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Abstract

We develop a probabilistic network model over image spaces and demonstrate its broad utility in mammographic image analysis,
particularly with respect to computer-aided diagnosis. The model employs a multi-scale pyramid decomposition to factor images across
scale and a network of tree-structured hidden variables to capture long-range spatial dependencies. This factoring makes the computation
of the density functions local and tractable. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov
model on a tree. The model parameters are found with maximum likelihood estimation using the expectation-maximization algorithm. The
utility of the model is demonstrated for three applications: (1) detection of mammographic masses for computer-aided diagnosis; (2)
qualitative assessment of model structure through mammographic synthesis; and (3) compression of mammographic regions of interest.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction given the need for a second radiologist /mammographer.
Methods to provide improved detection with little increase

Computer-aided diagnosis (CAD) can be defined as a in cost will have significant impact on the benefits of
diagnosis made by a radiologist who incorporates the screening. Automated CAD systems are a promising
results of computer analysis of the radiographs (Doi et al., approach for low-cost double-reading.
1993). The goal of CAD is to improve radiologists’ Several CAD systems have been developed for mam-
performance by indicating the sites of potential abnor- mographic screening and the first have been approved by

1malities, to reduce the number of missed lesions, and/or the FDA. Complete systems have been rigorously char-
by providing quantitative analysis of specific regions in an acterized, both in retrospective and prospective trials
image to improve diagnosis. CAD systems typically oper- (Burhenne et al., 2000). Though many have demonstrated
ate as automated ‘‘second-opinion’’ or ‘‘double-reading’’ clinical utility, there is still a need to reduce false-positive
systems that indicate lesion location and/or type. Since rates generated by CAD systems. For example, prospective
individual human observers overlook different findings, it clinical studies have shown lower sensitivities and specifi-
has been shown that double reading (the review of a study cities than originally found in retrospective studies—80%
by more than one observer) increases the detection rate of cancers detected with 2.4 false positives per case in
breast cancers by 5–15% (Bird, 1990; Metz and Shen, prospective studies versus 85–90% sensitivity at one to
1992; Thurfjell et al., 1994). Double reading, if not done two false positives per case in retrospective studies
efficiently, can significantly increase the cost of screening, (Nishikawa et al., 1996).
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1 .1. The role of statistical pattern recognition and appearance models for medical image analysis, most
neural networks in CAD notably those of Cootes and Taylor (Cootes et al., 1994;

Cootes and Taylor, 2001). These approaches construct a
CAD systems usually consist of two distinct subsystems, statistical description of object shape over a set of land-

one designed to detect microcalcifications and one to marks that are often extracted by a human expert (e.g.,
directly detect masses (Giger et al., 2000). A common radiologist). The statistical descriptions are formulated as
element in both subsystems is a statistical pattern recogni- generative models and can be sampled to construct new
tion model, used to improve detection and reduce false- instances of a given shape. The approach has demonstrated
positive rates introduced by earlier stages of processing. great utility in localizing structure in medical imagery,
Neural networks are a particularly important class of particularly in cases where the structure is well described
statistical model in CAD because they are able to capture by its contours /borders (e.g., ventricles in the brain and
complicated, often nonlinear, relationships in high dimen- heart). However, in the case of mammography, lesions are
sional feature spaces not easily captured by heuristic or not well characterized by border shape alone. Radiologists
rule-based algorithms. Several groups have developed typically integrate evidence which includes texture, homo-
neural networks architectures for CAD. Many of these geneity, and spiculation, as well as contextual information
architectures exploit well-known features that might also such as vascularization and proximity to mammillary ducts
be used by radiologists (Floyd et al., 1994; Jiang et al., (Kopans, 1989). Therefore, a concise set of landmarks is
1996; Huo et al., 1998), while others utilize more generic not easily extracted and instead a classification system
feature sets (Zhang et al., 1994; Lo et al., 1996; Chan et must learn the set of shape and non-shape features which
al., 1998; Sajda et al., 2002). In general, these neural are correlated with disease (or absence of disease).
networks arerecognition or discriminative probabilistic Significant efforts have also focused on the construction
models (Dayan and Abbott, 2002) in that they estimate of generative probabilistic models for directly modeling
Pr(C u I), the conditional probability of classC (e.g., mass images. Grenander (1983) was one of the first to propose a
versus non-mass) given imageI or a set of features Bayesian framework for image analysis. This framework
extracted fromI. An alternative approach is to construct a led to the development of a series of image distribution
generative probabilistic model of the data, which, using models, most notably the Markov Random Field (MRF)
the aforementioned formulation, would be a model that developed by Geman and Geman (1984) and further
estimates the class conditional distribution, Pr(I u C). Such developed and studied by others (e.g., Chellappa and
a model has several attractive features for mammographic Chatterjee, 1985). MRFs model distributions by assuming
image analysis. For example, classification is possible by that images are locally smooth except for relatively sparse
training a distribution for each class and using Bayes’ rule intensity gradients and edges. The underlying assumption
to obtain Pr(C u I)5Pr(I u C)Pr(C) /Pr(I). In addition, of an MRF is that local image structure is sufficient for
novel examples, relative to the training data used to build global image representation. However, these models tend
the model, can be detected by computing the absolute to be computationally expensive, have limited forms for
likelihood over each model. In terms of CAD, the ability to the distributions/potential functions, and have difficulty
identify novel examples is useful for establishing confi- capturing more global structure and long-range dependen-
dence measures on the CAD output (e.g., should the output cies in images. Zhu et al. (1997) attempted to overcome
of the classifier be ‘‘trusted’’ given that the current data is some of the limitations in MRFs by computing distribu-
very different from the training data). In addition, novelty tions over a set of features constructed from the histograms
detection can be used to identify new clinical data that of filtered images (e.g., using Gabor filters). In their
might be used to re-train / refine the CAD system. Since approach they compute the maximum entropy distribution
essentially any type of image analysis can be formulated given the statistics across these features. Though this
given knowledge of the distribution of the data, the approach works well for textures, it is not clear how well it
generative probabilistic model can also be used to com- models the appearance of more structured objects.
press (Cover and Thomas, 1991), suppress noise (Romberg De Bonet and Viola proposed a flexible histogram
et al., 2001), interpolate, increase or extend resolution approach (De Bonet and Viola, 1998; De Bonet et al.,
(Freeman et al., 2002), etc. 1998), where features are extracted at multiple image

scales, with the resulting feature vectors treated as a set of
independent samples drawn from a distribution. The

1 .2. Generative probabilistic models for images distribution of feature vectors is subsequently modeled
using Parzen windows. Though they report good results,

