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Method

The purpose of this work was to evaluate our previously developed
deep neural network!!! for segmenting breast cancers on MRIs using
data from two clinical sites. 449 contrast-enhanced breast MRI exams
with tumors from Site 1 (MSKCC) were segmented in 3D. These exams
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EE 05| EE 0.5 ® Deep U-Net trained with a large dataset shows feasibility of generalizing to unseen data at a different clinical site;
E "ﬂ' E 0! D « "N g2 il ® Ongoing work shows generalization may also fail on testing data from a third clinical site;
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