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Recipes for the linear analysis of EEG
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In this paper, we describe a simple set of ‘‘recipes’’ for the analysis of

high spatial density EEG. We focus on a linear integration of multiple

channels for extracting individual components without making any

spatial or anatomical modeling assumptions, instead requiring partic-

ular statistical properties such as maximum difference, maximum

power, or statistical independence. We demonstrate how corresponding

algorithms, for example, linear discriminant analysis, principal

component analysis and independent component analysis, can be used

to remove eye-motion artifacts, extract strong evoked responses, and

decompose temporally overlapping components. The general approach

is shown to be consistent with the underlying physics of EEG, which

specifies a linear mixing model of the underlying neural and non-

neural current sources.
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Introduction

Modern high spatial density electroencephalography (EEG)

can simultaneously record surface potentials in up to 256 elect-

rodes, promising improved spatial resolution and an increased

signal-to-noise ratio (SNR). Traditional EEG analysis methods

such as trial-averaging typically only considers the time course of

individual channels. Thus, the increased number of sensors

has created a need for tools that can analyze the time series of

multiple electrodes simultaneously. The activity in multiple

channels is often visualized as a topographic map across the

scalp, with various methods commonly used to integrate this
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activity for localizing neuronal sources within the brain

(Niedermeyer, 1996; Mosher et al., 1999; Michel et al., 2004;

Darvas et al., 2004). Source localization represents a difficult

inversion problem, as many possible current distributions can

lead to the same observed EEG activity. To resolve this

ambiguity, localization methods try to explain the spatio-temporal

statistics of the observed data by constraining the possible source

distributions in space and assuming a model of the anatomy of

the head/brain. The methods presented in this paper avoid

making any spatial modeling assumptions with regard to the

sources or anatomy. They instead rely entirely on the statistics of

the observed data and its covariation with observable stimuli and

behavioral responses.

Recently, various multivariate signal processing algorithms

have been proposed for EEG that linearly combine channels to

generate an aggregate representation of the data that is easier to

analyze (Chapman and McCrary, 1995; Koles et al., 1995; Makeig

et al., 1996; Tang et al., 2002; Ramoser et al., 2000; Parra et al.,

2002; Parra and Sajda, 2003; Delorme and Makeig, 2004).

Specifically, denote with x(t) the vector of multidimensional

EEG data at time t. A weighting vector w is selected that generates

a one-dimensional projection y(t) with,1

y tð Þ ¼ wTx tð Þ ¼
XD
i ¼ 1

wixi tð Þ: ð1Þ

This linear projection combines the information from the

multiple sensors into a single channel whose time course can be

analyzed with conventional methods, i.e., temporal filtering, trial

averaging, frequency power analysis, etc. The vector w is selected

based on constraints or desired attributes of the time series y(t).

When compared to an individual sensor the projection y(t)–

sometimes also called a component–can be a better estimate of

neurophysiological activity, as it may have a higher signal-to-noise
1 Throughout this paper, lower case italic characters refer to scalars, such

as y(t); lower case bold characters, such as w, denote vectors, while bold

upper case characters refer to matrices, as in A. Finally, wT indicates the

transpose of w.
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2 MATLAB Plug-ins for EEGLAB can be downloaded from http://

liinc.bme.columbia.edu/downloads.
3 The ratio between capacitive vs. resistive conductance is independent of

source location for homogeneous tissue and is estimated to be <10% at 100

Hz (Reilly, 1992). More importantly, regardless of homogeneity, this ratio is

approximately constant within the frequency range of interest (Reilly, 1992)

leading to a linear phase and hence a constant delay (<0.2 ms). We assume

that capacitive delays introduced by the skull, electrode contacts, or skin

potentials are approximately the same for all electrodes and therefore

negligible.
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ratio (SNR) and reduced interference from other sources. To see

this, consider the following two scenarios.

Signal summation

Assume that two neighboring electrodes have activities x1(t)

and x2(t) which measure the surface potential associated with

neural activity, s(t). Each electrode also measures noise n1(t) and

n2(t), respectively, originating from independent noise sources

such as skin potentials, myographic activity, or inductive line

noise. Since electrical potentials add linearly, we can summarize

the electrodes’ activities as x1(t) = s(t) + n1(t) and x2(t) = s(t) +

n2(t). Choosing equal weights, wT = [1,1], for the two

neighboring electrodes in Eq. (1) results in a component, y(t) =

2s(t) + n1(t) + n2(t). This component captures the neuronal

activity, s(t), with an increased signal-to-noise ratio relative to the

individual electrodes (3 dB improvement in the case of

independent Gaussian noise).

Signal subtraction

Assume a different scenario in which an electrode measures the

surface potentials x1(t) associated with the activities of two separate

neuronal processes, s1(t) and s2(t), so that x1(t) = s1(t) + s2(t).

Assume that s2(t) can be observed in isolation by an additional

electrode x2 = s2(t), whereas s1(t) cannot—i.e., x1(t) is a mixture of

both sources. Choosing the weights, wT = [1, �1] results in a

component, y(t) = x1(t) � x2(t) = s1(t). This component recovers

the activity of the individual source, s1(t), by subtracting the

known ‘‘interfering’’ source, s2(t), from the measured mixture of

sources.

As we will see later, one can combine these two operations to

estimate sources and subtract interfering sources. The motivation

for using a linear integration is that the observed surface potentials

are linearly related to the current sources within the brain (see

‘‘Linear model for EEG’’). The resulting component can therefore

in principle be localized using any of the established source

localization algorithms (for a review see (Darvas et al., 2004)).

Evident is that the benefits of linear integration will depend on the

proper choice of the weighting vector w. In fact there may be more

than one useful choice depending on the desired properties of the

component y(t).

This paper shows how three basic criteria, namely maximum

difference, maximum power, and statistical independence, can be

used to select useful linear integration vectors w. The methods

will be introduced on practical examples such as the estimation

of eye-motion artifacts, the extraction of evoked responses and

the decomposition of temporally overlapping components. Some

of the methods and algorithms we will discuss have been

previously presented (Chapman and McCrary, 1995; Makeig et

al., 1996; Tang et al., 2002; Ramoser et al., 2000; Parra et al.,

2002; Parra and Sajda, 2003; Delorme and Makeig, 2004).

However, it is the objective of this paper to put these various

algorithms into the a common framework and show that they are

in fact intimately linked in terms of their relationship to the three

criteria. The mathematical details, some of which are well-

established and others less well-known, are recast into the

present context in a series of Appendices. For instance, we show

that common spatial patterns are essentially the same as

independent components, and that, under some circumstances,

penalized logistic regression is equivalent to a support vector
machine (SVM). Computer code for the corresponding algo-

rithms has been made available on-line.2
Estimation through projections and subtraction

Before we discuss the criteria for estimating w, we begin by

introducing a basic model of EEG generation and generalize the

preceding discussion on summation and subtraction to higher

dimensions. In higher dimensions, the summation and subtraction

operations become a subspace projection and a subspace sub-

traction, respectively. In the first case, source activity is estimated

by projecting the observed data onto the subspace defined by that

source, while in the second case, the subspace of the source is

subtracted to remove the corresponding activity. In the following

sections, we formalize this process to the more general setting of

multiple sources and sensors.