Previous research has focused on developing probabilis- their model treats the feature vectors from neighboring
tic models of biological and natural shapes, much of which pixels as independent samples, when in fact they share
is based on the work of Grenander et al. (1991). This has exactly the same components from lower resolutions. One
in turn led to the development of active shape and solution to this is to build a model in which the features at
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one pixel of one pyramid level condition the features at • The coefficients of the different subbands at each node
each of several child pixels at the next higher-resolution are modeled jointly, using mixtures of multivariate

2pyramid level. The multiscale stochastic process (MSP) Gaussian distributions.
methods do exactly that. Luettgen and Willsky (1995), for • The number of hidden states in each level is adjusted
example, applied a scale-space auto-regression (AR) model separately in an attempt to better fit the image dis-
to texture discrimination. They use a quadtree or quadtree- tribution.
like organization of the pixels in an image pyramid, and • The hidden states capture complex structure in the
model the features in the pyramid as a stochastic process image through the use of mixture, hierarchy and scale
from coarse-to-fine levels along the tree. The variables in components.
the process are hidden, and the observations are sums of• The probability of a child state value at a node,
these hidden variables plus noise. However, the assumed conditioned on the state at the parent node, also
Gaussian distributions are a limitation of MSP models as depends on the child node’s relative position, e.g.
well as the fact that the model is of the probability of the upper-left, lower-right, etc.
observations on the tree, not of the image. Once again, • The mean of each normal distribution depends on the
these methods appear well suited for modeling texture, but corresponding coefficient vector in the unsampled
it is unclear how one might build models to capture the wavelet coefficient subbands from the next coarsest
appearance of more structured objects, such as mammog- resolution pyramid level. (The HIP model resembles a
raphic masses. simple MSP model in this way.)

Recently, several groups have developed what are In the following we begin by presenting the structure of
essentially extensions of the MSP model by adding hidden the HIP model, along with an EM algorithm used to
variables. These can be seen as improving the model’s estimate its parameters. We first describe the most simple
ability to capture non-local dependencies in the image. For form of the HIP model, namely with a single component in
example, Crouse et al. (1998) developed their Hidden the hidden variable structure, and then augment the model
Markov Tree (HMT) models for signals and images. A to include mixture, hierarchy and scale components. We
primary motivation of these models is to capture the then demonstrate the broad utility of the complete model
tendency for wavelet coefficients to group into two classes, by presenting results for several applications in mammo-
one with large and the other with small coefficient graphic image analysis, including mass detection in CAD,
magnitudes. Thus their hidden states have one of two mammographic synthesis, and compression of mammog-
values corresponding to large and small wavelet coeffi- raphic ROIs. In all cases we compare results to a tradition-
cients. This is well suited to the many signal and image al HMT (Crouse et al., 1998).
types that have homogeneous regions with boundaries.
These models have been successfully applied to several
problems, especially image enhancement and texture seg-2 . Structure of the HIP model
mentation (Romberg et al., 2001; Coi and Baraniuk, 2001).
Cheng and Bouman (2001) applied a similar model for 2 .1. Coarse-to-fine factoring of image distributions
segmentation, in which the observed class labels play the
role of hidden variables, and therefore are no longer Similar to previous work (Luettgen and Willsky, 1995;
hidden. De Bonet and Viola, 1998; De Bonet et al., 1998; Crouse

We have developed a class of models for probability et al., 1998; Cheng and Bouman, 2001) we model depen-
distributions of images that we call hierarchical image dencies in an image over a range of scales. We begin by
probability (HIP) models. The HIP model can be viewed representing the image as a set of feature images, for
as a development of the HMT model, with several example computed using a set of filters with limited spatial
differences. The main elements of both the HIP and HMT support. Coarse-scale image structure is captured by
models include: applying the set of filters at a low-resolution in a pyramid
• Capturing local dependencies in a coarse-to-fine factor- decomposition of the image. Long-range dependencies of

ing of the image distribution over scale and position. fine-scale structure are modeled by conditioning fine scales
• Capturing non-local and scale dependencies through a on coarse scales. Denoting the set of feature images at

set of discrete hidden variables whose dependency pyramid levell by F , the goal is to write the imagel

graph is a tree. distribution in a form similar to Pr(I)|
• Optimizing model parameters to match the natural Pr(F u F )Pr(F u F ) . . . .0 1 1 2

image statistics using strict Maximum Likelihood. We first prove that a coarse-to-fine factoring of this form
• Enabling both evaluation of the likelihood and sampling is exact. From an imageI build a low-pass (e.g., Gaussian)

from the distribution.
2In addition, the HIP model differs from the HMT model Arbitrarily complex distributions can be modeled as mixtures of

in the following ways: Gaussians.
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features or sampling from the distribution (e.g., synthesis)
it will be important to keep the determinants.

2 .2. Hidden variables for modeling non-local
dependencies

For the sake of computational tractability we would like
to factor Pr(G u I ) over position. However, this isl l11

problematic due to non-local dependencies that remain
after coarse-to-fine factoring. Fig. 2 illustrates these depen-
dencies. Assume that the presence of a particular object,OA

(e.g., mammographic mass), may be inferred with highFig. 1. Pyramids and feature notation used to demonstrate coarse-to-fine
factoring. probability at a coarse scale,l 11, of the image pyramid.

Assume further that the presence ofO implies with highA

probability the presence of a texture at positionx at a finer
scalel. Since we may need to examine an extended spatial

pyramid. Call thelth level of this pyramidI , with the area at levell 1 1 to detect the object, the presence of thel

original full resolution image denoted asI (see Fig. 1). texture atx in level l can depend upon an extended spatial0

For each low-pass imageI at levell extract a set of feature area in levell 1 1, i.e., the dependence between scales isl

images F . Appropriate sub-sampling of these features non-local. Similarly (see Fig. 2(B)), the information atl

results inG , having the same dimensions asI . Denote level l 1 1 may be sufficient for detecting an object but notl l11
˜by G the set of images containingI and the images in for distinguishing its class,O or O (e.g., mass versusl l11 A B

˜ ˜G . Finally, denote the mapping fromI to G as & . We non-mass). However, the detection of a single objectl l l l
3 imposes constraints of structure at high resolutions, forcontinue this decomposition up to layerL. Wavelet

instance that distant positions inl have similar texture.transforms are well-known examples of such mappings.
Once again, conditioning fine scales on coarser scalesAlternately, one could build Gaussian pyramids (Burt and
cannot capture these long-range dependencies, which areAdelson, 1983) to obtainI and then filter these withl

entirely within the finer scale in this example.several carefully chosen band-pass filters, followed by
To capture these dependencies we introduce a hiddensubsampling, as shown in Fig. 1.

