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Abstract

The purpose of this chapter is to review efficient methods for con-
volutive blind source separation (BSS) and their combination with ge-
ometric beamforming. Ambiguities inherent to convolutive blind sep-
aration can be resolved by introducing geometric constraints similar
to those used in adaptive beamforming, resulting in more robust al-
gorithms. We concentrate here on a criteria of cross-power spectral
minimization, which is sufficient for separation of convolutive mixtures
of non-stationary signals. A class of algorithms is presented that mini-
mizes cross-power while linearly constraining the filter structure. Two
of these algorithms, which we have termed Geometric Source Separa-
tion and the Generalized Sidelobe Decorrelator, will be presented in
detail and validated on real room recordings.

1 Introduction

Microphones in an acoustic environment typically capture a mixture of sev-
eral sources. The goal of convolutive blind source separation (BSS) is to
filter the signals from a microphones array to extract the original sources
while reducing interfering signals. Due to the spatial variability of a room
response, different microphones receive different convolved versions of each
source. Separation therefore also requires a convolutive filtering of the sen-
sor signals, effectively resulting for each source in a spatially selective filter
or 'beam’. As opposed to conventional geometric or adaptive beamform-
ing, in BSS no assumptions on array geometry or source location are made.
Instead, it is only assumed that the desired sources are statistically inde-
pendent. Convolutive blind source separation can therefore be understood
as multiple adaptive beamformers that generate statistically independent
outputs, or more simply, outputs with minimal cross-talk.
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Considerable progress has been made in formulating sufficient conditions
on the source signals and deriving corresponding optimization criteria. Stric-
t independence criteria involve higher order statistics (HOS) of the signals.
Unfortunately, HOS are difficult to estimate and lead to complex and com-
putationally demanding algorithms. An alternative to HOS is to constrain
the cross-talk minimization to a second-order criteria and instead exploit
the non-stationarity of the signals [1, 2]. Estimating second-order statistics
is numerically more robust and the criteria lead to simpler algorithms. Most
results reported in the literature on real room recordings are based on sec-
ond order methods while higher-order separation algorithms are often only
demonstrated on simulated data.

Aside from this, the independence criteria itself has a number of am-
biguities: (1) the recovered sources are only determined up to an arbitrary
convolution, (2) more microphones than sources results in under-constrained
filter coefficients, and (3) frequency bins may not be assigned consistently
to the correct channels. We propose to reduce the inherent ambiguities
of convolutive BSS by introducing geometric constraints similar to those
used in the Linearly Constraint Minimum Variance (LCMV) algorithm and
Generalized Sidelobe Canceler (GSC) [3]. We have termed the resulting al-
gorithms Geometric Source Separation (GSS) [4] and the Generalized Side-
lobe Decorrelator (GSD) [5], respectively. Efficient frequency domain on-line
and off-line implementations will be outlined. Results on noise reduction for
speech recognition in different real room environments and applications will
be given.

2 Convolutive blind source separation

Consider M uncorrelated sources, s(t) € RM, originating from different s-
patial locations and N > M sensors detecting signals x(¢) € RY. In a
multi-path environment each source j couples with sensor ¢ through a lin-
ear transfer function A;;(7), such that z;(t) = Z;‘il Ef:_()l Aij(T)s;(t — ).
Using matrix notation and denoting the convolutions by * we can write
this briefly as x(t) = A(t) * s(¢), or after applying the discrete-time Fourier
transform (DTFT),

x(w) = A(w)s(w). (1)

The task of convolutive source separation is to find filters W;;(7) that in-
vert the effect of the convolutive mixing A(7). One generates model sources
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y(w)
y(w) = W(w)x(w) (2)

that correspond to the original sources s(¢). Although any linear system is
compatible with (2), we restrict ourselves to finite impulse response (FIR)
filters since this allows the algorithms to be efficiently implemented in the
frequency domain.

