual information (mi) until the maximal value (log 2) is observed. The Hebbian (h)and anti- 
Hebbian (a) terms are also plotted. Both terms increase so that they mutually cancel out when 
the number of epochs increases, so that this effect cause the convergence of the weight (w). 
The next test of our learning paradigm was performed by using the “encoder problem”, which 
is the same problem solved by the supervised Boltzmann machine in Ackley et al. [ 11. The 
input patterns for the encoder N-n consisting of N different patterns with N inputs where only 
one has the value 1 and the other the value -1. We assume the distribution of the patterns uni- 
form ( P, = N-’ ). In all cases we have used T = 0.1 and q = 0.01, Three cases were stud- 
ied: Encoder 4-2, 5-3 and 40-6. We didn’t use hidden units. Figure 2 shows the evolution of 
the mutual information until the maximal values log(4) and log(5) axe reached for the encoder 
problem 4-2 and 5-3 respectively. Is interesting to remark that for the three cases (4-2,5-3 and 
40-6) perfect binary data compression were obtained after training , that means for each dif- 
ferent input pattern a different code with probability one is obtained.When redundant number 
of neurons are used the mutual information try to decomlate the neurons so that distributed 
coding is obtained. This effect is also shown by Ackley et al [ 13 for the supervised Boltzmann 
machine. 
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