˜ ˜ ˜ variableA that takes on values in some set!. We assumeSuppose now that& : I ∞G is invertible. Then& is al l l l

that A contains sufficient information for Pr(G u I ,A) tochange of variables, and we can relate the distributions on l l11

factor over positionx,the two different sets of variables through multiplication
˜ ˜ ˜by the Jacobian, i.e., Pr(I )5 u& uPr(G ). Since G 5 Ll l l l

˜(G ,I ), Pr(G ) can be factored to obtain Pr(I )5 Pr(I)~O PPr(G u I ,A) Pr(A)F Gl l11 l l l l11
l50A[!˜ ˜u& uPr(G u I )Pr(I ). If & is invertible for all l [l l l11 l11 l

Lh0, . . . ,Lj then we can recursively apply this change of
5O P P Pr(g (x) u I ,A) Pr(A). (3)4 F Gl l11variables and factoring procedure to obtain l50 x[3A[! l

L Here,3 is the set of all positions in resolution levell inl˜Pr(I)5 Pu& uPr(G u I ) . (1) 5F Gl l l11 the wavelet /multi-resolution decomposition. Note that byl50

replacing uppercase letters (e.g.,G ) with lowercase letterslThis is a very general result, valid for all Pr(I), requiring which are functions ofx (e.g., g (x)) we are indicating alonly that the mapping be invertible and unique. factoring of the features over position.
If our features are the outputs of linear filters, the To simplify, we assume that, givenA, g (x) dependsl˜determinantsu& u depend only on the filters used, and notl only on the local information inI which is captured byl11on the image or model parameters. Therefore, we can dropf (x), the features ofI at positionx. To be precise, thel11 l114the determinants if we write Eq. (1) as a proportionality complete decomposition ofI requires in addition to thel11

L high-pass featuresF also the low-pass informationI .l11 l12
Pr(I)~PPr(G u I ) . (2) To simplify the presentation, we drop this, essentiallyl l11

l50
assuming thatA carries all of the coarse-scale intensity

Note that for comparing the likelihoods with different information fromI that is relevant forG . (In practice, itl12 l

3 ˜It will prove convenient to defineG to be the same asG .L L
4 5For the last layerL the conditioning onI is to be ignored, since we In the following we frequently simplify expressions by omitting theL11

definedG to include I . limits of the sums and products, since they should be clear from context.L L11



P. Sajda et al. / Medical Image Analysis 7 (2003) 187–204 191

Fig. 2. Example of dependencies that cannot be captured by a coarse-to-fine factoring. (A) An objectO , detectable at levell 1 1, implies the presence ofA

particular texture at locationx at levell. Since we place no constraints on the spatial extent ofO in level l 1 1, the presence of the texture atx can dependA

upon an extended region inl 1 1. (B) The information in levell 1 1 may be insufficient to discriminate between objectsO andO , however the detectionA B

of a single object imposes global dependencies that constrain the textures at distant positions to be homogeneous (either B-left or B-center, but notB-right).

is not difficult to include it, and we do this in the The structure of the joint distribution Pr(A) of variables,
experiments presented later.) This gives A5 ha (x) u x [3 , l 50, . . . ,Lj, captures the statisticall l

relation between the segmentation in different regions and
scales. In addition, due to the factorization over space thePr(I)~O PP Pr(g (x) u f (x),A) Pr(A). (4)F Gl l11

xlA dependency structure of Pr(A) has to communicate non-
local information over different regions of the image andIn principle, any distribution of images can be written in
across scale. A tree, as shown in Fig. 3(A), satisfies thatthis form since variablesA, their joint distribution Pr(A),
requirement and makes the necessary computations tract-and the dependence of the image features onA can have 6able. With this choice the joint distribution is given byarbitrarily complex structure capturing any non-local be-

havior.
Pr(A)5PP Pr(a (x) u a (Px)), (6)l l11Before we propose a specific structure for the variables xl

A let us point out that the conditioning ofg (x) on f (x)l l11
where the probability Pr(a (x) u a (Px)) is that of findingl l11already captures some of the coarse-to-fine dependency of
a at x given a at the parent ofx, Px. We allow thel l11image statistics. Many image structures, such as edges,
number of possible values for the labelsa to be differentlpersist across scale, and so it is found that modeling this

dependency of features across scales is essential for the
synthesis of natural texture images (Portilla and Simonce-
lli, 2000). Note that we choose to conditionG on Fl l11

instead ofG as in (Luettgen and Willsky, 1995). Wel11

believe that this better captures local correlation since it is
consistent with empirically established natural image
statistics (Buccigrossi and Simoncelli, 1998), and with
equal image dimensions the conditioning becomes straight-
forward.

Eq. (4) can be seen as a mixture model with mixture
labels A conditioning the entire image. We remind the Fig. 3. Dependency structure for the label pyramid. (A) In a binary tree
reader that mixture models group samples with common probabilities can be propagated efficiently. The disadvantage is that some

neighboring nodes are very weakly linked, while others are very tightlystatistics by assigning them a common label (Duda et al.,
linked. (B) Dense graph where the smallest clique is the entire graph and2001). In this case a sample corresponds to the entire
probability computations increase exponentially with the tree size.image. However, instead of entire images we intend to

group individual pixels in the pyramid. We consider,
therefore, the set of hidden variables as an unsupervised
segmentation. As such, we assign to each position and
layer in the pyramid a variablea (x) that conditions the 6l Variable a has not been defined and can be thought of as a labelL11
features only locally. This gives with a single possible value. The conditional distribution Pr(a u a )L L11

then turns into a prior Pr(a ). The reader should note that this footnoteL

applies to the remainder of the paper, most notably in the derivation ofPr(I)~O PP Pr(g (x) u f (x),a (x)) Pr(A). (5)F Gl l11 l
xlA the expectation in Section 3.2.
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Fig. 4. Dependency structure of the HIP model corresponding to Eq. (7). To simplify the diagram, we show the dependency graph for a single parent node
conditioning two of its children. In practice, each parent has four children, i.e., a quadtree. Dark shaded nodes represent observable data. We also omit the
subscripts which indicate position. White nodes are hidden variables.

Fig. 5. The addition of hidden variable images for capturing long-range dependencies. Conditioning is shown with thick arrows, while construction of
features is shown with thin arrows. In this exampleL 5 2.

for each levell. Combining Eq. (6) with Eq. (5), and using 3 . Training the HIP model with an EM algorithm
7shorter notation for the positionx, we obtain

We adjust the parameters of our model to match the
statistics of a given set of images by using Maximum

Pr(I)~OPP Pr(g u f ,a ,x)Pr(a u a ,x). (7)l l11 l l l11
x Likelihood (ML) parameter estimation. The structure oflA

the model in Eq. (7) and illustrated in Fig. 4 permits the
The dependency graph of expression (7) is shown in Fig. exact and efficient computation of all marginal prob-
4. Note that this is not the only way to introduce hidden abilities required for the expectation-maximization (EM)
variables to capture non-local dependence. The more algorithm (Dempster et al., 1977). The algorithm first
general model is still given by expression (4). However, computes the expectations, over the hidden variables, of
expression (7) represents a fairly general class of models the log-likelihood for a given set of parameters and
with several desired properties, in particular dependencies observations (E-step). Then, using these expectations, the
proceeding from coarse-to-fine scales that are local in both likelihood is maximized with respect to the parameters of
space and scale. The integration of the hidden variable the model (M-step):
structure into the pyramid framework is depicted in Fig. 5.

