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Abstract—Electroencephalography and other neural recording
techniques collect simultaneous data with a multitude of
channels. A variety of methods have been proposed to analyze
such high-dimensional data and go by various 3-letter acronyms
such as PCA, ICA, LDA, SVM, CSP, DSS, CCA, CSD. What all
of these methods have in common is that they integrate
information by averaging across space, and the different
techniques only differ in the contribution of each channel to the
average. This has the potential to substantially improve signal
quality. The goal of this presentation is to give an overview of
existing techniques focusing on those techniques that have an
easy to understand objective criterion. It should thus provide a
guide on how to pick the technique that best suits a given
experimental goal. The review will start with the simplest and
most straightforward idea, and finish with a few more recent and
novel techniques that are not yet widely known.

To start, assume that a multidimensional signal x(t) is
recorded and we wish to summarize this information into one
or several “components” y(t) that have a better signal-to-noise
ratio (SNR) as compared to the original individual channels:

y(t)=w"x(t) M

The challenge lies in finding the optimal spatial projection
vector w — or “weights” of the weighted sum in (1) — that will
accomplish this task. Of course optimality will depend on what
we consider signal and what is undesirable noise. The simplest
possible idea would be that of “matched filtering” (introduced
for EEG in [1]). Assume the signal of interest is the activity
that is reliably evoked at time t, by an event, say, a button push
or a flash on the screen. If we have several repetitions of the
event, we would look at the average evoked response and
consider that a “template” for the activity of interest. Matched
filtering implies setting the projection vector equal to the
template (over-bar indicating the mean value across repeats):
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With this choice, channels that give a positive evoked
response will contribute positively to the projection y(t) and
channels with a negative evoked response will also contribute
positively. Therefore, regardless of the polarity of the evoked
response on any one channel, all channels add up coherently in
the new component y(t) and channels that do not have an
appreciable evoked response do not contribute. By
construction, this approach will always give a positive
projection at the time of interest, y(t,))>0, even if one is looking
at random noise. One can use standard randomized shuffling
techniques to determine if this non-zero value rises above

w=x(t,)
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chance values. The same statement applies to all subsequent

techniques discusses here. Note that matched filtering
maximizes the mean value of the projection:
max y (t,) 3
w

Typically, however, the experimenter is not just interested in
the mean activity, but rather wants to know if the mean activity
is large compared to the variation across repetitions in the
experiment. That is, one may be interested in finding
projections that maximize the mean over standard deviation
across repetitions (omitting the dependence on time):

T= 'y
max T=max Oy Yy

w w
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This is the familiar T-statistic used for the Student's t-test.
The projection that maximizes this statistic is simply given by:
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So, if one is interested in finding the linear combination of
sensors that gives the largest t-statistic and thus the smallest
p-value (probability of chance occurrence of an effect) all that
is needed is the covariance R, and the mean x across repeats
measured at the time of interest. In many experiments one is
not interested just in the activity evoked by one type of event,
but rather, one would like to know if there is a difference
between two experimental conditions. In that case the matched
filter is given by the difference of the means:
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w=R, X

W=X,—X, (6
and the projection with the optimal T-statistic to detect this
mean difference above the trial-to-trial noise is given by:
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which is the well known Fisher Linear Discriminant [2]. To
obtain robust results when taking the inverse of a covariance
matrix it is standard procedure to remove outliers and/or apply
shrinkage techniques in the computation of the covariance.
Alternatively, one can use contemporary techniques that are
inherently robust to outliers such as penalized logistic
regression or support vector machines [1].
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It may be that one is not interested in evoked responses, but
rather, one would like to find activity that has maximum
power, e.g., oscillations in a given frequency band without
regard for the sign of the activity. In this case the phase is not
important and instead just the strength of deviation from
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baseline matters. Mathematically, one would like to find the
projection with the maximal standard deviation:

2 T
max oy;=max w Ry,w . €]
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(tilde ~ indicate that variance/covariance is be measured on
filtered data). This criterion is optimized by the eigenvectors of
the covariance matrix, or “principal components” [3]:

R.,w=Aw . ©)

The eigenvector with the largest eigenvalue produces the
component with the largest power. Subsequent eigenvectors are
spatially orthogonal to the first and produce additional
components that are uncorrelated from the first, and carry the
next strongest power. Capturing components that are
uncorrelated and capture successively the next strongest power
may be useful (e.g. for dimensionality reductions), but spatial
orthogonality is a meaningless constraint for most
electrophysiological recordings. In addition, the power in a
specific frequency band may in-itself not be particularly
meaningful. More typically one is interested in the power
within a frequency band relative to the total power in the
signal. That is, one may wish to maximize:
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The solutions are provided by this eigenvalue equation:
R, Ry ,w=Aw . (1)

The eigenvector in this equation with the strongest
eigenvalue generates the linear projection or component of the
data with the highest SNR — assuming uncorrelated noise,
optimizing (10) is equivalent to optimizing SNR. The
eigenvector with the second highest eigenvalue generates a
component that is uncorrelated from the first and captures the
next highest SNR, etc. Note that these projections vectors are
no longer orthogonal. Instead, eigenvalue equation (11) ensures
that the components are also uncorrelated for the filtered data.
This additional condition allows us to drop the physiologically
meaningless spatial orthogonality constraint. The approach of
(11) is is the same as in Common Spatial Patterns, where the
two covariance matrices are measured on the original data, but
in two separate periods of time (see [1]). This will generate
components sorted by the power-ratio between those two time
periods, which is useful to detect components that exhibit a
maximum change in power, e.g., alpha “desynchronization”
[1]. Various other choices for the matrices result in a number of
different blind source separation techniques [4]. This version
presented here in particular represents a special case of linear
Denoising Sources Separation [5].

As before, one may be worried about the numerical
robustness of the eigenvalue equation (11) — in particular if the
two covariances are very similar. This may happen when
looking for signals with very small SNR, or, equivalently, the
effect size is small. In that case, a linear approximation of the
power-ratio criterion above is useful, namely, the difference of
the two covariances, e.g., measured at times ¢ and ¢,:

max (oi(tl)—oi(tZ)) , 12)

Support for this work was provided in part by DARPA/DSO NIA and N2 programs.

This is optimized by the eigenvectors of the covariance
differences:

Rxx(tl)_Rxx(tQ))W:}\‘W : (13)

We have used this successfully to extract very small
variations in the alpha power during free viewing visual search
(Dias et al., in preparation).

We would like to mention one last approach for extracting
linear projections of interest. Sometimes there are no
well-defined events in the experimental paradigm that can
serve as time markers to facilitate averaging over repeated
events. Imagine the experimental subjects are exposed to a
continuous stimulus, say, human subjects watching a movie.
Instead of regressing the data against discrete events in time,
one can then instead regress them against the signal recorded
from a different subject who was exposed to the identical video
(or a repetition with the same subject). In that case one is
interested in the component that maximizes the correlation
between signals from different subjects/repeats, i.e., we now
want to maximize the correlation coefficient between data-set 1
and 2. After symmetrizing the problem this can be formulated
as:
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Again, mathematically the answer is the same as before,
namely, eigenvectors of the following eigenvalue problem:

(Rx‘x‘+Rx,x,)71(Rx,x,+Rx,x‘)W:}\'W . (14)

This approach which we call “correlated component
analysis” [6], differs from conventional canonical correlation
analysis (CCA) [7] in two important ways:1) by using the same
projections vectors for both data sets the dimensionality of the
problem is reduced. 2) Reducing the number of unknowns
allows one to dispense of the spatial orthogonality constraint of
CCA , which, as stated before, is meaningless in most
physiological recordings. With this approach we have found
EEG components that are indicative of subjective engagement
in a movie clip with a second-by-second resolution [6].

A extended version of this short guide is in preparation.
Please contact LCP if you would like to reference this material.
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