Linear model for EEG

At the frequencies of interest (<100 Hz), tissue is often assumed

to be primarily a resistive medium governed by Ohm’s law and

capacitive effects can be neglected.3 Hence, the contributions of a

single current source s(t) to the surface potentials x(t) is linear in

s(t),

x tð Þ ¼ as tð Þ: ð2Þ

The proportionality factors in vector a are, in general, unknown

as they depend on the spatial distribution and orientation of the

current source as well as the conductivity distribution of the

interfacing anatomy (including brain tissue, CSF, skull, skin,

electrode contact and location, etc.). For multiple sources, there is

one such factor for every electrode–source pair, which we

summarize in matrix A. Since potentials are additive, the combined

effect of multiple sources summarized in vectors s(t) is simply,

x tð Þ ¼ As tð Þ: ð3Þ

The matrix A is often called a forward model relating the

source activities with the observed sensor activities. Any contri-

bution that is not described by the matrix A can be summarized in

an additional term that we will consider as noise, n(t). The dis-

tinction between noise and source contributions is somewhat arbit-

rary, as obviously noise also has a source. In particular, we may

consider genuine neurological activity as Fnoise_ if it forms part

of the background activity that is not the subject of a particular

study. Summarizing, we find the following simple linear model

which is an accurate representation of the electro-physics of EEG,

x tð Þ ¼ As tð Þ þ n tð Þ: ð4Þ

 http:\\liinc.bme.columbia.edu\downloads 
 http:\\liinc.bme.columbia.edu\downloads 


4 With the
P

t1
or

P
s we denote, in this paper, the sum over all the

possible values of variables t1 or s, respectively. In general, the sum over t1
or t2 will therefore refer to a trial-average while the sum over s will refer to

an average over a window of time relative to an event.
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Source estimation by linear projection

Assume we have an estimate of the forward model A. This

estimate could originate from a dipole fit of the data, or could have

been generated from one of the algorithms we will describe in the

following sections. We compute a linear estimate of the source

activity, which we denote as

ŝs tð Þ ¼ VTx tð Þ: ð5Þ

The matrix V is often called a backward model relating the

sensor activity to the originating sources. If A captures all sources

that contribute significantly to the surface potentials, it is

reasonable to choose V such that the noise is as small as possible.

Minimizing the total noise power gives the pseudo-inverse of A#

as the classic least mean squares estimator

V̂VT ¼ A# ¼ ATA
� ��1

AT : ð6Þ

If one is willing to assume Gaussian noise with known spatial

correlations one obtains an improved maximum likelihood

estimator, which can be used to factor out the effect of EEG

background activity in the source estimate (see Appendix A.1).

When combining Eqs. (4)–(6) it becomes clear that ŝ(t) is a

reasonable estimate for s(t)

ŝs tð Þ ¼ s tð Þ þ VTn tð Þ: ð7Þ

This backward model recovers the sources but also captures

the portion of the noise that is collinear with the source

estimates. Without additional (temporal) information, that portion

of the noise is indistinguishable from the sources. When the

forward model of different sources (different columns of A) are

similar, the pseudo-inverse becomes sensitive to errors in the

estimation of A and regularization methods may be necessary

(Uusital and Ilmoniemi, 1997).

Interference subtraction

In some instances, it may be desirable to minimize interference

from other sources. For instance, one may wish to remove the

activity associated with eye motion. Let A now represent the

coupling of the sources ŝ(t) which are to be removed. The sources

can be estimated from the sensors using (5) and estimator (6) as,

ŝ(t) = A#x(t). Following the linear model (3) the sensor activity

generated by these sources is x�(t) = Aŝ(t). This activity can be

subtracted from the sensor activity.

x8 tð Þ ¼ x tð Þ � x� tð Þ ¼ I� AA#
� �

x tð Þ; ð8Þ

where I denotes the identity matrix. The activity x–(t) is the original

sensor data without the interference from sources ŝ(t). To be precise,

x–(t) does not contain any activity that correlates with ŝ(t). While

x–(t) will have an increased signal-to-noise ratio, its dimensionality

is effectively reduced. Subsequent algorithms have to account for

this reduced rank in the data as described in Appendix A.4. We will

demonstrate this interference subtraction method for the removal of

eye-motion activity in ‘‘Example: eye-motion activity’’.

Forward model estimate

The previous discussion assumed that a forward model A of

some current sources is available. The emphasis of this paper lies
on generating a component, y(t) = wTx(t), where y(t) has some

desired temporal properties. For instance, we will ask for a

projection of the data which is maximally different between two

experimental conditions. This section determines how to relate

that component activity y(t) to a current source ŝy(t) and the

corresponding estimated forward model ây—one column of the

matrix A.

We define ŝy(t) as the source of all the activity in x(t) which

correlates with y(t) during a set of times t = {t1, . . . ,tN}. The
corresponding forward model ây can be found by linearly

predicting x(t) from y(t), as this will capture the linear correlation

between sources and observations. The answer is given by the

optimal linear predictor as shown in Appendix A.2. Arranging the

times of interest along a row, for y = [ y(t1), . . . ,y(tN)], and X =

[x(t1), . . . ,x(tN)], the result derived in the Appendix can be written

for zero-mean x(t) and y(t) as

âay ¼ XyT yyT
� ��1

: ð9Þ
Note that this estimate is a normalized correlation between the

component y(t) and the data x(t). In Appendix A.2, it is shown that

the corresponding source ŝy(t) captures all the activity in the data

that correlates with the component y(t). This forward model ây
provides a spatial distribution of correlated activity which we term

a scalp projection.
Maximum difference

Evoked response difference

A common question in EEG analysis is how the observed

EEG activity differs under two different experimental conditions,

such as differing stimuli or behavioral responses of the subject.

The conventional approach is to average the activity over

repeated presentations (or trials) and compute the difference of

these trial averages for the two conditions. Typically, the onset of

a stimulus or the time of a behavioral response are marked in the

data by corresponding event triggers, i.e., the time instances at

which a specific stimulus or response occurred. Denoting t1 and

t2 as the times of event triggers associated with conditions 1 and

2, respectively, the traditional evoked response difference is given

by

Dx sð Þ ¼ 1

N1

X
t1

x t1 þ sð Þ � 1

N2

X
t2

x t2 þ sð Þ: ð10Þ

At any given point in time s, relative to the event trigger, Dx(s)
specifies the difference activity in each electrode. This activity is

referred to as the trial-averaged evoked response. We note that the

evoked response integrated over a window of interest4,

;
Dx ¼

X
s

Dx sð Þ; ð11Þ

can itself be seen as specific forward model estimate ây . Assume

that there is a component y(t) that takes on different constant

values y(t1 + s) = y1 and y(t2 + s) = y2 during conditions 1 and 2,
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respectively. We find that the corresponding forward model ây after

mean subtraction is given according to Eq. (9) by

âay ¼
;
Dx

N1 þ N2ð Þ y1 � y2ð Þ : ð12Þ

The classic evoked response difference therefore can be

interpreted itself as a forward model (up to a constant factor).

Specifically, it is the forward model of the current sources that

correlate with a component which takes on different constant

values during the two different conditions. Any localization

method that uses the average evoked response difference rather

than the original responses can be thought of as localizing such a

current source.

Example: eye-motion activity

As an example of this difference method, consider the esti-

mation of activity associated with eye motion. Vertical and

horizontal eye motion induces in the electro-oculogram (EOG)

and frontal EEG electrodes a significant deviation from baseline.

Interestingly, the direction and magnitude of the deviation are

indicative of the orientation and degree of eye motion. The time

course and a corresponding scatter plot for different motions are

shown in Figs. 1 and 2. This data was collected during a simple

eye-tracking task in which the subject follows a cross on the

screen. The cross jumps repeatedly from left to right or from top to

bottom of the screen. The corresponding cross positions are

marked in the data and can be used as truth data to indicate eye

position. In Eq. (10), times t1 and t2 indicate the position of the

cross on the screen, left/right (or up/down). Times s extend over

the duration in which the cross is holding a position. Horizontal
Fig. 1. Removing eye-motion artifacts using maximum power (left) and maximum

during eye blinks (left), horizontal (center), and vertical (right) eye motion. Each

represent samples where the fixation cross is in the left or lower screen position,

right or upper screen position. The black lines indicate the scalp projection orienta

(left) and mean difference (center, right). The HEOGR electrode is placed next to th

the estimated scalp projection ây of sources for the three types of eye motion as sho

all figures in this paper). White (brighter) represents strong positive correlation of

strong negative correlation.
and vertical eye-motion components can be estimated individually

using (12), i.e., the estimate âh is given by the difference between

the mean activity on left and right position and âv by the difference

activity between the upper and lower positions. The scatter plots in

Fig. 1, center and right, show that this subject did not follow the

cross perfectly, yet the difference estimate, shown as solid line,

captures the main orientation of the motion. In the ‘‘Maximum

power’’ Section, we will also present a method for estimating the

activity associated with eye blinks. The corresponding scalp

projection – computed with Eq. (16) – is shown on the left of

Fig. 1 and is denoted here as âb.