t tE-step: Q(u u u )5O Pr(A u I,u ) ln Pr(I,A u u ), (8)
A7In the following we will write Pr(a (x) u a (Px)) as simplyl l11

Pr(a u a ,x). For brevity we also write Pr(g u f ,a ,x) forl l11 l l11 l t11 tM-step: u 5arg maxQ(u u u ). (9)Pr(g (x) u f (x),a (x)), the probability distribution for finding the featurel l11 l
u

vectorg (x) at positionx given that the feature vectorf (x) and hiddenl l11

variablea (x) were also found atx. Similar notation will be used for otherl Here we have summarized all parameters of the model inexpressions. The argumentx in Pr(? u ? ,x) selects the random variables t
u, and u represents the values of the parameters in theassociated with positionx and should not be understood as a random

variable by itself. current iteration stept.
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¯The main challenge for this model lies in computing the Pr(g u f,a)51(g,M f1 g ,L ). (13)a a a

expectations over the unknown labels. In this section, only
the resulting equations will be given. For the derivation of If different features at a given spatial location (a pixel)
the probability propagation in this hierarchical model are independent, then diagonalM andL are sufficient. The
readers are referred to Appendix A. parameter set is now defined as

¯u 5 < hp ,M ,g ,L u a [ h1, . . . ,N jj.l a ,a a a a l al l11 l l l l3 .1. Maximization

With the choices (12) and (13) the M-step is easilyWe start with the M-step by inserting Eq. (7) into Eq.
solved. The maximum of (11) with respect tou can be(8):
found by setting the derivatives with respect to the

t t different parameters equal to zero and solving for theQ(u u u )5O Pr(A u I,u )OO
t11

xA l corresponding parameter. Forp we finda ,al l11

3 ln Pr(g ,a u f ,a ,x,u )1 const. (10) t11 tl l l11 l11 p 5O Pr(a ,a u I,x,u ). (14)a ,a l l11l l11 x
t

5OO O hPr(a ,a u I,x,u )l l11 For the remaining update equations we define thex a ,al l l11

following weighted average:
3 ln Pr(g ,a u f ,a ,x)j1 const. (11)l l l11 l11

tt O Pr(a u I,x,u )X(x)x lHere, Pr(a ,a u I,x,u ) represents the marginal prob-l l11 ]]]]]]kXl 5 . (15)t,a tlabilities of pairs of labels from neighboring layers at O Pr(a u I,x,u )x l
position x for given image data and the current parameter

tThe weights Pr(a u I,x,u ) represent the marginal prob-values. The additive constant is due to the proportionality l

abilities of finding label valuea (x) at positionx given thefactors of Eq. (7). Assuming we know the probability l
t image data and the current parameter values.Pr(a ,a u I,x,u ) for all parent /child label pairs,a ,a ,l l11 l l11

The update equations arewe can search for the optimal parameters. At this point we
must commit to a parameterization of Pr(a u a ,x) and t11 t11l l11 ḡ 5 kg l 2M kf l , (16)a l t,a a l11 t,al l l lPr(g u f ,a ,x). We use the same parameters for alll l11 l

positions so that we obtain homogeneous behavior across t11 T t11 T T 21¯M 5 (kg f l 2 g kf l )3 kf f l (17)a l l11 t,a a l11 t,a l11 l11 t,al l l l lthe image, a constraint which is often referred to as
‘‘tying’’ in the HMM literature (Rabiner, 1989), and is also and
used in the HMT model (Crouse et al., 1998). However,

t11 t11 t11 T t11 t11 T¯ ¯L 5 k(g 2M f )(g 2M f ) l 2 g g .a l a l11 l a l11 t,a a awe allow our model to have different parameters at l l l l l l

different pyramid levels—we tie across position but not (18)
scale. We allow Pr(a u a ,x) to depend on the position ofl l11

Since these expressions are mutually dependent, we mustthe child relative to the parent, e.g. the probability is
t11insert Eq. (16) into Eq. (17) and solve forM to obtaindifferent for the upper-right child than for the lower-left al

child, etc. We also choose to parameterize Pr(a u a ,x) asl l11 t11 T T TM 5 (kg f l 2 kg l kf l )(kf f la l l11 t,a l t,a l11 t,a l11 l11 t,al l l l lpa ,al l11
T 21]]]]Pr(a u a )5 . (12)l l11 2 kf l kf l ) . (19)l11 t,a l11 t,al lO pa a ,al l l11

To summarize, the update procedure is:The values of the parametersp are determined duringa ,al l11 t111. computeM according Eq. (19),athe updates in the M-step of the EM algorithm. Note that lt11¯2. computeg according to Eq. (16), thenawith this definition Pr(a u a ) is always properly normal- ll l11
t113. computeL according to Eq. (18).ized. There is an arbitrary scale in thep for each aa ,a ll l11

If we assume diagonalM and L we can ignore thea , but this is fixed by choosing a particular form for thel11

off-diagonal terms in these expressions. In fact, the com-update equation. Note also that we omitx in this notation
¯ponent densities1(g,M f1 g ,L ) factor into individualas the parameterization is independent of the position a a a

densities for each component ofg. We can replace Eqs.within a layer.
(19), (16) and (18) with their scalar versions and applyWe assume a simple model for the distribution of
them to each component ofg independently.subsampled features conditioned on the features of the next

highest pyramid level. Our model represents a mixture
3 .2. Expectationwhere the labela selects the mixture component. We

choose a Gaussian distribution where the parameters are
In the E-step we compute the marginal probabilities ofindexed by the labels and the dependency of the features is

tpairs of labels from neighboring layers Pr(a ,a u I,x,u )parameterized as a linear relationship in the mean. l l11
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˜for given image data. However, note that, in all occur- d (a ,x)5OPr(a u a ) d (a ,x), (23)l l l l11 l l11
al11rences of the re-estimation equations, i.e., Eqs. (12), (14)

and (15), we need that quantity only up to an overall u (a ,Px)l11 l11t ˜ ]]]]d (a ,x)5 d (a ,Px). (24)factor. We can choose that factor to be Pr(I u u ) and l l11 l11 l11ũ (a ,x)l l11ttherefore compute Pr(a ,a ,I u x,u ) usingl l11

The upward recursion (Eqs. (21) and (22)) is initialized at
t t tPr(a ,a u I,x,u )Pr(I u u )5Pr(a ,a ,I u x,u ) l 5 0 with u (a ,x)5Pr(g u f ,a ,x) and ends atl 5 L. Atl l11 l l11 0 0 0 1 0