2.1 Higher order methods vs. second order non-stationarity

Different criteria for convolutive separation have been proposed [1, 6, 7,
8, 9, 10, 2]. All criteria can be derived from the assumption of statistical
independence of the unknown signals. However, typically only pairwise in-
dependence of the model sources is used. Pairwise independence implies
that all cross-moments factor, yielding a set of necessary conditions for the
model sources

Vinm,ri#j: Ely)yf'¢+1)] =EO)E [y t+1)] . (3)

E[.] represents the ensemble average and will in practice be replaced with
a sample average over a given time window surrounding time ¢. Convolutive
separation requires these conditions to be satisfied for multiple delays 7,
corresponding to the delays of the filter taps of W (7). For stationary signal-
s, multiple n, m, i.e., higher order criteria, are required. For non-stationary
signals multiple ¢ with n = m = 1 are sufficient [1, 11, 2]. In this case, condi-
tions (3) state that cross-correlation matrices Ryy(7,t) = E [y(t)y” (¢ + 7)]
have to be diagonal at all times.

2.2 Separation based on second-order non-stationarity

Joint diagonalization of Ryy(7,t) has to find filters W (7) that decorrelate
model sources y(¢) at multiple ¢. This can be efficiently implemented in the
frequency domain [2] using the Fourier transform of the cross-correlations
— the cross-power spectra. Currently we obtain the best results with a
diagonalization criteria based on the coherence function [12], defined as

Ry (w,t
Cyiyj (w,t) = yzyz( ) (4)
\/Ryiw (w, 1) Ry, y; (w, 1)
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where Ry,,.(w,t) is the cross-power spectra between outputs y; and y; at
frequency w and time ¢. In matrix notation this can be written as,

Cyy(w,t) = Mgy’ (w, ) Ryy (w, ) Ay’ (w, 1) (5)

with Ayy(w,t) = diag Ryy(w,t). The squared coherence function is real
and constrained to lie between 0 and 1 for all frequencies. The coherence
function matrix Cyy(w,t) is identically equal to one on the diagonal. Its
off-diagonal elements vanish only if Ryy (w,t) is diagonal, and so we can use
the following diagonalization criteria

JW) =3 lICyy(w. )l (6)
t w

with the Frobenius norm, ||C||*> = Tr [CHC], representing the square sum of
all the elements in the matrix C. The minmization of (6) can be solved using
gradient descent methods. The advantage of the coherence function criteria
is that the normalization guarantees uniform convergence speed irrespective
of the power present in any given frequency bin. The optimization of (6)
requires multiple estimates of the cross-power spectra estimated at different
times ¢. In [2] this is done using an off-line algorithm that first estimates
the cross-power spectra of the microphones over different time windows,
Rxx(w,t), and in a second step computes the simultaneously diagonalizing
filters W (w). The approximation of linear and circular convolution is used
there, Ryy(w,t) & W (w)Rxx(w,t)W (w)¥, which is valid if the filters are
short in comparison to the length of the discrete Fourier transform (DFT).

2.3 Online decorrelation

In attempting to convert the off-line algorithm into an on-line algorithm,
we are faced with the problem of designing an algorithm that requires non-
stationary signals for convergence. The reason for this is that what we do
with each new measurement depends on whether it is part of the previous
stationary regime, or represents a transition to a new stationary regime.
In the first case, the new data should be used to improve the estimate of
the current covariance, implying the use of a long effective memory. In the
second case, the data represents the beginning of new covariance matrix for
simultaneous diagonalization with previous covariance matrices, implying
a short memory is appropriate. Therefore, in addition to the convention-
al trade-off between convergence speed and misadjustment, we now have a
trade-off between estimation accuracy and novel information when measur-
ing correlation.
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Note that there are actually two sums over time in (6). First, there
is the explicit summation over multiple coherence matrices estimated at
different times. There is also an implicit summation over the block of time
necessary to estimate each coherence matrix. The key insight is that these
two sums are not interchangable because the criteria is non-linear in the
power estimates. Often on-line second order decorrelation has proposed a
stochastic optimization method whereby the sums over time are entirely
removed. In doing so, however, non-stationarity is not properly captured
and the algorithms reduce to simple decorrelation which is not sufficient for
separation. Therefore, we propose to preserve the time averaging process by
recursively estimating the cross-power spectra to capture short-term non-
stationarity [12]

