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Abstract: 
We define a new network structure to realize a continuous version of the 
Boltzmann Machine (BM). Based on Mean Field (MF) theory for 
continuous and multidimensional elements named Rotors, introduced by 
GisUn and Peterson we derive the corresponding MF learning algorithm. 
Siniulations demonstrate the learning capability of this network for 
conitinuous mappings. 

1 Introduction 

The classical BM is a well known approach to stochastic neural networks [l]. It has been 
designed to generalize the original recurrent Hopfield model to a system with hidden units, 
which can build an intemal representation of the desired mapping task. It has been used 
mainly for pattern completion, encoding problems etc. The classic BM suffers from two 
basic disadvantages. First it is only able to carry out binary mappings because the model is 
based on binary spin states; second the learning process is very time-consuming because 
each single recall requires a complete annealing process. The second disadvantage is 
reduced by the MF theory, were the stochastic annealing process is approximated by a fast 
deterministic algorithm [2], For the remaining continuity problem we present a solution 
using a generalization of the Spin MF theory to continuous multidimensional elements, 
which are commonly called Rotors [3]. 

2 Model description 

The proposed BM consists of stochastic multidimensional real valued unit vectors 
Si E Rd;lSiI = 1 ;i = 1 ... n. They can be understood as Rotors which were introduced by 
GislCn and Peterson in a very general manner [3]. They considered the task of minimizing 
an energy function E (SI .. .Sn) using MF equations in an annealing process. They intro- 
duced new mean field variables Ui and Vi not constrained to unity and a temperature T. In 
the zero temperature limit the variables Vi can be understood as the thermal average of the 
Rotor states, V i  = (Si). We allow for two neuron interaction independent in each direc- 
tion and define therefore the following energy function, 
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In the first notation the indexes i ,  j = 1,. ,n enumerate the Rotors, and the indexes 
k, I = 1.. .d denote the different dimensions. In this case the cited MF equations read, 

1 ui = - -cwij  * vi 
T j  

F is a kind of sigmoidal function and is defined by using the modified Bessel functions &, 

(2.3) 

The iterative update of equation (2.2) defines the dynamics of the system. In one dimen- 
sion these equations reduces to the original MF equations of the discrete BM [2]. To guar- 
antee convergence of the dynamics we demand the usual symmetry conditions in i , j  and 
simultaneously in k, I, i.e. W&jl=Wjm. The equations (2.2) describes fixed-points of the 
energy function (2.1). The system relax towards these fixed-points while one gradually 
decrease the temperature. We proved convergence of this dynamics in the case of 
21 IW I / T  e 1 .We also showed that there exists a Liapunov function for the corresponding 
continuous time partial differential equation analogous to the one presented by Hopfield 
[41. 

3 Learning rule 

As usual the units are divided into visible and hidden units. The hidden units have no con- 
nection to the outside world. The visible units sometimes can be separated further into 
input and output units. During a free phase the system relaxes according to (2.2)-(2.3) with 
inputs kept at fixed values. In a clamped phase the output units are fixed as well. The 
learning rule is a gradient descent minimizing the relative entropy H, In contrast to the 
binary state space in the original BM in the derivation one has to consider a continuous 
space, hence the traces change as, 

n 

This leads to the following gradient expression, 

where the brackets denote the thermal mean and the bar denotes the average over the train- 
ing patterns. With the same approximation as in [2], 

($is,) IJ ( S i )  (Sj)  (3.3) 

we can write the MF learning rule as, 
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4 Simiilations 

The first aim of the simulation was to prove the practicability of the proposed BM. In 
some preliminary experiments we confirmed that the MF equations (2.2) converge for 
every temperature in a few updates cycles, even with connections which are not symmet- 
ric in k, I ,  We use the same annealing process as in the original MF learning. At high tem- 
perature the Rotor values move around the origin of their state space. By decreasing the 
temperature the norm of the Rotors increases until some freezing temperature is reached 
were lVil = 1 and the values stay fixed. We observed in the experiments that the freezing 
temperature is correlated with the connection strengths (11 WII /T is of order one). 
This gives some guideline to select the temperature schedule. & z n g  near above the 
freezing temperature one decrease it slowly. In our experiments we start at temperature 1.0 
and decrelase it with factor 0.85 until we reach 0.001. To implement a continuous mapping 
we have to use at least two dimensions. Because of the normalization condition we need 
(d+l)-dimensional units to code d-dimensional signals. In the first preliminary experi- 
ments we used two-dimensional units. To verify the learning algorithm we tested as a dis- 
crete map,ping the XOR problem. With similar parameters we got the same result as in the 
original work of Peterson [2]. We also checked the capacity of learning simple continuous 
mapping like the one-dimensional sinus function (see FIGURE 1). This is the principal 
result of these paper. The net was trained with 20 sample points it and solved the task 
nearly perfect (0.9% error). 
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FIGURE: 1 : Continuous BM with 10 two-dimensional units: 8 hidden, one input and one output 
unit. Right: X and Y denote one dimension of the input and output unit respectively. 
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We were expecting from the system to find the proper energy landscape, where the attrac- 
tion points are continuously connected. On the contrary, we observe a tendency to perform 
discontinuous mappings. The location of the discontinuities is very sensitive with respect 
to the connection strengths. This explains the strong peaks of the learning process in FIG- 
URE 2. In order to compensate these peaks we used the learning constant schedule sug- 
gested by Silva and Almeida [5]. All in all this kind of recurrent net has the ability to 
perform both continuous and discontinuous mapping. For this we expect good perfor- 
mance especially in piecewise continuous mapping. 

error 
Learn Prome 
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FIGURE 2 : Learning process with 20 sample points o the sin-function. 
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