˜ ˜layer L, Eq. (22) reduces tou (a ,x)5 u (x). Since wet L L11 L5 O Pr(I,A u u ). (20)
do not model any further dependencies beyond layerL, theA\a (x),a (x)l l11

pixels at layerL are assumed independent. The product of
The complexity of computing these sums relates to the ˜all u (x) is the total image probability,L

dependency structure of the variablesA, which we have
t ˜Pr(I u u )5 P u (x)5 u . (25)L L11already defined in Eq. (7) and Fig. 4.

x[3L
From the viewpoint of computational complexity, it is

The downward recursion (Eqs. (23) and (24)) starts withimportant to understand the rationale for this choice. From
Eq. (24) at l 5L with d (a ,x)5 d (x)5 1, andthe literature on graphical models (Jordan, 1998) we know L11 L11 L11

ends atl 5 0 with Eq. (23).that the cost of evaluating these sums grows exponentially
With these quantities we can compute Eq. (20) aswith the clique sizes in the graph and linearly with the

number of cliques. If we choose the dependency such that t ˜Pr(a ,a ,I u x,u )5 u (a ,x)d (a ,x)Pr(a u a ), (26)l l11 l l l l11 l l11every label is conditioned on only one label from the
parent layer then the clique size is minimal (Fig. 3(A)). For tPr(a ,I u x,u )5 u (a ,x)d (a ,x), (27)l l l l lan image pyramid with subsampling-by-two that corre-
sponds to a quadtree structure. In a quadtree a locationx where the computations (21)–(27) in the E-step at iterationl

thas only one parent Px in layer l 1 1, and four children t are performed with fixed parametersu .l

Cx in layer l 2 1. If we do not restrict the dependencies,l

and maintain instead a more general belief network 3 .3. Emission probabilities
structure between layers, with local connectivity (Fig.
3(B)), the entire label pyramid is one irreducible clique, The model described thusfar uses the same labelsA for
and the exact evaluation of the sums becomes prohibitive.modeling the distributions of the observablesG as well as

We now compute the probability of hidden labels given for propagating non-local information through the different
the entire image pyramid. This computation will be scales. For the latter purpose it might be necessary to have
essentially the same as propagating the probabilities of many different possible label values that can encode for
observations of the entire pyramid to a particular junction more complex information. In the levels of the pyramid the
of label pairs. Probabilities first propagate upwards, and means and variances that are assigned to each label value
then downward to a particular label pair. During the may have very few pixels for training and therefore may
propagation we marginalize over the other labels. We be poorly estimated. It is thus reasonable to separate the
recursively define quantitiesu and d, representing the functionality of the labelA, for example as indicated in
upwards and downwards propagating probabilities: Fig. 6. In this case, labelsA still code for the non-local

information while labelsB now are used for modeling the
˜u (a ,x)5Pr(g u f ,a ,x) P u (a ,x9), (21) distribution of the features. Up to the conditioning onFl l l l11 l l21 l

x9[Cx
this model now very closely resembles an HMM tree, with
mixture densities as emission probabilities.ũ (a ,x)5O Pr(a u a ) u (a ,x), (22)l l11 l l11 l l

a The expressions for the joint probability distributions asl

Fig. 6. Dependency structure of the HIP model with emission probabilities corresponding to Eq. (28).
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well as the corresponding probability propagation can be models, we make the scale factors depend on their parents
obtained by setting at lower-resolution levels, since the magnitude of wavelet

coefficients tends to persist across pyramid level. To
Pr(g u f ,a ,x)5O Pr(b u a )Pr(g u f ,b ,x) (28) reduce the number of model parameters we chose tol l11 l l l l l11 l

bl constrain the label probabilities so that
in Eqs. (7) and (21).

Pr(a u a )5Pr(m u c )Pr(z u z ,c )Pr(c u c ).l l11 l l11 l l11 l11 l l11Once again we parameterize Pr(b u a ) asl l

(33)
pb ,al l
]]]Pr(b u a )5 . (29)l l Note that there is ambiguity in this representation, since weO pb b ,a 2l l l ¯can multiply g by a factorl andL by l for all m ,m m ll l

and the mixture components will not change if we alsoThe re-estimation equation in the M-step is then
21multiply s by l for all z . To remove the ambiguity wez lt11 t lp 5O Pr(b ,a u I,x,u ), (30)b ,a l l apply the constraintP s 5 1.l l z zx l l

The M-step of the EM algorithm must be modified in
where we can use the joint this model, since we cannot solve for all of the parameters

of Pr(g u f ,m ,z ) analytically. We choose to use al l11 l lPr(g u f ,b ,x)l l11 lt t]]]]]Pr(b ,a ,I u x,u )5 Pr(b u a )Pr(a ,I u x,u ). generalized EM algorithm, in which the M-step is iterative.l l l l lPr(g u f ,a ,x)l l11 l Since the E-step is more computationally intensive than the
(31) M-step, the increase in training time is relatively small. In

the iterative M-step, we fixs for all z and re-estimate thez ll
3 .4. Scale, mixture and hierarchy labels other mixture parameters to maximize the expected likeli-

hood. We then fix these other parameters (that depend only
An alternative to adding separate labels for mixture on m ) and re-estimates for all z . Within the M-step wel z ll

components as emission probabilities is to partition the alternate repeating these two substeps several times. In
labels in the simple model, in other words to view a label practice, two to four iterations usually is adequate.
a, as in Fig. 4, as being composed of a labelm [ Finally, we allow for rotations in the label structure,
h1, . . . ,N j that specifies the mixture component and a although the use of wavelets restricts us to rotations bym

hierarchy labelc [ h1, . . . ,N j that is intended to capture multiples of 908. We do this simply by requiring that forc

non-local information. We can relate these labels to each every value ofm , there are three other values whose meanl

other in different ways, for examplea 5 (c 21)N 1m ¯and covariance (g and L ) are related to those of them m ml l
while requiring N 5N N . The mixture component at a original by the three rotations of 908, 1808 and 2708. Thea m c

location in the pyramid is given bym, whereasc influences EM algorithm is easily modified to handle this. In the
image structure at finer scales through the model’s con- E-step we can compute expectations for each individual
ditional probability distribution Pr(a u a ). We can now mixture component. For a given set of four componentsl l11

choose a small value forN at low-resolution levels, and a related by rotations, we first perform the appropriatem

larger value forN . Conversely, the only appropriate value inverse rotation on each of three of the expectation values,c

for N at the finest-resolution level is one, since all so they agree with the fourth component, and sum them. Inc

information from other levels can be carried tom by a . the M-step we then update the parameters for this com-l l11

We can recover emission probabilities from this model ponent from these sums, and copy the results to the other
by imposing a simplification, namely that Pr(a u a )5 three components after rotating them, as appropriate.l l11

Pr(m u c )Pr(c u c ). In this case,N at the finest-res-l l l l11 c

olution level should be greater than one. 3 .5. Preprocessing and training methods
We can go further and add more structure to the labels.