Ryy(w,t) = YRyy(w,t = T) + (1 = 7)y(w,)y" (w, 1) (7)

where 7 is a forgetting factor, constrained to 0 < v < 1 for stability, and T
is a block processing time (frame rate) that represents the time it takes to
estimate y(w,t). The forgetting factor and block processing time combine
to make the effective memory of the estimator to be T'//(1 — 7).

We consider the sum in (6) as an estimator of the instantaneous cost,
Y w ||ny(w,t)||2. Stochastic gradient descent uses the instantaneous cost
for the weight updates. We take the derivative with respect to the complex
weights in the frequency domain, and update the weights at the end of each
time block

AW = —p (Ayy Ry Ay — diag[A, 7 Ryy A S Ryy]) Ryx (8)

where p is the learning rate and Ryy is a matrix of cross-power spectra
between the outputs and the inputs:

Ryx(w,t) = 7Ryx(w,t = T) + (1 = 7)y(w,t)x" (w, 1) . (9)

The on-line blind source separation algorithm consists of equations (2)
and (7)-(9) and is entirely compatible with the overlap-save method of fre-
quency domain adaptive filtering [13]. The overlap-save method implements
linear convolution in the frequency domain with the discrete Fourier trans-
form (DFT), or its efficient counterpart, the fast Fourier transform (FFT).
However, since the DFT corresponds to circular convolution in the time do-
main, the filters must be padded with zeros, in turn requiring the use of a
larger input buffer. As a result, only the latter part of the output in the
time domain is valid. In the context of the present algorithm, it is thus
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incorrect to directly use the complex output (2) in updating the cross-power
spectral densities in (7) and (9). Rather, they must first be transformed
into the time domain (also required to obtain the system output), and the
invalid parts zeroed prior to transforming back into the frequency domain
for use in (7) and (9). Note that this is not required for x, since the input
buffer is always filled with valid input samples prior to transforming into
the frequency domain.

The computational complexity of the algorithm scales linearly in the
number of inputs and quadratically in the number of outputs. Although
other frame rates relative to the filter size can be used, a 50% overlap is the
most computationally efficient. For a two input - two output problem at a
sampling rate of 8 kHz with 512 taps, the algorithm runs in approximately
1/10 real-time on a 866 MHz Pentium III. It is thus entirely suitable for
real-time operation in many-input, many-output problems.

3 Combining source separation with beamforming

In this section the ambiguities of convolutive blind source separation will be
discussed. We will review how geometric information is utilized in conven-
tional adaptive beamforming and suggest that second-order BSS can readily
be combined with adaptive beamforming methods, as they both operate on
the power spectra of the signals.

3.1 Ambiguities of independence criteria

Regardless of the independence criteria, there remains an ambiguity of per-
mutation and scaling in the separating filters. In the convolutive case the
scaling ambiguity applies to each frequency bin, resulting in a convolutive
ambiguity for each source signal. This expresses the fact that filtered ver-
sions of independent signals remain independent. Furthermore, when defin-
ing a frequency domain independence criteria such as

Va,mwi#j: By () (w)] =Ely; @] E [y"(w)]  (10)

there is a permutation ambiguity for each frequency. The criteria (10) is
equally well satisfied with arbitrary scaling and assignment of indices i, j to
the model sources, i.e.

W(w)A(w) = P(w)S(w) (11)

where P(w) represents an arbitrary permutation matrix and S(w) an arbi-
trary diagonal scaling matrix per frequency. The most immediate problem
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with this is that contributions of a given source may not be consistently as-
signed to a single model source across different frequency bins [14, 8, 2, 15].
In [4] it is argued that the permutation problem (10) also exists in the time
domain criteria (3).

