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ABSTRACT 
We formulate a model for probability distributions on im- 
age spaces. We show that any distribution of images can 
be factored exactly into conditional distributions of feature 
vectors at one resolution (pyramid level) conditioned on the 
image information at lower resolutions. We would like to 
factor this over positions in the pyramid levels to make it 
tractable, but such factoring may miss long-range depen- 
dencies. To capture long-range dependencies, we introduce 
hidden class labels at each pixel in the pyramid. The result 
is a hierarchical mixture of conditional probabilities, similar 
to a hidden Markov model on a tree. The model parameters 
can be found with maximum likelihood estimation using the 
EM algorithm. We have obtained encouraging preliminary 
results on the problems of detecting various objects in SAR 
images and target recognition in optical aerial images. 

1. INTRODUCTION 

Many approaches to object recognition in images estimate 
Pr(C I I ) ,  the probability that an object of class C is present 
in an image I .  By contrast, a model of the probability dis- 
tribution of images, P r ( I  I c), has many attractive features. 
We could use this for object recognition in the usual way by 
training a distribution for each object class and using Bayes’ 
rule to get P r ( C  I I), or by using the likelihood ratio be- 
tween Pr(I1 C) and P r ( I  I C). Clearly there are many other 
uses for image distributions, since any kind of data analysis 
task can be approached using knowledge of the distribution 
of the data. For classification we could attempt to detect 
unusual examples and reject them, rather than trusting the 
classifier’s output. We could also compress, segment, in- 
terpolate, suppress noise, extend resolution, fuse multiple 
images, etc. 

Many image analysis algorithms use probability con- 
cepts, but few treat the distribution of images, e.g., maxi- 
mum entropy modeling [I]. There are several approaches 
that do not model the probability distribution on an image 
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space, but motivated our work, e.g., MRF models [2, 31, the 
flexible histogram approach [4,5], and multjscale stochastic 
processes [6]. All of these methods seem to be well-suited 
for modeling texture, but it is unclear how we might use 
them to capture the appearance of more structured objects. 

As in many other approaches, we model the distribu- 
tion of local image structure by using some local features, 
namely the outputs of some filters, and capture longer-range 
(either in scale or position) dependencies by modeling the 
influence of neighboring structures on each other. However, 
we argue that the presence of objects in images can make 
local conditioning like this inadequate. We capture these 
long-range dependencies by using hidden variables. The de- 
pendencies between the hidden variables in our model are 
local, like those in some MRF models, but marginalizing 
over them introduces long-range dependencies. We expect 
that such hidden variables would give poor models of ob- 
ject structure if they were only implemented at one pyramid 
level. Therefore we introduce them at all levels in a pyra- 
mid, and give them coarse to fine dependence. 

2. THE HIP MODEL 

To show that such a model can be a proper distribution on 
an image space, we show that any distribution on an image 
space can be factored into a coarse to fine hierarchy of con- 
ditional distributions. From an image I we build a Gaussian 
pyramid. Call the Z-th level 11. e.g., the original image is 
IO. From each Gaussian level It we extract some set of fea- 
ture images FI (Figure 1). Sub-sample these to get feature 
images GI, so that the images in GI have the same dimen- 
sions as I I + ~ .  Denote the set of images {&+I, GI} by GI,  
and the mapping from 11 to G l  by G I .  If GI is invertible for 
all 2 E (0 , .  . . , L - 1) it is easy to show that 

1 L-1 

Pr(I)  = [ n 1Gl1 P ~ ( G I  I &+I) W I L )  ( 1 )  
c=o 

In order to factor Pr(G1 I Il+1) over positions, we intro- 
duce hidden variables. There is enormous freedom in this 
choice, although different choices can be easier or harder 
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Pyramid Pyramid 

Fig. 1. Pyramids and feature notation. 

to work with. One simple but non-trivial choice is to intro- 
duce an image Al of integers at each level 1. We assume 
that these contain enough information to allow us to factor 
Pr(G1 I Il+1). Furthermore we assume that the local hidden 
variable al (z) and the local lower-resolution feature vector 
fi+l (z) carry all of the information in Il+1 that is relevant 
to the local feature vector gl(z). This gives 

P r ( 0  0; fi n [ P r k  I fi+1,az,z) 
Ao, ..., AL-1 Z=O zEIi+i 

x Pr(al I al+l, 4 , (2) 

where al+l(z) is the hidden variable at the parent of z in 
the tree structure given by the sub-sampling operation. (To 
avoid repeating the string "(z)", we specify the location z 
as a conditioning variable in each Pro.)  

3. TRAINING WITH EM 

This model can be fit to data using an Expectation-Maxi- 
mization (EM) algorithm. The E-step is the sum over hid- 
den variables, which is tractable thanks to the tree struc- 
ture of their dependencies. We choose Pr(gl I fi+l, ai) to 
be normal with a mean that depends linearly on fl+l, i.e., 
Pr(gl I fi+i, ai) = N(Mal fi+l + gal, A,, ). This makes the 
M-step tractable, and is rich enough to reproduce the non- 
Gaussian distribution of neighboring features on each other 
(see [7]). To enforce normalization we parameterize the la- 
bel probabilities as Pr(al I ul+l) = ra, ,a,+l/  c,, ral ,a i+ l .  

We denote by e = { g a , ,  Mal, Aa, , Tar ,a,+l, Val, VZ} the vec- 
tor of all parameters. For brevity we simply reproduce the 
relevant formulas without derivations. 