In the models we use for mass detection, we further We divide the data set into training and test sets of
partition the mixture labels into a labelm and ascale label approximately equal size and, for the mass detection, we
z, so that construct a jackknife (i.e. 10 different random splits) so as

2 to demonstrate the robustness of the results. We use a set of¯Pr(g u f ,m ,z )51(g ,M f 1s g ,s L ). (32)l l11 l l l m l11 z m z ml l l l l approximately orthogonal wavelets to decompose the
The mixture components for a given value ofm model the intensity images into feature images (see Appendix B forl

same type of image structure, but with means and vari- details). Before applying the wavelet decomposition we
ances of different magnitudes as determined by the scalewrap images at edges in order to obtain perfect reconstruc-
factor s . Such explicit representation of scale has been tion for the compression and synthesis. We crop images sozl

reported to be important in modeling natural image that they are square with objects approximately centered.
structure (Wainwright and Simoncelli, 1999; Wainwright et We train the HIP model using the EM algorithm
al., 2001; Romberg et al., 2001). As with these earlier described in Section 3. The number of labels was chosen
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Fig. 7. Performance (area under the ROC curve, orA ) versus MDL cost for the HIP model pair used to generate the experimental results.z

through a splitting procedure, using the minimum descrip- coefficients at that level. For example, as part of fitting the
tion length (MDL) cost criterion to compute the optimal image distribution the model must fit the marginal dis-
model. The MDL cost is given as2 log Pr(I u H )1 d / tributions of the wavelet coefficients at each level. For this
2 log(N) (Rissanen, 1996; Deco and Obradovic, 1996), purpose there is one example per location in each image,
where Pr(I u H ) is the probability of the training data under so that there are many more effective examples than the
the modelH, d is the number of parameters inH, andN is number of images. Also, once the models are trained, there
the number of images in the training set (note that the form is minimal computational cost /overhead in applying them
of the HIP model makes it well suited for MDL model for detection, synthesis and compression.
selection). For the splitting procedure, we begin with only
one hidden label value at each level. We then duplicate

¯each label along with its parameters, i.e., Pr(a u a ), g , 4 . Experimental resultsl l11 al

M andL , randomly perturbing the duplicate parameters.a al l

We re-train the new, larger model and compare its MDL In this section we report results for applying a HIP
cost with the previous model. We repeat this, successively model, with complete scale, hierarchy and mixture labels,
duplicating labels, retraining, and evaluating the MDL to mammographic image analysis, in particular detection
cost, until the MDL cost increases. The model with the of mammographic masses. As an experimental paradigm,
lowest MDL cost is then used in the applications presented we choose to demonstrate the utility of the approach for a
below. Fig. 7 shows how the area under the ROC curveA dataset representing the output of the University ofz

for the test data tracks the MDL cost. Note that best Chicago’s CAD system for mass detection. This is a
performance tends to be for lowest costs, though the state-of-the-art mammographic screening system which
tracking is not monotonic. includes a set of signal enhancement, pre-processing, rule-

Such an MDL-based training procedure is feasible, based and statistical-based classification schemes for de-
however it is computationally expensive. On a Sun tecting masses in digitized mammograms (Doi et al., 1993;
Ultrasparc-2 workstation the entire splitting procedure Nishikawa et al., 1996; Giger et al., 2000). We choose this
required roughly two weeks of computer time. This is paradigm over an alternative, such as performance on a

8partly due to the large number of parameters being public database of digitized mammograms, since we can
adjusted, 12,995 for the optimal model for the masses (see better estimate the clinical impact of the model in terms of
Appendix C for discussion on the number of parameters in reducing difficult false positives as well as demonstrating
the model). In spite of this, over-fitting does not appear to
be a problem, as evidenced from our jackknife results 8For example, the Digital Database for Screening Mammography
presented below. We believe this is so because every(DDSM), the Mammographic Image Analysis Society (MIAS) database,
location in each level of the wavelet decomposition and the Lawrence Livermore National Laboratories (LLNL) /University
provides examples for the parameters used to model theof California at San Francisco (UCSF) database.
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performance relative to a well-characterized clinical sys-
tem. As an additional demonstration of the utility of HIP,
we compare results to that of an HMT model using a
single set of hidden labels to model two component
mixtures over a wavelet tree. Details of this model can be
found in (Crouse et al., 1998; Romberg et al., 2001). The
comparison with the HMT enables us to characterize
performance relative to another hierarchical probabilistic
model for images, specifically the utility of the additional
hidden label structure.

In the following we first describe the dataset used in the
experiments and then present our results for classification,
synthesis and compression. Fig. 8. Examples of data used in experiments. (A) Mammographic mass

(true positive). (B) False positive generated by the UofC CAD system.

4 .1. Mammographic dataset

and another model for the non-mass ROIs. Similarly, two
The dataset used in these experiments consists of

HMTs were trained, using the same split of the data.
regions of interest (ROIs) selected from digitized mam-

The likelihood ratio under the two models was used as
mograms by the mammographic mass CAD system de-

the test criterion, i.e., a threshold on this ratio is used to
veloped by the Rossmann Laboratories of the University of

decide which ROIs will be detected as masses. The true
Chicago (UofC) (Nishikawa et al., 1995, 1996; Giger et

and false positive fractions as a function of the threshold
al., 2000). The CAD system, consisting of a series of

were measured on the split of the jackknife that contained
classification/detection modules, places an indicator (e.g.,

the test set. This set also consisted of 36 mass and 49
‘‘arrow’’) next to potential masses on a digital image of

non-mass ROIs.
the mammogram. The location of the indicator is de-

Table 1 summarizes the results for the jackknife experi-
termined by dividing the mammogram into ROIs and then

ments. On average, the receiver operating characteristic
eliminating false-positive ROIs using pattern recognition

(ROC) curve (Metz, 1988) for the HIP model applied to
techniques. The output of the CAD system therefore can be

the test images has an area under the curve (A ) equal tozseen as a set of ROIs, of which all are assumed to be
0.78 and a 16% reduction in false positives generated by

positive for masses. Since this is a screening system, both
the UofC CAD system, without loss in sensitivity. By

malignant and benign masses are considered ‘‘true posi-
comparison the HMT model has a meanA equal to 0.55,ztives’’. ROIs output by the CAD system which do not
with only a 3% reduction in false positives. Given the

contain masses (i.e. non-masses) are UofC false positives.
difficulty of this dataset (i.e., it represents the most difficult