In practice one may want to use a larger number of microphones to
improve spatial resolution or reduce aliasing. Aside from the permutation
and scaling ambiguity, equation (11) suggests that for a given A(w) there is a
N — M dimensional linear space of solutions W(w). In effect, this indicates
that there are additional degrees of freedom in terms of shaping a beam
pattern represented by the separating filters W(w).

3.2 Linear constraints in geometric beamforming

To disambiguate the permutation, convolution, and under-determined filter
coefficients one can use geometric information. In conventional geometric
and adaptive beamforming, information such as microphone position and
source location are often utilized. A good review of these methods is given in
[3]. We want to emphasize that geometric assumptions can be incorporated
and implemented as linear constraints to the filter coefficients.

If the source location, array geometry, and microphone response charac-
teristics are known, then we can specify an array response vector, d(w,q) €
CN, that represents the complex response from the source at location q to
the outputs of the N sensors. Then, for a given beamforming filter, w(w),
the total system response is given by

r(w,q) = w(w)d(w,q) . (12)
For a linear array with omni-directional microphones and a far-field source,

the microphone response depends in good approximation only on the angle
0 = 0(q) between the source and the linear array

d(w,q) = d(w, ) = e~ 50 (13)

where p; is the position of the ith microphone on the linear array and c is
speed of sound.

Constraining the response to a particular orientation is simply expressed
by the linear constraint, r(w,0) = w(w)d(w,f) = const. This concept is
used in the linearly constrained minimum variance (LCMV) algorithm [16].

3.3 Power vs. cross-power criteria

Most adaptive beamforming algorithms rely on a power criteria of a single
output. Sometimes power is minimized such as in noise or sidelobe canceling.
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There the aim is to adaptively minimize the response at the orientation of in-
terfering signals [3]. Sometimes power is maximized such as in matched-filter
approaches that seek to maximize the response of interest [17]. As outlined
in section 2.2, blind source separation of non-stationary signals minimizes
the off-diagonal elements of Ryy(t,w) rather than the diagonal terms as in
conventional adaptive beamforming. It can thus identify proper beams for
each source despite the fact that multiple sources are simultaneously active.
Strict one-channel power criteria has a serious cross-talk or leakage problem,
especially in reverberant environments.

4 Geometric Source Separation

We propose to combine blind source separation and geometric beamform-
ing by minimizing cross-power spectra for multiple times while enforcing
constraints used in conventional adaptive beamforming. This can be done
explicitly by adding a geometric constraint to the optimization criteria, re-
sulting in an algorithm we call Geometric Source Separation [4], or implicitly
by embedding the constraint in the system architecture, resulting in the Gen-
eralized Sidelobe Decorrelator [5]. The former approach will be discussed in
this section, and the latter in the next section.

4.1 Geometric constraints for source separation

To include geometric information we will assume that the sources we are try-
ing to recover are localized at angles 6 = [0, ..., 0as] and at sufficient distance
for a far-field approximation to apply. Following section 3.2, the response
of the M filters in W for the M directions in 6 is given by W (w)D(w, @),
where D(w,0) = [d(w,01),...d(w,0r)]. In this section we consider linear
constraints such as

Cl: diag (W(w)D(w, 0)) =1, (14)
or C2: W(w)D(w,0) =1. (15)

Constraint (14) restricts each filter w;(w)—the ith row vector in W (w)—to
have unit response in direction ;. Constraint (15) enforces in addition that
they have zero response in the direction of interfering signals 6;,7 # 7.
Note that condition (15) requires that D(w, ) is invertible for the given
set of angles. This is however not always possible. At the frequencies where
the grating lobes! of a beampattern cross the interfering angles, D(w,6)

!Periodic replica of the main lobe due to limited spatial sampling
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is not invertible. It is therefore not reasonable to try to enforce (15) as a
hard constraint. Rather, as we confirmed in our experiments, it is beneficial
to enforce (15) as a soft constraint by adding a penalty term of the form
Jea(w) = ||W(w)D(w,0) — I||* to the optimization criteria (6). Note also
that power or cross-power minimization will try to minimize the response
at the interference angles. This will lead to an equivalent singularity at
those frequencies. It is therefore beneficial to enforce condition (14) also

only as a soft constraint by using a penalty term of the form Jeoi(w) =
[ diag(W (w)D(w,0)) — 1||.