To demonstrate the estimation and subtraction of interference

activity, we consider all three types of eye-motion artifacts:

horizontal and vertical motion as well as eye blinks. We combine

the three sources into a vector ŝ(t) = [ŝb(t), ŝh(t), ŝv(t)]
T, and the

corresponding scalp projections into a matrix Âeye = [âb, âh, âv].

According to Eqs. (5) and (6), the estimate for the eye activity is

ŝ(t) = Â#
eyex(t), shown in Fig. 2, left. Note that there is no cross-talk

between the estimated sources despite the fact that all the sources

of eye motion contribute to the interference in any one electrode,

e.g., the VEOG-electrode shown on Fig. 2, bottom left, responds to

both eye blinks and vertical eye motion. Referring back to Fig. 1,

we also see this in the scalp plots of âb and âv, with the activity of

these two components being quite similar across the electrodes.

Increasing the number of EOG electrodes results in a better

estimate of the eye activity. At a minimum, one should include one

electrode below the eye such as VEOG� to differentiate between

eye blinks and vertical eye motion which differ in their polarity for

this electrode.

Since eye-motion activity is often considered an artifact, we

remove it by computing x–(t) using Eq. (8). The activity before
difference (center, right) criteria. Top: scatter plot of two EOG electrodes

point in the scatter plot represents one sample in time. Dark points (blue)

and light points (green) represent samples where the fixation cross is in the

tion ây in these two EOG coordinates estimated with principal components

e right eye and VEOG� below one of the two eyes. Bottom: dorsal view of

wn in the top part of this figure. A ‘‘hot’’ colormap is used in all cases (also

the source with the corresponding sensor while dark red (darker) indicates



Fig. 2. Source estimates and subtraction demonstrated for eye-motion activity. Left: first three traces show the time courses of the estimated sources ŝy. The fourth

trace indicates the position of the fixation cross during this 45 s recording. The subject is instructed to blink repeatedly at the first position (9–15 s) and to follow

the cross on the left/right positions (20–28 s) and up/down positions (34–42 s). Raw VEOG data is shown at the bottom as an example of cross-talk prior to

estimation. Right: 600 ms section for Cz electrode (mid-line center) is shown during a period of immobility (top) and during an eye blink (bottom). The two traces

in each panel show the activity before, x(t), and after subtraction x–(t). Notice that x–(t) follows x(t) during immobility but deviates during the blink indicating

that the eye-blink activity has been removed without affecting the background EEG.
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and after subtraction is shown for one electrode (Cz) in Fig. 2,

right. Note that this data was sampled at 500 Hz and the 2 s mean

around each sample was subtracted (zero-phase moving-average

high-pass filter with 0.5 Hz cutoff). This mean subtraction or

baseline subtraction is customary in EEG to remove DC drifts

which are of little neurophysiological significance. In addition,

most estimation methods are sensitive to such baseline drifts.

The subtraction method proposed here is similar to the standard

regression approach where a single (or a few) EOG electrodes are

used as a reference signal that is subtracted in proportion to their

contribution to each EEG channel (Croft and Barry, 2000). The

difference lies in that we use all EEG and EOG channels to

construct an optimal estimate y(t) of the corresponding activity as

reference for subtraction. Many researchers have proposed to use

independent component analysis (ICA) to estimate eye-motion

activity. ICA also combines all electrodes during the estimation,

however, we found the proposed method to be more reliable in

practice requiring significantly less data. This is not surprising

given that the present method exploits timing information on eye

motion, whereas ICA aims to compute the activity ‘‘blindly’’.

Maximum magnitude difference

The difference activity discussed above can itself be thought of

as a forward model of a component that takes on different constant

values for two different conditions. However, the resulting source

estimator does not necessarily give a source estimate that differs

maximally between the two conditions.

To capture all the changes between the two experimental

conditions, we use a projection vector w with a component y(t) that
best separates the two conditions, i.e., y(t) acts as a discriminator.

There are a variety of optimal solutions to this problem, each

assuming a different distribution of the data in the two conditions

(Duda et al., 2001). If we assume that activity during t1 + s and

t2 + s can be modeled as two Gaussians having identical

covariance matrices R but differing in their means, the optimal

maximum likelihood linear discriminator is given by

wml ¼ R�1;Dx: ð13Þ

This approach gives the same result as the evoked response

difference activity but, in addition, accounts for correlated activity

in the sensors. We see that if the sensors are strongly correlated,

which is in fact often the case for high density EEG, then the

evoked response difference may not necessarily represent the

component of the EEG that optimally captures changes between

the two conditions. The assumption of Gaussian data with equal

covariances during both conditions may be too restrictive. Instead,

one can use the Fisher linear discriminant (FLD) which is given for

two classes by

wfld ¼ R1 þ R2ð Þ�1;
Dx: ð14Þ

R1 + R2 is the within-class covariance and R1 and R2

are the covariances for each of the two conditions:
Ri ¼ ~ti

~s ðx ti þ sð Þ � x;iÞðx ti þ sð Þ � x;iÞ
T
. The FLD maximizes the

signal-to-noise ratio (SNR) defined here as difference of the

means divided by the within-class standard deviation, also known

as the F statistic. Increased SNR of the evoked response is the

main motivation for using discrimination methods since this can

facilitate single trial analysis that may otherwise not be possible



Fig. 3. Comparison of linear discriminant methods. Components were extracted for EEG/EOG electrodes using evoked response difference (werd ” Dx
;
),

Fisher linear discriminant (wfld), and penalized logistic regression (wplr). Top left: values for two out of a total of 64 electrodes are shown. The scatter

plot shows samples for EOG electrodes for two different eye positions (fixation to lower or upper position on the screen). The lines indicate the

projection vectors w. Top right: comparison of the resulting discriminant components y(t). The first and second halves of the data show the activity for

upper and lower positions, respectively. The numbers on the far right indicate the SNR of the recovered components. For comparison, the raw VEOG-

electrode has an SNR of 16 dB for this data. Bottom: the three scalp projections ay have been estimated with Eq. (9) for each component y(t)

separately. Since the main variability in y(t) is similar for the three different results, we obtain similar scalp projections (despite the significant

differences in the projection vectors w).

5 We have chosen, once again, to show data for eye motion, as the

difference between the two conditions is strong and can be visualized in

only two dimensions. Another, perhaps more interesting, example will be

shown in Section on visual target detection.
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(Parra et al., 2002, 2003; Gerson et al., 2005; Blankertz et al.,

2003; Müller et al., 2003).

A problem with this solution is that the inverse covariance

of the data is quite sensitive to outliers. In EEG, outliers are

inevitable. We therefore use a linear discrimination method that

is less sensitive to outliers and instead focuses on the samples

at the discrimination boundary. Two candidates for this problem

are logistic regression (LR) and linear support vector machines

(SVM). Their relationship and relative merits are discussed in

Appendix B.2. In general, there are no closed-form solutions

for the corresponding optimization criteria of these techniques.

In Appendix B.1, we present an algorithm for logistic

regression based on iteratively re-weighted least-squares (IRLS),

which can also compute an approximate support vector solution

when including a regularization term (see Appendix B.2). The

logistic regression solution wlr equals wml of Eq. (13) if the

assumptions of the Gaussian classifier are satisfied. Logistic

regression is therefore a generalization of the Gaussian

classifier. In practice, we use penalized logistic regression

(PLR) as it combines the benefits of support vectors (robust to

over-training for well-separated classes) and logistic regression

(robust to outliers and good performance for poorly separated

distributions).