For the experiments in this paper, 169 ROIs were
false positives that could not be eliminated by the UofC

available, of which 72 contained masses (true positives)
system) a 16% reduction in the false-positive rate is

and 97 were false positives of the UofC CAD system. The
significant. Nonetheless, the HIP model is not capable of

detected objects (apparent masses) are not necessarily
learning subtle differences for distinguishing between

centered in the ROI, since they may lie close to the edge of
masses and non-masses. Fig. 9 shows examples of ROIs

the mammogram. The original ROIs are 512-by-512
correctly and incorrectly classified by HIP. From these

pixels. Examples of mass and non-mass ROIs are shown in
examples we see that the model trained to detect masses

Fig. 8.
performs well for ROIs containing localized, and some-
what isolated, homogeneous ‘‘mass-like’’ structure. For

4 .2. Mass detection non-masses (UofC false positives) the HIP model correctly
characterizes ROIs devoid of mass-like structure, and in

We first consider using HIP as a post-processor (i.e. fact learns that many of the non-mass false positives are in
adjunct) to the UofC CAD system (Nishikawa et al., fact at the breast border. For ROIs incorrectly character-
1996). The goal was to determine if the HIP model could ized by HIP, we see a striking similarity in the ROI
be used to reduce false positives without reducing sen-

Table 1sitivity. In addition, the performance of the HIP model was
Jackknife results for mass detectioncompared to an HMT. A 10-way jackknife was used to

HIP HMTcompute the results.
Two HIP models were trained for each of the jackknife Mean (std)A 0.78 (0.04) 0.55 (0.05)z

Mean (std) FPF@100% TPF 0.84 (0.15) 0.97 (0.05)sets. Each jackknife set consisted of 36 randomly chosen
Mean (std) FPF@95% TPF 0.73 (0.17) 0.93 (0.05)ROIs that contained masses, and 48 randomly chosen ROIs

without masses. One model was trained for the mass ROIs FPF: false positive fraction; TPF: true positive fraction.
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Fig. 9. Example of ROIs which the HIP model correctly (top row) and incorrectly (bottom row) characterizes. Note that the difference between the two
classes of ROI (mass versus non-mass) is much more apparent in the top row than in the bottom row, consistent with model performance.

structure for masses and non-masses, which is consistent images. This is likely due to the flexibility of the hidden
with the fact that the HIP model would have difficulty variable architecture of the HIP, with scale, mixture and
putting these ROIs into one of the two classes. More hierarchy labels able to capture more structure in the
insight into the structure captured by the mass and non- image. As a test, we sampled a HIP model constructed
mass HIP models, and how it relates to detection per- using only a single hidden label structure (similar to that of
formance, can be seen through mammographic synthesis. an HMT). Fig. 10(C) shows that the focal structure has

now disappeared in the positive ROI.
4 .3. Mammographic synthesis It is equally important to consider the mammographic

structure that is not well represented in the synthesized
Since the HIP model is a generative model, we can images. A comparison of Fig. 8(A) and Fig. 10(A) indi-

sample the model and synthesize new images. In the cates that the model is not accurately representing the
context of ROI classification, synthesized images can extended linear structure of the breast parenchyma. One
provide qualitative insight into what features the model is possible reason is that the tree structure of the model is not
extracting and representing for both positive and negative ideal for capturing colinear dependencies across space,
ROIs. Using the same ROI database used for classification, since there is no direct conditioning between neighboring
we constructed HIP models for positives (masses) and nodes. Such dependencies can be captured only indirectly
negatives (no masses). The trained HIP models were via propagation up and down the tree.
sampled to synthesize new ROI images. The sampling
procedure begins at the coarsest resolution, where the4 .4. Mammographic image compression
hidden labels are randomly sampled from the distribution
Pr(A ). The feature imagesG are then sampled from A stream of random variables can be optimally com-L L

Pr(G u A ). The G are used to constructI , from pressed if we know their distribution. A HIP model of aL L L L21

which theF are constructed. We then sampleA from source of images should therefore allow us to compressL L21

Pr(A u A ), and thenG from Pr(G u F ,A ). examples of those images with high efficiency. Here weL21 L L21 L21 L L21

This is repeated until the finest resolution is reached andI demonstrate compression with HIP and HMT models using0

is constructed. a simple technique.
Fig. 10 shows examples of these images. Inspection of Given an image and a HIP model, we compress the

the synthesized positive ROIs shows more focal structure, image as follows. First, we compute the most likely value
t*with more well-defined borders and higher spatial fre- of each hidden label,a (x)5 arg max Pr(a ,I u x,u ),l a ll

quency content than the negative ROIs. Comparison to the using Eq. (27). These most likely values are then encoded
HMT synthesized images, constructed with a similar with arithmetic coders, which require a probability dis-
sampling procedure, shows the HMT images for positive tribution for the symbols they are to encode. For this we

* *and negative ROIs. Though positive and negative ROIs are use the HIP model distributions Pr(a (x) u a (x)). Givenl l11

*different, the positive ROI does not capture the focal the label valuea (x), we then encode the feature vectorl

*structure of the mass, as is the case for the HIP generatedg (x) using Pr(g u f ,a ,x). The latter is used by de-l l l11 l
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matches the image distribution, but it serves to demon-
strate the capability. We used the analogous procedure for
compression with the HMT models, except the DC re-
sidual needs to be stored separately, without compression.

We compress the images at several values of the
precision. The range of precisions was chosen to roughly
match the errors given by JPEG with a range of quality
factors.

To compare with JPEG, we first convert the images to
unsigned byte pixels. We divide the pixel values by four
before compressing with JPEG, since the maximum value
of the pixels in the mass ROIs is a little less than 1024, and
multiply by four after decompressing. The results, aver-
aged across all images, are shown in Fig. 11. The HIP
model performs better then HMT for higher precision or
lower loss, suggesting that the hidden labels capture useful
information, allowing better compression. The better per-
formance of HMT at higher compression ratios comes
from our method for encoding the hidden labels. In our
scheme these use the same number of bits no matter what
the precision is, putting a lower limit on the compressed
image size. The HMT model has fewer and simpler hidden
values to be encoded. It still has a lower limit, but this is
much smaller than for the HIP model. In fact, the HMT
model performs better than JPEG at these high compres-
sion ratios. A more sophisticated compression algorithm
with the HIP model would group labels, since some
mixture components can become indistinguishable when
coding at low precision. This grouping would effectively
adjust the complexity of the HIP model with coding
precision.

Fig. 10. Mammographic ROI images synthesized from positive and 5 . Discussion and conclusion
negative HIP and HMT models. (A) Synthesized ROIs from HIP model
with scale, hierarchy and mixture labels. Positive ROIs (left) tend to have

We have developed a class of multi-scale probabilisticmore focal structure, with more defined borders and higher spatial
network models for images which we call hierarchicalfrequency content. Negative ROIs (right) tend to be more amorphous with
image probability or HIP models. To justify these, welower spatial frequency content. (B) Synthesized ROIs from HMT model.