4.2 Constraints as penalty terms

We implemented the linear constraints (14) and (15) each as a soft con-
straint with a penalty term. We have further addressed the problem of
non-invertibility discussed in section 4.1 by introducing a frequency depen-
dent weighting of the penalty term. The idea is to eliminate the constraints
from the optimization for those frequency bands for which D(w,#) is not
invertible. A rather straightforward metric for invertibility is the condition
number. We therefore weight the penalty term with the inverse of the con-
dition number of A(w) = cond™!(D(w,#)), which converges to zero when
D(w, ) is not invertible and remains bounded otherwise, i.e. 0 < A(w) < 1.
The total cost function including frequency dependent weighting of the ge-
ometric penalty term is given by

T(W) + A Mw)Jer2(W(w)) - (16)

In algorithm GSS-C1 the penalty term Jo1 will maximize the response of
filters ¢ in orientation #;. Note that the delay-sum beamformer (w(w) =
d(w,8)) satisfies conditions C1 strictly. In algorithm GSS-C2 the penal-
ty term Jgoo will in addition minimize the response for the orientations of
the interfering sources. The filter structure that guarantees constraints C2
strictly can be computed with a least squares approach as the pseudo-inverse
of D (w, ), or including a regularization term SI for the non-invertibility
problem the solution is given by W (w) = DH (w,8) (D(w,8)DH (w,8) + BI)) ™.
We denote this solution by LS-C2. All GSS algorithms reported here mini-
mize cross-power using a straightforward gradient descent algorithm [2].

4.3 Performance evaluation and discussion

Examples of typical response patterns for the GSS algorithms are shown in
Figure 1, which shows the beampatterns of the filter weights for a linear
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array of 4 microphones with an aperture of 70 cm. There were two sources
located at 0 and -40 degrees broadside to the array.

Algorithm GSS-C1, and GSS-C2 place a zero at the angles of interfering
sources while maintaining a main lobe in the directions of the correspond-
ing source. For conflicting frequency bands, where a grating lobe coincides
with the location of an interfering source, multiple cross-power minimization
reduces the main lobe. Qualitatively, the results for the data independent
LS-C2 algorithm capture both main lobe and zeros at the correct angles.
Its performance, however, is inferior to the data-adaptive algorithms.

A systematic performance evaluation of the algorithms for the case of
two sources in a moderately reverberant room (739 = 50ms) is presented in
Figure 2. Signal to interference ratio (SIR) is used as a separation metric,
which measures the ratio of power (dB) in the enhanced channel to the
rejection channel during periods when only one speaker is active. We varied
the locations of two speakers that were always at least 2 m from the array.
The number of microphones was varied (2-8), but the array aperture was
kept at 70 cm. The top row shows the results for some known beamforming
algorithms (del-sum, LS-C2, LCMYV).

The criteria (6) represents a non-convex optimization problem. The re-
sults for the optimization procedure therefore strongly depends on the initial
conditions. For comparison, the center row in Figure 2 presents the results
for unconstrained multiple cross-power minimization with different initial-
izations of the filter structure. Initializations that have been considered are
unit filters (W (w) = I), delay-sum beamformer (del-sum), and least squares
(LS-C2). The results for unconstrained optimization with the different ini-
tializations are labeled BSS, GSS-12, and GSS-11 respectively.

The last row shows the results for the geometrically constrained sepa-
ration algorithms (GSS-C1’, GSS-C1, GSS-C2). Algorithm GSS-C1’ is the
same as GSS-C1 only with constant penalty term A. Within each row the
algorithms are sorted by average performance. Comparison of the results
for GSS-C1’ and GSS-C1 show the advantage of the frequency dependent
weighting of the penalty term. Due to the limited angular resolution all
algorithms perform poorly when the sources are too close.