SNR and robustness comparison for linear discriminants

A comparison of the evoked response difference, the FLD, and

the PLR is provided in Fig. 3. For the evoked response difference,

we use the source estimator v as component projector, werd ¼ v ¼
a#T ¼ Dx

;
=�Dx

;
�

2
following Eqs. (6) and (12). The component

estimates y(t) for the FLD and the PLR are better separated

resulting in a higher SNR. As expected, the SNR is highest for the
FLD. In this example, an effort has been made to include activity

during fixation only.5 Nevertheless, a few mislabeled samples

during a saccade are included in one of the classes. As a result,

the within-class covariance is not well-estimated and the FLD

does not capture the difference orientation between the two

conditions for the electrodes shown. The evoked response

difference maintains its orientation even if a large fraction of

the data is mislabeled. It is therefore the most robust, but

unfortunately, it has the lowest SNR. Finally, PLR gives high

SNR and remains robust to outliers. A quantitative measure of

robustness and its statistical significance will be presented in the

following section.

Example: Identifying neural sources of visual target detection

We consider the problem of identifying neural sources

associated with the detection of infrequent visual targets during a

rapid serial visual presentation task (RSVP), a paradigm which has

been used to study the speed of visual processing (Thorpe et al.,

1996). In this experiment, subjects are shown sequences of images

which consist of natural images with people (targets) or natural

images without people (distractors). A trial consists of a sequence

of 50 images, each image flashed for 50 ms. Subjects are instructed

to press a button at the end of the trial if one of the images was a

target. Having subjects respond at the end of the trial reduces

potential confounds from motor activity. In each trial, there is a
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50% chance that one (and only one) of the images in the sequence

is a target image. Thus, target images are rare relative to distractor

images.

We aim to find a weight matrix, w, which can discriminate,

single-trial, between the two conditions of targets vs. distractors.

We argue that the activity that discriminates between the two

conditions represents the neurological processing associated with

the task of visual target detection. y(t) represents the projection of

the data that is maximally discriminating for the task. We refer to

this activity, therefore, as a task-related component. Studies using

trial-averaged responses have shown that such ‘‘oddball’’ experi-

ments having infrequent targets amongst distractors elicit late

positive complexes (LPC) with components between 300 and 600

ms post-stimulus (Makeig et al., 1999). In particular, such

paradigms produced a strong P300 ERP (Friedman et al., 2001).

We therefore consider y(t) for a temporal window in the

neighborhood of the reported LPC time course (480–530 ms)

and compare this to conventional trial-averaging results.

Fig. 4 shows results, including a projected component of the

PLR discriminator. The discriminator is a 64-dimensional hyper-

plane (64 electrodes) and this single 2D representation shows

some of the separation between the two conditions. The

discriminator is trained by considering all data points in the

temporal window as being independent samples. We can assess

the performance of the discriminator using leave-one-out (LOO)

receiver operator characteristic (ROC) analysis (Green and Swets,

1966), reporting the area under the ROC curve (Az). Chance

performance corresponds to Az = 0.5, and perfect classification to

Az = 1.0. The extracted activity y(t) can be regarded as

significant only if the Az value is above a significance threshold

(a threshold with significance level of p = 1/N can be estimated

as the maximum Az value obtained from N repetitions of the

training and testing procedure using random class labels
Fig. 4. Identifying task-relevant components in visual target detection using the ma

CPz and POz) of discrimination vector w (black line), determined using penaliz

between target (light/green) and distractor (dark/blue) trials. Top right: scalp proje

correlation (bright) of the sensor readings with the component and negative correla

of stimulus presentation at 0 ms, and trial average of the component activity for t

done using the time window outlined with black lines.
(Edington, 1980), a method that is also called Fbootstrapping_).
Because of noise, we compute Az by averaging the output of the

discriminator within a trial—i.e., we compute the LOO Az over

ȳ(t) = ~sy(t + s). The results are a reasonable estimate of single-

trial performance since the averaging of outputs occurs within a

trial.

For the discriminator trained during this temporal window, we

find Az = 0.87 (P < 0.001), indicating a robust discrimination in

the full space of the sensors. Also shown in Fig. 4 is the scalp

projection ây of the discriminating task-related component. The

topography is very consistent with what has been reported for LPC

(Makeig et al., 1999) and trial-averaged P300. This approach can

be extended for recovering task-relevant components across

different temporal windows to analyze the spatio-temporal changes

in neural processing, an example of which will be presented in the

methods comparison section.
Maximum power

Often times, the main source of temporal variability in the

EEG data is well known. A straightforward example is the

activity of frontal electrodes associated with eye blinks. The

activity is considered an artifact and sections of data containing

eye blinks– typically identified by visual inspection–are excluded

from further analysis. Eye blinks cause a strong deflection of the

EEG signal from baseline lasting 50–100 ms. Relative to a

common reference the potentials are negative for electrodes

placed below the eyes and positive for electrodes above. The

relative magnitudes depend on the location and the coupling of

the electrode (see Fig. 2). During those 100 ms, the activity

associated with the eye blink is typically 20 dB above neuronal

background activity. To estimate this activity, it is therefore
ximum magnitude difference method. Top left: 2D representation (electrodes

ed logistic regression, illustrating the orientation of maximum separation

ction of corresponding forward model ây. The color code indicates positive

tion (dark). Bottom: component activity y(t) across trials locked to the time

arget (green) and distractor (blue) trials. Estimation of this component was



Fig. 5. Generalized eigenvalues and independent components. Dark and

light dots indicate samples with covariance matrix R1 and R2. Dashed lines

indicate the projection vectors wge that generate the maximum and

minimum power-ratio for projected component y(t) on all samples. Solid

lines indicate the columns of the corresponding Ây.
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reasonable to find a component that captures the maximum power

in the signal during and around the time of eye blinks:

wpc ¼ arg max
w;�w� ¼ 1

X
t

y2 tð Þ ¼ arg max
w

wTRw

wTw
: ð15Þ

R ¼ ~t x tð ÞxT tð Þ represents the covariance of the x(t) estimated

during the appropriate times. The concept of maximum power or

variance dates back to the varimax algorithm (Kaiser, 1958). The

constraint, �w� = 1 is required since, otherwise, the power of

the component can be arbitrarily maximized by changing the

scale of w. By normalizing with �w�2, the second optimization

criterion becomes insensitive to the scale. At the solution of (15),

the ratio becomes the maximum eigenvalue of R and wpc the

corresponding eigenvector (see Appendix C.1). The result of this

maximization is also known as the principal component of the

samples x(t). There are many algorithms which can find the

principal component. One of the simplest is the Power method

(Reiter, 1990), which consists of iterating the update Equation,

w @ Rw /�w�, until convergence starting with any non-zero

initial guess for w.

Note that at convergence w satisfies Rw = �w�w. Using Eq.

(29), we find therefore that the corresponding forward model of the

principal component is simply,

âapc ¼ Rwpc wT
pcRwpc

� ��1

¼ wpc

�wpc�
2
: ð16Þ

Crucial for this operation to give the desired projection vector is

that the sample times t selected for this analysis cover a range of

data where the activity of interest is the main source of variability.

Other sources of variability should be excluded. For instance, a

common source of variability in EEG is baseline drift, which

should be subtracted to prevent interference in the maximum

power estimation of eye blinks. We typically subtract baseline

shifts with a high-pass filter having a cutoff frequency of 0.5 Hz

prior to this analysis.

Example: removing artifacts and noise (continued)

We have already presented how the maximum power criterion

can be used to remove eye-blink activity in the EEG (see Figs. 1

and 2). Note that the same process can also be used to compute

projections that estimate other sources of artifacts such as myo-

graphic activity, though these are in general more difficult to

eliminate than eye motion. For a cooperating subject, a variety of

artifacts can be estimated automatically by designing a protocol in

which the subject is instructed to generate the corresponding

muscle artifacts at predetermined times.

Maximum power-ratio

Before introducing this next criterion, we point out a basic

difference between traditional evoked responses and EEG power

spectrum analysis. To compute the evoked response, raw EEG

signals are averaged over trials. This increases the SNR of low

frequency activity that occurs phase-locked to the event timing.