To compute the expectations in the EM algorithm we 
need the joint probabilities of the image and individual la- 
bels at a position and pyramid level. These are given as 

Pr(al, 2, I I @) = ul(al, z)&(al+l , x) Pr(allal+l) 
(3) 

P r ( ~ , z , l I @ ~ )  = w(al,z)di(ai,z), (4) 

where Bt is the parameter vector from the t-th EM iteration. 
The quantities U and d are obtained through the upward and 
downward recursion relations 

Here Ch (z) is the set of pixel locations in some level I that 
are children of pixel z in level Z + 1 in a tree relationship of 
pixels in the pyramid. Similarly, Par(z) is the parent pixel 
of 2. 

The upward recursion relations (5 - 6) is initialized at 
I = 0 with uo(ao, z) = Pr(g  1 f1, ao, z) and ends at Z = L. 
At layer L (6) reduces to i i ~ ( a ~ + l , z )  = G ~ ( z ) . l  Since 
we do not model any further dependencies beyond layer L,  
the pixels at layer L are assumed independent. The prod- 
uct of all 21~(z) coincides with the total image probability, 
P r ( I p t )  = nzEIL 'lLL(z) = U L + ~ .  The downward recur- 
sion (7 - 8) can be executed, starting with equation (8) at 
I = L wi thdL+~(aL+~ ,z )  = d ~ + l ( z )  = 1. 

For the update equations, let us denote the average over 
position at level Z weighted by Pr(al, z I I ,  0') by (.)t,a,, 

I.e., 

1 

Then the update equations for the Gaussian parameters are 

~ ~ l t . '  = ((glfC1)t,a, - (g l ) t ,ar  (fC1)t,af) 

and 

'The (non-existent) label a ~ + l  can be thought of as a label with a 
single possible value, which is always set. The conditional Pr(aL 1 a ~ + i )  
turns then into a prior Pr(aj-,) 
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Fig. 2. Examples of positive (left) and negative (right) ROIs 
for the aircraft detection problem. Data from the MassGIS 
athttp://ortho.mit.edu/nsdi/. 
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Fig. 3. A, values from a jack-knife study of detection per- 
formance of HIP and HPNN (hybrid pyramidheural net- 
work) models. 

Fig. 4. SAR images of three vehicle classes. Data from the 
MSTAR public data set. 

plus seven other vehicle classes. There were 1,838 image 
from these seven other classes, 391 BMP2 test images, 196 
BTR70 test images, and 386 T72 test images. The resulting 
ROC curves are shown in Figure 5a. 

A second discrimination criterion that uses a distribution 
is the likelihood ratio, log P r (1  I C,) - log P r (1  I CZ). Here 
we cannot use the extra seven vehicle classes. The result- 
ing ROC curves are shown in Figure 5b. The performance 
is comparable to that of the flexible histogram approach of 
De Bonet et al. 

. 

5. CONCLUSION 
4. EXPERIMENTS 

We have applied this HIP model to two problems. The first 
was to detect aircraft in aerial photographs. The HIP model 
performed substantially better than our own hybrid pyramid 
neural network (HPNN) algorithm [8]. (See Figures 2 and 
3.) (For a better comparison we would select features inde- 
pendently for the HIP and HPNN models. The HPNN gave 
A, = 0.86 with a different set of features.) 

For vehicle discrimination in SAR, we performed an ex- 
periment with the three target classes in the MSTAR pub- 
lic targets data set, to compare with the results of the flex- 
ible histogram approach of De Bonet, et al [5 ] .  We trained 
three HIP models, one for each of the target vehicles BMP- 
2, BTR-70 and T-72 (Figure 4). As in [5]  we trained each 
model on ten images of its class, one image for each of ten 
aspect angles, spaced approximately 36" apart. We trained 
one model for all ten images of a target, whereas De Bonet 
et a1 trained one model per image. 

We first discriminated between vehicles of one class and 
other objects by thresholding log Pr(1 I C), i.e., no model of 
other objects is used. For the tests, the other objects were 
taken from the test data for the two other vehicle classes, 

We have presented a hierarchical image probability (HIP) 
model for probability distributions of images, and demon- 
strated its utility in a pair of object recognition tasks. The 
model uses hidden class labels to capture long-range de- 
pendencies. A distribution model has many potential uses 
besides recognition, including compression, noise suppres- 
sion, novelty detection, segmentation, etc. 

The HIP model has two key elements. First is the re- 
striction that the features be invertible to make the model 
a proper probability distribution on the image space. It ap- 
pears to be possible to relax these restrictions in some cases. 
Second is the use of hidden variables, since these are needed 
to express long-range dependencies in the model. Our cur- 
rent hidden variable structure was chosen for tractability, 
since we can explicitly marginalize the hidden variables in 
this structure. Generalizations like choosing a connectivity 
denser than a tree, or including continuous hidden variables 
could have benefits, but we would need approximations to 
evaluate the probabilities. There is much room for further 
work along these lines. 

We are also working on sampling from HIP models, i.e., 
generating random images. This capability provides an in- 
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BMP-2 vs T-72: Az = 0.79 
BMP-2 vs BTR-70: Az r 0.82 
T-72 vs BTR-70: Az = 0.89 
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Fig. 5. ROC curves for vehicle detection in SAR imagery. 
(Upper: ROC curves by thresholding HIP likelihood of de- 
sired class. Lower: ROC curves for inter-class discrimina- 
tion using ratios of likelihoods as given by HIP models. ~ 

dependent means of evaluating the model that is not avail- 
able with neural network models of Pr(C I I). 
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