We now present results obtained for the separation of three sources. Note
that the permutation problem discussed in section 3.1 becomes worse as the
number of sources increases. We show in Figure 3 the performance of sepa-
rating two speakers and babble noise using a linear array of 8 microphones.
The performance mirrors mostly the results obtained for the separation for
two sources.

In these experiments the cross-power spectra were estimated at 5 time
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Figure 1: Response for geometrically constrained source separation. Al-
gorithms GSS-C1 and GSS-C2 minimize (16) with constraints C1 and C2
respectively. del-sum and LS-C2 satisfy the respective constraints explicitly

and are shown for comparison.
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Figure 2: Performance comparison of the proposed algorithms and geomet-
ric beamforming for two sources. SIR performance in dB is encoded in
grayscale as a function of number of microphones (horizontal axis) and an-
gular separation (vertical axis: 12°,18°,19°,25°,33°,37°,38°,41°,50°). SIR
performance averaged over all positions and number of microphones is also
given.

instances with a time window of about 3s each, such that a total of about
15s of data is analyzed. In all experiments we used a linear array of cardioid
condenser microphones. The user locations were identified acoustically [4].

5 Generalized Sidelobe Decorrelator

As we mentioned previously, one possibility for enhancing a point source
while suppressing noise is the linearly constrained minimum variance (L-
CMV) algorithm, which adaptively filters the sensor signals so as to min-
imize power, subject to a constraint that a delay-sum beam points in the
direction of the source of interest. An alternative but equivalent approach
is the generalized sidelobe canceler (GSC) [18], shown in Figure 4(a). It
also implements a power minimization criteria on the filtered sensor signal-
s. However, unlike the LCMV, the requirement that a beam points in the
direction of interest is enforced in the architecture rather than the criteria.
Specifically, the GSC utilizes a delay-sum beam through the use of steering
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Figure 3: Performance for the separation of 3 sources using 8 micro-
phones. SIR improvement averaged over three configurations with angles
—78%,—-41°,0° —60°,0°,60°; and — 43°,0°,36°. The initial average SIR is
about -3dB.

delays followed by a linear combiner. The linear combiner is a window that
can be designed to vary the trade-off between main lobe width and sidelobe
energy. After the steering delays but prior to the linear combiner, the signals
are all in phase. This is exploited to form beams orthogonal to the primary
beam through the use of a ”blocking matrix” [3]. Each row of the blocking
matrix is constrained to sum to zero to ensure that the resulting secondary
beams will all have a null in the direction of the primary beam. During
adaptive power minimization, the secondary beams are adapted out of the
primary beam but are prevented by the blocking matrix from canceling any
signal that exclusively resides in the primary beam. The GSC approach
has the advantage that the resulting optimization can be carried out using
unconstrained power minimization, such as the least mean squares (LMS)
algorithm. Unlike the LCMV, the constraint is always enforced and no extra
steps have to be taken to ensure that the filter weights don’t stray from the
constraint over time due to finite precision effects.

However, while the GSC exploits the available prior geometric informa-
tion, it does not exploit the independence prior and is thus subject to the
leakage problem associated with power minimization. That is, any leakage
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Figure 4: (a) generalized sidelobe canceller; (b) generalized sidelobe decor-
relator.

of the primary source into the secondary beams will result in cancellation
of the primary source and a degradation of the signal to noise ratio (SNR)
improvement. This leakage can be due to any of several factors, including:
(1) array calibration errors; (2) primary source location error; (3) a main
beam that is narrower than the primary source, caused by a large array
aperture; (4) spatial aliasing lobes, caused by an insufficiently spaced sensor
array; (5) reverberation, caused by reflections of the primary source coming
from directions outside the primary beam.