High-frequency activity is typically lost due to limited repeat-

ability of precise phase or limited temporal accuracy of event

timings. Activity that is not time-locked is lost. On the other hand,

power spectral analysis first computes the power spectrum and

only then averages over trials, thus capturing all frequency bands
in the average. The approach presented in ‘‘Maximum magnitude

difference’’, for extracting components that maximally discrim-

inate in magnitude, will have the same limitation as trial

averaging and will therefore not recover high frequency informa-

tion. An alternative method is to extract a component that is

maximally different in power for two different sets of times.

In this method, we find a projection of the data that has minimal

power during times t1 + s and maximal power during t2 + s, or
equivalently a maximum power-ratio

wge ¼ arg max
w;�w�¼1

P
t2

P
s y

2 t2 þ sð ÞP
t1

P
s y

2 t1 þ sð Þ ð17Þ

¼ arg max
w

wTR2w

wTR1w
: ð18Þ

The constraint �w� = 1 is again required to normalize for

an arbitrary scaling factor. Notice the similarity with condition

(15) which results in the first principal component. In fact, while

the solution for (15) is given by the eigenvector for R with

maximum eigenvalue, the solution for (18) is given by the

generalized eigenvector of R1
�1R2 with maximum eigenvalue

(see Appendix C.1). Furthermore, notice that the eigenvector

with minimum eigenvalue minimizes rather than maximizes the

power ratio in (18). An illustrative example for artificial data is

shown in Fig. 5.

A limitation of this approach is the sensitivity of the

covariance matrix to outliers, given that the covariance to be

minimized is in the denominator of (18). For instance, we find

that the largest (smallest) component often captures myographic

activity if the data is not carefully selected to avoid sections with

motion artifacts. Therefore, in practice, it has been suggested

(Ramoser et al., 2000) to consider not just the maximum and

minimum eigenvectors but several of the eigenvectors corre-

sponding to the largest and lowest eigenvalue ratios. The powers

in these projections have been used to discriminate between two

distinct task conditions. The recovered components have been

termed common spatial patterns (Koles, 1997; Ramoser et al.,

2000).
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Example: evoked response synchronization and desynchronization

It is well established that in preparation for movement,

ongoing alpha activity (8–12 Hz oscillation) over the motor

cortex is reduced. The activity recovers slowly after movement.

This type of increase and decrease of oscillatory activity in

response to an event is known as event-related synchronization

and desynchronization (ERS/ERD) and has been reported for

different frequency bands and different types of events (Pfurtsch-

eller and Lopes da Silva, 1999). Though a general topographic

distribution for the activity of interest is known, the spatial

distribution and precise frequency bands are quite diverse across

subjects. The maximum power-ratio method can be used to

adaptively extract ERD and ERS. To this end, the EEG activity

is bandpass filtered in the frequency band of interest prior to

applying the optimization criteria (18). An example is shown in

Fig. 6.
Statistical independence

The methods presented thus far all use explicit timing

information of observable events. This timing information is used

to extract the EEG activity that coincides with those events

(potentially with some time lag). In some instances, however, one

may be interested in EEG activity associated with neuronal

activity for which no observable events occur, e.g., varying sleep
Fig. 6. ERD/ERS with generalized eigenvectors. In this experiment the subject resp

ratio analysis, all EEG channels are bandpass filtered between 5–40 Hz. The covar

200 ms after (R2) the button press. Top left: Scatter plot of the corresponding acti

wge, along with the two distributions having a maximum power (variance) ratio, est

ây corresponding to wge. Clear is that the source activity originates over motor are

between the hemispheres. Right: Spectrogram computed over s for component y(t

1 s before and after the button press (indicated with a vertical white line). Alpha b

for about 500 ms after the button push.
stages, covert shifts of attention, mental imagery, etc. A promising

approach in that case has been to decompose the EEG signal into

multiple components yi(t) with independent time courses. The

rationale for this has been that the central nervous system is

engaged in a multitude of separate processes, some of which are

interdependent while others are independent. One reasonable goal

is to combine all co-varying EEG activity into a single

component, while activity that takes on independent time courses

should be grouped into separate components. With linear

methods, at most D independent sources can be recovered, where

D is the number of sensors. The goal is to identify W =

[w1, . . . ,wD] such that the components y(t) = [ y1(t), . . . ,yD(t)]

y tð Þ ¼ WTx tð Þ ð19Þ

are statistically independent. There are a number of measures

that can be used to assess whether two time sequences are

statistically independent, each leading to a different optimality

condition for determining W. We avoid going into much detail

except to note that a necessary, though not sufficient, condition

is that independent sequences have a diagonal covariance

matrix. Interestingly, this diagonalization criterion when applied

to R1 and R2 leads to the same generalized eigenvalue

problem as above (Parra and Sajda, 2003). In fact, the solution

shown in Fig. 5 are the independent components that span the

data.
onds to a visual stimulus with a button press. Prior to the maximum power-

iance matrices R1 and R2 are computed in a window 200 ms before (R1) and

vity for two of the 64 EEG sensors. The solid line indicates the orientation,

imated using generalized eigenvalues. Bottom left: Estimated forward model

as (it is maximal over C3 and CP4) and has opposite sign (180 phase delay)

+ s) and averaged over t, which is approximately 300 button press events for

and activity (maximal at 12 Hz for this subject) decreases (de-synchronizes)



L.C. Parra et al. / NeuroImage 28 (2005) 326–341 335
Finally, we note that for any complete decomposition as in

independent component analysis (ICA), where one recovers as

many sources as there are sensors, the corresponding forward

model as given in (29) simplifies as shown in Appendix A.3 to

ÂAy ¼ W�T : ð20Þ

This is the expression conventionally used for the forward

model in ICA. In practice a variety of algorithms have been used to

compute independent components in EEG. They often give

equivalent results (Parra and Sajda, 2003). Most ICA algorithms

are based on simultaneous diagonalization of multiple (more than

two) cross-moments such as JADE (Cardoso and Souloumiac,

1993, 1996), SOBI (Belouchrani et al., 1997), or multiple

decorrelations (Parra and Spence, 2000; Parra and Sajda, 2003;

Pham and Cardoso, 2001; Ziehe et al., 2004). An exception is the

popular infomax ICA (Bell and Sejnowski, 1995), which is based

on a maximum entropy criterion.
Fig. 7. Sources recovered using ICA. (Top) Scalp projections for first 10

components recovered using infomax ICA in response to detected visual

(color) change. Ordering of the scalp projections is based on the fraction of

variance captured by each component. (Bottom) Time course of component

8 recovered using ICA. The plot at the bottom shows the average across

trials. Note negativity beginning around 200 ms and positivity around 300

ms, consistent with N2 and P3b.
A comparison of methods: recovering sources during a

complex visual detection task

In this section, we compare three different approaches

described above, namely statistical independence, maximum

power-ratio, and maximum magnitude difference, for recovering

source activity during a visual detection task. The corresponding

algorithms are independent component analysis (ICA), generalized

eigenvalue decomposition (GEVD), and penalized logistic regres-

sion (PLR). Specifically, we focus on an experiment involving an

interactive video game which results in many challenges in terms

of removing motion and eye-blink artifacts, detecting event-related

neural activity and removing confounding neural and non-neural

sources.

The experiment has subjects play a video game where they use

a keypad to move a ‘‘ship’’ in order to avoid incoming torpedoes

from a fleet of submarines. While subjects avoid incoming

torpedoes, they are instructed to also detect infrequent task-relevant

visual changes (counting changes in the color of submarines on the

display). The nature of the task, with rather infrequent secondary

task events, predicts N2 and P3b ERP activity (Friedman et al.,

2001) locked to detected visual changes.

Data acquisition and preprocessing

A 64-channel EEG system with a sampling rate of 1000 Hz

was used for these recordings. Eye-blink and eye-movement

activities were recorded separately so that these artifacts could be

removed from the EEG using the maximum power method,

described in ‘‘Maximum power’’. Prior to the analysis, the data

was filtered for low frequency drift, 60 Hz noise, and 120 Hz

harmonic noise.