To overcome these deficiencies, we combine aspects of the generalized
sidelobe canceler and blind source separation to create an algorithm we call
the generalized sidelobe decorrelator (GSD) [5], shown in Figure 4(b). Like
the GSC, it consists of steering delays that place all the sensor signals in-
phase, a linear combiner that forms the primary beam, and a blocking matrix
that forms secondary orthogonal beams. However, unlike the GSC, instead
of adopting a power minimization criteria that adapts the secondary beams
out of the primary beam, we adopt a cross-power minimization criteria, as
described in Section 2.3, that decorrelates the secondary beams from the
primary beam. This allows for removing leakage of the primary source into
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Table 1: Real-room experiment

Algorithm SNR CER
none 1.2dB | 77.6%
fixed delay-sum beam 1.3dB | 19.4%
generalized sidelobe canceller 3.0dB | 73.9%
blind source separation 3.6 dB | 100.0%
generalized sidelobe decorrelator | 4.6 dB 5.4%

the secondary beams, while the blocking matrix guarantees the integrity of
the primary beam independent of whether the sources are continually active.

5.1 Results in real rooms

We conducted an acoustic experiment designed to demonstrate the supe-
rior performance of the algorithm for noise reduction. A 2-D rectangular
sensor array of dimension 10 cm x 7 cm was formed, corresponding to the
dimensions of a personal digital assistant (PDA), using inexpensive omnidi-
rectional lapel microphones (Audio-Technica ATR35S).

The array was located in a room of dimension 3.0 m x 3.6 m x 2.3 m.
A loudspeaker was placed 0.5 m directly in front of the array, which was
used to replay a quiet recording of a male speaking 300 short commands
over a period of twenty minutes, with a pause of 2-3 seconds between
commands. The recording was automatically segmented into speech/non-
speech for the purpose of measuring signal to noise ratio (SNR), and the
speaker had previously trained an automatic speech recognition system for
the purpose of measuring speaker-dependent command error rate (CER).
The recognizer and all algorithms operated at 11.025 kHz.

Also in the room but in the corner and facing the wall 2.5 m from the
array, a loudspeaker played babble (the sounds of many voices). Outside the
room, another loudspeaker played a recording of street noises. The nominal
SNR at the microphones was 1.2 dB, which corresponded to a CER of 77.6%.
We then applied four on-line adaptive algorithms to the array signals, each
of which used FIR filter sizes of 512 taps. The results are shown in Table 1.

Because the source was directly in front of the array, the fixed delay-
sum beam could be obtained by a simple averaging of the four sensors.
Although the fixed beam does not provide much SNR improvement, it does
provide significant CER improvement, primarily because it does not distort
the speech.

Next, we implemented the GSC using a ”Walsh” blocking matrix (see
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[18]) to form three secondary beams orthogonal to the primary delay-sum
beam. The secondary beams were adapted out of the primary beam using
the frequency domain LMS algorithm. Although there is improvement in
the SNR, there is degradation in the CER relative to the delay-sum beam,
most likely due to spectral distortion of the speech.

Next, we applied BSS on the 4 raw inputs signals, using the algorith-
m of Section 2.3, with 2 outputs. Although BSS provides a small SNR
improvement over GSC, the algorithm completely destroys the recognition
performance. Part of the problem is that BSS requires that the sources be
simultaneously active, and thus the filters start to degrade during the silent
periods between commands. In addition, the frequency-domain permutation
problem (Section 3.1) can distort the speech spectrum.

Finally, we applied our new hybrid GSD by performing BSS on the
fixed delay-sum beam and blocking matrix outputs taps, and obtained very
encouraging results. In addition to obtaining the largest SNR improvement
of any of the algorithms, the CER was a very respectable 5.4%, approaching
the single microphone CER, of 2.0% in a quiet environment.

6 Summary

This chapter emphasizes the importance of second order criteria and the
use of prior geometric information to solve the problem of separating mul-
tiple sources in an acoustic environment. It combines notion from adaptive
beamforming and blind source separation resulting in semi-blind algorithms
where at least microphone locations are known. The assumption is made
that sources are reasonably well localized and that user location can be de-
termined acoustically. The algorithms overcome the cross-talk problems of
conventional adaptive beamforming and the ambiguity problems of convo-
lutive blind source separation.
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