Events were recorded and data was locked to visual ‘‘color

change’’ events. Subjects were required to respond with a button

press if they detected a visual change. A unique button was assigned

for detecting submarine color changes, while other buttons were

used for moving the player’s ship and avoiding torpedoes. All

button responses were made right handed. Trials were given a

binary label based on whether or not the subject detected a change

(pressed the detection button). Changes that were not detected by

the subject were not considered in this analysis.
Recovered sources

Figs. 7–9 show results for sources recovered using statistical

independence, maximum power-ratio, and maximum magnitude

difference, respectively. For the independence criterion, the data

are decomposed using the infomax ICA algorithms provided in

EEGLAB (Delorme and Makeig, 2004). For the maximum power-

ratio criterion, we use generalized eigenvalue decomposition

(GEVD) (Parra and Sajda, 2003), and for the maximum

magnitude difference, we use penalized logistic regression

(PLR) (Parra et al., 2002). For ICA and GEVD, we plot the

scalp projections for the 10 components, locked to the onset of

detected visual change, which capture the largest fraction of the

variance in the data. Note that there is a sign and scaling

difference between the scalp projections for ICA and GEVD

which results from the fact that neither method can uniquely

recover the sign and scale for these decompositions. Nonetheless,

the two decompositions show some similarity in the spatial

distributions of scalp activity. For example, the 8th ICA

component and the 1st GEVD component show very similar

scalp projections and corresponding time courses (absent the sign)

which is consistent with the expected N2 and P3b ERPs. The

results for the two methods vary for three reasons: (1) the specific



Fig. 8. Sources recovered using GEVD. (Top) Scalp projections for first 10

components with ordering based on the fraction of variance captured by

each component. (Bottom) Time course for component recovered using

GEVD. Note positivity beginning around 200 ms and negativity around

300 ms.

Fig. 9. Sources recovered using PLR show progression of task-related

activity. (Top) Scalp projections and level of discrimination (plotted as Az)

computed using PLR trained for different temporal windows. (Bottom)

Time course and scalp projection of discriminating source recovered via

training in a 100 ms window starting at 400 ms. Onset time of training

window is indicated at the top of each scalp projection. This analysis shows

the progression of task related activity from frontal to parietal areas.
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criterion for statistical independence used in the infomax ICA

algorithm is different from the diagonalization criterion discussed

above, (2) the infomax algorithm is sensitive to initialization, and

(3) The GEVD solution is sensitive to outliers.

For the maximum magnitude difference criterion, with sources

recovered using PLR, a single component is recovered which

may be interpreted as the neural activity associated with the

subject’s detection of visual change. In our analysis, we first

apply PLR during a 100 ms wide training window starting at 400

ms after the onset of the detected visual change. Within this

event-locked window, the PLR model is trained to distinguish

activity following a visual change that was detected versus a

change that was not detected. The resulting recovered component

is displayed in Fig. 9 with the inset showing the corresponding

scalp projection. From the PLR result, we see that this component

is similar to the 8th component recovered via ICA and the 1st

component in GEVD.

We can use the maximum difference criterion to investigate the

dynamics of the task-relevant activity, which represents neuro-

logical processing associated with change detection. In this case,

we train a PLR model to discriminate activity using different

temporal windows. For example, using a 100 ms window for s,
we compute the maximally discriminating components y(t + s)
for the window shifting from 1000 ms pre-stimulus to 1000 ms
post-stimulus. In this manner we compute the task-relevant

component during varying time intervals relative to stimulus

presentation, giving us the progression of the task-relevant

component.

We plot the results of these discriminators using a leave-one-

out ROC. Fig. 9 illustrates the results with the abscissa showing

the time index relative to when the change occurs (locked at 0

ms), and ordinate showing the Az. Also shown are the scalp

projections for different discriminators as they are trained on the

different windows. Clear is that the PLR estimate recovers

different discriminating activity, depending on the timing of the

training window and that, in this case, there is a systematic

change of discriminating activity from posterior to central regions

as the window progresses from 300–800 ms post-stimulus. This

changing spatial distribution of activity is consistent with a P300

source followed by a strong motor response that occurs roughly

at 650 ms post-stimulus (average response time is 688 ms for this

subject).

In summary, ICA may be useful when no timing information is

available, for instance when the variability across trials is very

large. The difficulty with ICA is that the results are subject to

interpretation. The same is true for CSP which, in addition, is

sensitive to outliers. The maximum power method may be most
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useful to identify motion artifact activity. The maximum power-

ratio method is useful when trying to identify non-time locked

activity. One must be careful, however to exclude any periods with

motion artifacts or myographic activity. Preferably, the data should

be band-pass filtered in the range of interest to further reduce the

effect of potential artifacts. When precise timing information is

available PLR gives the most robust results and high SNR for the

case of comparing the evoked response between two experimental

conditions.
Conclusion

In this paper, we have described three basic criteria for

recovering physically meaningful neural and non-neural sources

via a linear transformation of the EEG activity. These criteria

assume different characteristics and/or statistical properties of

the recovered source signals, though all assume an underlying

linear (Ohmic) model between the source currents and scalp

potentials. An advantage of the linear methods proposed here is

that they are, in general, computationally inexpensive and can

be implemented on-line and in real time, making them useful

for a variety of applications including brain–computer interfaces

and cognitively adaptive information displays. For example, we

currently use the subspace subtraction and discrimination

methods in a real-time system (Parra et al., 2003). The eye-

motion activity is estimated after a calibration run and subspace

subtraction is then applied in real time. The linear discriminator

is trained on-line using the Fisher linear discriminator.

In this paper, we have touched on robustness issues in detail

only for the discrimination methods for which we used ROC

analysis and leave-one-out cross-validation to determine robust-

ness and bootstrapping to determine statistical significance. Future

work should address robustness issues in particular for the

maximum power-ratio method borrowing perhaps on the statistical

methods recently introduced for MEG source localization (Darvas

et al., 2004, 2005; Pantazis et al., in press). Finally, we point out

that all methods described here are equally applicable to other

functional imaging techniques governed by linear imaging

equations such as magneto-encephalogy (MEG), and functional

near-infrared imaging (fNIR) where the measured optical signal is

a linear combination of the modulatory effect of the hemodynamic

response on the IR light.
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Appendix A

Much of what is discussed in the first four Appendices is based

on standard linear algebra. A good reference for this material is

Strang (2003). To make the relationship with the current material

explicit, we reproduce the standard optimality criteria and results in

the notation of this paper.
A.1. Minimum noise source estimate

For a given forward model A, we ask Fwhat is the projection V

that gives the best estimate of the source activities?_. If we assume

that the sources described by the columns in A capture most of the

power in the signal, it is reasonable to require that the noise account

for as little power in the data as possible. The best linear source

estimator thus can be obtained by assuming minimal noise power:

V̂VT ¼ arg min
V

X
t

�n tð Þ�2 ð21Þ

¼ ATA
� ��1

AT ¼ A#: ð22Þ

This is the conventional linear least-squares solution, and it is

independent of the data x(t). If the noise is spatially correlated and we

know its covariance matrix, this estimate can be improved. By

assuming temporally uncorrelated (white) Gaussian noise with cova-

riance Rn the maximum likelihood solution to this problem becomes

V̂VT ¼ arg min
V

X
t

nT tð ÞR�1
n n tð Þ ð23Þ

¼ ATR�1
n A

� ��1
ATR�1

n : ð24Þ

For spatially uncorrelated noise, Rn = I, we recover the pseudo-

inverse A#. The relation (7) between a source and its estimate apply

equally for this more general estimator VT.

In practice, the noise covariance can be estimated during resting

periods to capture the background EEG where the activity of

interest is not present. This method can be used to factor out the

effect of background EEG activity in the component estimate. In

the case that this noise is temporally correlated, it should be

whitened prior to computing Rn, for instance, by applying a

moving average filter with the linear prediction coefficients of the

noise (Hayes, 1996).

A.2. Minimum noise forward model estimate

For a given component y(t), we ask Fwhat is the best forward

model Â that explains most of the observed data during times t =

t1, . . . , tN?_. To keep the derivation general we consider a set of

components summarized in column vector y(t). Denote the linear

prediction of x(t) from y(t) with x�(t) = Ay(t). We minimize the

distance between the prediction and the data,

ÂAy ¼ arg min
A

X
t

�x tð Þ � x� tð Þ�2 ð25Þ

¼ XYT YYT
� ��1

: ð26Þ

In the last line, we have arranged the times of interest in the

columns of Y = [y(t1), . . . ,y(tN)] and X = [x(t1), . . . ,x(tN)].
We note that the corresponding source estimate Ŝy = Ây

#X

captures all the activity in X that is correlated with Y. To see this

consider the correlation of X– with Y

X8Y
T ¼ I� ÂAyÂA

#
y

� �
XYT ¼ 0: ð27Þ

The second equality follows after inserting (22) and (26) and

some simplification. The same can be shown for the source esti-

mator (24) if we define more generally, X–(t) = (I� ÂyV̂y
T ), where

the estimator V̂y
T is determined from Ây and some noise covariance

Rn using (24). This means that after subtracting the contribution of

Ŝy(t), there is no correlated activity left in X, as was intended.
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Finally, we note that the result of (26) is sensitive to constant

offsets in the electrode potentials x(t) and components y(t). Constant

offsets in the potentials originate from constant current sources and

are usually of little interest in neurophysiology. To segregate the

activity of constant sources from that of variable sources, one should

always include in Y a constant current component y(t) = 1, i.e.,

augment if necessary,YT @ [YT, 1], with an N-dimensional column

vector 1 = [1, 1,. . ., 1]T. The additional (last) column of Ây captures

the forward model of any observed DC activity. If x(t) and y(t) are

zero mean, this step can be omitted as in (9).

A.3. Relation between V, w and Ây

In general,A is the forward model whilew andV can be thought

of as backward models. The difference between w and V is that w

generates projections with specific optimality conditions, while V is

an estimator that recovers sources for a given set of forward models.

The model Ây associated with one or more w can be computed

using Eq. (9) or (26), and estimator V can be computed for any Â

with Eq. (22) or (24). In the case of Ây the estimate ŝy(t) in (5) is the

source of all the activity in the data x(t) that correlates with

components y(t).

We establish now some useful relationships between Ây, w and

V. In multiple dimensions and with the notation of the previous

section, we can write Y = WTX, where each row of W represents

the projection operator for each component in column vector y(t).

Denote the correlation of the sensors with

R ¼
X
t

x tð ÞxT tð Þ ¼ XXT : ð28Þ

Eq. (26) can then be rewritten as

ÂAy ¼ XXTW WTXXTW
� ��1 ¼ RW WTRW

� ��1
: ð29Þ

WhenW and R are full rank, this equation simplifies to Eq. (20)

in the main text. Furthermore, in the case of uncorrelated data, R =

I, Eq. (29) simplifies to Ây = W(WTW)�1 =W#T, regardless of the

rank of W. Therefore

V ¼ ÂA#T
y ¼ W#T

� �#T ¼ W: ð30Þ

Thus, the projection operator that recovers the sources ŝy(t)

associated with components y(t) is identical to the projection

operator that generates components y(t), and therefore, ŝy(t) = y(t).

If we choose estimator (24) instead of the pseudo-inverse (22) the

same can be shown for the case that the sensor data and the noise

data have the same spatial correlations, i.e., R = Rn.

A.4. Reduced rank space

In ‘‘Interference subtraction’’, we argue that noise artifacts can

be removed by subspace projection generating an artifact free

representation of the original data x–(t). This data has a reduced

rank which may be problematic for subsequent algorithms that

estimate various optimal projections W. For instance, all the

covariance matrices that are discussed in this paper, when

computed with x–(t) rather than the original x(t), will be rank

deficient.6
6 Principal component algorithms and generalized eigenvalue routines

will remain unaffected by this, simply the lower eigenvalues have to be

discarded. The inverse for the Fisher linear discriminant should be replaced

by the pseudo-inverse.
An alternative approach, which we use in our implementation

of the PLR, is to generate a representation of the data with reduced

dimensionality but full rank. This is easily accomplished using the

normalized null space of Awhich we denote here as A– such that

ATA– = 0 and A–
TA– = I. The representation of the data with

reduced dimensions is then

z tð Þ ¼ A#
8x tð Þ ¼ AT

8x tð Þ: ð31Þ
It is easy to show that x–(t), which is the corresponding

interference free activity in sensor space as defined in (8), is given

by

x8 tð Þ ¼ A8z tð Þ: ð32Þ

Any W that has been computed using z instead of x

corresponds to WA–
T when computed for the original sensor space

x. In particular use, y(t) = Wz(t) = WA–
T x(t), prior to computing

the forward model Ây in (26).
Appendix B

B.1. Logistic regression

The assumption in logistic regression is that the data when

projected onto coordinate, y = wTx + b, is distributed according to

a logistic function, i.e., the likelihood that sample x belongs to the

class of positive examples, c = +1, follows

p c ¼ þ1jxð Þ ¼ f yð Þ ¼ 1

1þ e�y
¼ 1

1þ e� wT x þ bð Þ : ð33Þ

This likelihood is parametrized by the projection vector w and

bias b. The likelihood for negative examples, p(c = �1Ax) = 1 �
f(x), is also a logistic (see Fig. 10). The hyper-plane orthogonal to

w and shifted by b from the origin divides the two classes. This

model is accurate assuming that the data for each class is

distributed according to a Gaussian, Bernoulli, Poisson, or any

other distribution within the exponential family. The method is

called logistic regression because the regression orientation w is

adjusted such that the data matches the logistic model distribution
Fig. 10. Top: logistic function. Bottom: cross-entropy error e lr and effective

SVM error function esvm for positive examples.
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(33). This can be accomplished by maximizing the likelihood of

the data with respect to the model parameters. Given i.i.d. samples

xt, ct, the negative log-likelihood of the data is

L w; bð Þ ¼ �
X
t

log p ct jytð Þ: ð34Þ

The maximum likelihood solution for the parameters w is

wlr ¼ arg min
w

L w; bð Þ: ð35Þ

There is no closed-form solution to this optimization problem.

However, the maximum can be computed using a fast algorithm

based on iteratively reweighted least squares (IRLS) (McCullagh

and Nelder, 1989). It is a type of Newton–Raphson gradient

descent algorithm called the Fisher Scoring method where the

Hessian is given by the Fisher information matrix (FIM):

w k þ 1ð Þ ¼ w kð Þ � E
@2L wð Þ
@w@wT

�� �1
@L wð Þ
@w

: ð36Þ

The algorithm is summarized in Table 1 with k = 0.

For perfectly separable classes the transition between classes

can be arbitrarily sharp and the norm �w� grows without

bounds. We can limit the slope of the transition between classes

by adding a penalty term k
2
�w�

2
to the cost function (34),

which is equivalent to assuming a priori that w is Gaussian

distributed with zero-mean. The corresponding algorithm is

called penalized logistic regression (PLR). The terms with k in

Table 1 implement this additional penalty.

B.2. Support vector machines and penalized logistic regression

The optimality criteria for support vectors machines (SVMs)

differs, on the surface, from logistic regression: the projection

vector w is chosen so that the region around the dividing hyper-

plane that is free of samples is as wide as possible. This region is

called the ‘‘margin’’, and so this is called a ‘‘maximum margin’’

criterion. Since the margin is as wide as possible, there will be

samples on its boundaries that therefore define the margin. These

are the so-called ‘‘support vectors’’. If the problem is not separable

there is no such margin. In this case, some samples are allowed to

violate the margin, but with a penalty that is linear in the amount of

the violation. The optimization problem for SVMs is a quadratic

programming (QP) problem, so there is one optimum, and the

algorithms to solve it are relatively fast (Burges, 1998; Müller et al.,

2001). Here, we highlight the similarity between support vector

machines and penalized logistic regression.
Table 1

Penalized logistic regression using IRLS

Initialize w = 0

Repeat these 4 steps until w converges

p @ f(wT * X)

g @ X * (d � p) � � * w

H @ X * diag (p.* (1 � p)) * XT + � * I

w @ w + H�1 * g

f() is applied element-wise, * is the inner product, .* is the element-wise

product, d is a row vector containing {1, 0} class labels for each sample,

and diag() converts a vector into a diagonal matrix. Column vector g

represents the gradient, and H is the FIM in Eq. (36). In this

implementation, the bias term was merged with vector w by substituting

[w, b] Y w, [x, 1] Y x, and � Y k
I 0

0 0

��
:

The conditions on the support vectors can be derived from a

cost function that is quite similar to penalized logistic regression,

L w; bð Þ ¼
X
t

� ct ; ytð Þ þ k
2
�w�

2
: ð37Þ

In fact, we recover PLR with

�lr c; yð Þ ¼ � log p cjyð Þ ¼ �d log f yð Þ � 1� dð Þ log 1� f yð Þð Þ; ð38Þ

where d = (c + 1)/2. This expression is also called the cross-

entropy error.

The gradient of (37) with respect to w must be zero at a

minimum of L, which implies that

w ¼ � 1

k

X
t

@�

@y
ct ; ytð Þxt ð39Þ

at a minimum. If we define at = �ctkfle(ct, yt)/fly, then w =
~ta tctxt, which is the expression normally obtained for a linear SVM

(Burges, 1998).

To carry the analogy with SVMs further, let us require at � 0

and ~ta tct = 0. The first of these requirements is then

� ct
@�

@y
yt ; ctð Þ � 0: ð40Þ

This is the plausible condition that for positive examples, the

error function does not increase with y and for negative examples it

does not decrease with y. An important example is elr , so this applies

to PLR discriminators. The second condition, ~ta tct = 0, becomes

~tfle / fly( yt, ct) = 0: For both SVMs and the other linear classifiers, we

are considering, this just expresses the condition for the objective

function to be at an extremum with respect to b. Thus, for a linear

discriminator, the parameters that optimize most reasonable error

functions plus a weight-decay term can be expressed in exactly the

same way as the SVM expression for the weight vector.

Furthermore, we can express the SVM optimization problem in

the same terms, with the error function

�svm y; cð Þ ¼ 1� cy if cy < 1

0 otherwise:

	
ð41Þ

To show this, note that esvm is continuous but not differentiable

at cy = 1. A standard trick for optimizing a piece-wise differentiable

function is to introduce an extra variable to the optimization

problem, say n, replace the piece-wise differentiable function with

this new variable, and add the constraints that this variable must be

greater than each of the differentiable pieces. In our case, we

introduce a new variable nt for each example in the training set.

Each occurrence of the error function in Eq. (37) is then replaced

with the corresponding new variable. If we let k = 1/C and multiply

L by C, we get

L w; bð Þ ¼ 1

2
�w�

2 þ C
X
t

nt ; ð42Þ

which we minimize subject to the constraints

ct wTxt þ b
� �

� 1þ nt � 0; and ð43Þ

nt � 0: ð44Þ
This is, of course, exactly the SVM optimization problem, with

slack variables introduced to allow some data points to violate the

margin conditions, with a penalty.
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To compare esvmwith elr , consider the behavior of elr(c, y) for c =

+1 at the extremes of y. For large positive y, this is elr(+1, y) =

log(1 + e�y) � e�y, so that it approaches zero rapidly. For large

negative y, this is elr(+1, y) = �y + log(1 + e y) � �y: Thus, it

increases linearly as y decreases. This similarity with esvm(+1, y) is

clear (see Fig. 10). The behavior for negative examples is simply

reflected about y = 0.

Given the similarity between SVMs and PLR discrimina-

tors, we might expect the performance of discriminators

trained with the two methods to be similar. The main

difference lies in the transition region, near y = 0, so the

SVM and PLR solutions will be similar if the classes are well

separated and the penalty constant k is not too large. For a

PLR classifier, few if any of the a will be zero, but those

that would be zero in the SVM solution will be very small in

the PLR.

Conversely, the two classifiers will be different if there are

many examples that fall in the margin or non-asymptotic region,

i.e., when the two classes do not separate well. In our experience,

SVMs fail under these conditions, misclassifying many examples,

whereas PLR gives reasonable answers. We can explain this

observation as the breakdown of the intuitive idea of a margin

when most examples fall within it.

Finally, we note that the same arguments can be applied to non-

linear SVM and non-linear Logistic Regression, which is presented

in greater detail in Wahba (1999) and Girosi (1998) along with the

linear case.
Appendix C

C.1. Generalized eigenvalue problem

Here, we show the relationship of the generalized eigenvalue

problem to the maximum power criterion and the maximum

power-ratio criterion.

At its optimum, the gradient of the power ratio must vanish.

Defining k as the power ratio

k ¼ wTR2w

wTR1w
; ð45Þ

we can write this condition as

0 ¼ @k
@wT

¼ R2w� kR1w

wTR1w
; ð46Þ

and therefore

R2w ¼ kR1w; ð47Þ

which is a generalized eigenvalue equation with k as the

eigenvalue. Of the possible solutions, which can be found with

standard numerical methods, we choose the one with the largest

eigenvalue, as this is equivalent to the maximum power-ratio

according to the definition (45).

The same argument applies for the maximum power

criterion of Eq. (15) if we set R1 = I, in which case (47)

becomes a conventional eigenvalue equation and the maximum

eigenvalue corresponds to the maximum power. The corre-

sponding eigenvector is also called the first principal

component.
C.2. Generalized eigenvectors are commons spatial patterns

Koles introduced to EEG analysis a decomposition that

diagonalizes the covariance matrices during two experimental

conditions which they termed common spatial patterns (CSP)

(Koles, 1997; Ramoser et al., 2000). We review here the fact that

such simultaneous diagonalization is equivalent to the generalized

eigenvectors of R1 and R2 (Fukunaga, 1990), and according to

Parra and Sajda (2003) are therefore an estimate of the independent

components of the data. The CSP components are computed as

follows (Ramoser et al., 2000):

(1) Diagonalize and scale matrix (R1 + R2) by finding an

orthogonal matrix P such that the covariance becomes identity (a

process known as ‘‘sphering’’)

PT R1 þ R2ð ÞP ¼ I: ð48Þ

(2) Diagonalize matrix (PTR1P) by finding an orthonormal

rotation matrix R such that

RT PTR1P
� �

R ¼ D; ð49Þ

with diagonal D. The CSP components are then

Wcsp ¼ PR: ð50Þ

It is easy to show that Wcsp satisfies the following two

diagonalization conditions

WTR1W ¼ D1; ð51Þ

WTR2W ¼ D2; ð52Þ

with some diagonal matrices D1, and D2. Eq. (51) with, D1 = D,

follows from (49) and definition (50). Eq. (52) with, D2 = I � D,

follows from (48)–(50).

Another matrix that satisfies these diagonalization conditions

(with different diagonal values) can be found by combining the two

equations: Right-multiply (51) with W�1R1
�1 leading to WT =

D1W
�1 R1

�1; insert this into (52), and left-multiply with R1WD1
�1,

which gives

R2W ¼ R1WL; ð53Þ

with � = D1
�1D2. This is a standard generalized eigenvalue

equation where all the eigenvalues are written as a diagonal matrix

�.

We denote the solution for the corresponding eigenvectors as

Wgev. We find therefore that both Wcsp and Wgev satisfy the

diagonalization conditions (51) and (52). Indeed, they are related

by a simple diagonal scaling matrix S

Wgev ¼ S1=2Wcsp; ð54Þ

which we identify as S = D1 + D2 = Wgev
T (R1 + R2)Wgev after

inserting (54) into (51) and (52), eliminating D, and solving

for S.

In summary, we have shown that common spatial patterns

are essentially the generalized eigenvectors of covariance

matrices estimated at different times. This, in turn, is known

to be an estimate of the independent components of the data

under the assumption of non-stationary sources (Parra and Sajda,

2003).
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