Though ROIs of positive and negative models appear different, the show that image distributions can be exactly represented as
positive ROI does not appear to capture the focal structure of masses. (C)products over pyramid levels of distributions of sub-sam-
HIP model with single label architecture. As with the HMT, this

pled feature images conditioned on coarser-scale imagearchitecture does not capture the focal structure of the masses.
information. We argue that hidden variables are needed to
capture long-range dependencies while allowing us to

composingg (x) into its components along the eigenvec- further factor the distributions over position. In our currentl

*tors of the covariance matrix of Pr(g u f ,a ), L . model the hidden variables include scale, hierarchy andl l11 l a*l
mixture labels which enable a more flexible modeling of*These components are independent under Pr(g u f ,a ),l l11 l

natural images, compared to the structure of an HMT. Thisso they can be encoded independently. Each component is
was demonstrated by comparison of the two approachesencoded with a specified precision by dividing the real line
for mammographic mass detection, synthesis and compres-into intervals of width equal to twice the precision. Using
sion, with the HIP model giving superior results. However,an arithmetic coder we then encode an index for the
the current structure of HIP is not well suited for capturinginterval containing the component. The probability of each
dependencies between oriented spatial structure. Futurebin is provided by the integral of the univariate Gaussian
work will investigate methods for more direct modeling of*distribution of the component implied by Pr(g u f ,a ),l l11 l

spatial orientation dependencies, which are obvious in thei.e., with variance given by the corresponding eigenvalue
structure of mammograms and, in general, natural images.of L . This procedure is computationally expensive, anda*l

Because HIP models are probability distributions overis not necessarily optimal even if the HIP model exactly
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Fig. 11. Pixel error versus size of compressed files for JPEG, HIP and HMT. (Left) Maximum error (L norm). (Right) RMS error. These curves represent`

averages across all of the mammographic ROIs.

images, they can be used for a wide range of image funded by the U.S. Army Medical Research and Material
processing tasks, e.g. classification, compression, noise Command (DAMD17-98-1-8061). P.S. was also supported
suppression, up-sampling, error correction, etc. In fact, any by the DoD Multidisciplinary University Research Initia-
image analysis problem can be approached in a principled tive (MURI) program administered by the Office of Naval
way using such distributions. Here we have presented Research under grant N00014-01-1-0625 as well as a grant
results for mammographic image analysis. However, there from the National Imagery and Mapping Agency,
are obviously other modalities and medical application NMA201-02-C0012.
areas where HIP models would be useful. One in particular
is multi-modal fusion, where the problem is to bring a set
of images, acquired using different imaging modalities,
into alignment. One method that has demonstrated par-A  ppendix A. Belief propagation in HIP
ticularly good performance uses mutual information as an
objective criterion (Wells et al., 1996). The computation of Here we show how to obtain the upwards and down-
mutual information requires an estimate of entropies, wards propagation rules (21)–(24). All the computations
which in turn requires an estimate of the underlying can be executed locally. Consider the subgraph presented
densities of the images. The HIP model potentially pro- in Fig. A.1. In this subgraph, every nodeX can take on a
vides a framework for learning those densities. discrete number of values, witho indicating a sum overX

Some of the results we have obtained with the HIP those values. Assigned to every nodeX is also an evidence
model are comparable to those given by other approachesnodeg , with a fixed value for given image data.g . . .X X
rather than being superior to them (e.g., for detection the refers tog and all the evidence in the rest of the graphX
HPNN (Sajda et al., 2002) gives similar if not better that can be reached through nodeX. Using this notation the
results). However, we obtain our results for several differ- entire evidence provided by the imageI is the collection
ent problems using a single model, rather than training hg . . . ,g . . . ,g . . . j. The probability required in the EMA B C
very different models for each problem. This flexibility algorithm is
and the principled approach provided by HIP models to

Pr(B,A,I)5Pr(B,A,g . . . ,g . . . ,g . . . ) (A.1)A B Cimage analysis are quite useful. We believe that, with
further development, models of image probability dis-

5Pr(A,g . . . ,g . . . )Pr(B,g . . . u A) (A.2)tributions will give superior performance in a variety of A C B

medical image processing tasks.
5Pr(A,g . . . ,g . . . )Pr(B u A)Pr(g . . . u B)A C B

(A.3)
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Fig. A.1. Subgraph of the label pyramid. Conditioned onA the variables that are connected toA become independent, such as labelsB, C, and the
evidence nodeg . These variables are also conditionally independent to the joint variables that can be reached going upwards to the rest of the treeA

structure.

children of A is independent from the rest of the tree definition (A.8) for the children ofA. The downward
propagating probability is defined and computed asbeyondA. Since the children ofA have no other parents,

all the probabilistic influence beyond that parent edge can
d (A)5Pr(A,g . . . ,g . . . ) (A.11)B A Cbe communicated only throughA. Similarly in (A.3) we

use the fact that the evidenceg is independent from theB 5Pr(g . . . u A)Pr(A,g . . . ) (A.12)C Achildren ofB if conditioned onB. Finally, in (A.4) we use
the definitions for computing these probabilities recursive- u(A)

]]5 d(A), (A.13)ly in an upwards and downwards probability propagation u (A)B
as follows:

d(B);Pr(B,g . . . ,g . . . ) (A.14)A C
u(A);Pr(g ,g . . . ,g . . . u A) (A.5)A B C

5O Pr(B u A)Pr(A,g . . . ,g . . . ) (A.15)A C
A5Pr(g u A)Pr(g . . . u A)Pr(g . . . u A) (A.6)A B C

5O Pr(B u A)d (A). (A.16)B
5Pr(g u A)u (A)u (A) AA B C

Again, we use the conditional independences when5Pr(g u A) P u (A), (A.7)A X
X[CA conditioning onA in (A.12), (A.13) and (A.15). One can

verify (A.13) by inserting the corresponding definitions
u (A);Pr(g . . . u A) (A.8)B B and canceling the term Pr(g u A) to recover (A.12).A

These upwards and downwards propagation equations
5O Pr(B u A)Pr(g . . . u B) (A.9)B are the basis for Eqs. (21)–(24).B

5O Pr(B u A)u(B). (A.10)
B A ppendix B. Wavelets

We use in (A.6) and (A.9) conditional independence
For the HIP model presented in this paper we usewhen conditioning onA andB, respectively. In (A.10) we

approximately orthogonal wavelets with subsampling byuse definition (A.5) for nodeB and in (A.7) we use

Table B.1
Tap weights for 12-tap orthogonal wavelet filters with subsampling by two

Tap index 0 1 2 3 4 5
Tap weights 0.492631 0.060246 20.060468 0.004588 0.002779 0.000223
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zero at zero frequency and the Nyquist frequency.
We adjusted the tap weights to be as close to orthogonal

as possible, by minimizing the mean-squared error of
analysis and subsequent reconstruction of a noise image.
No number of taps gave perfect reconstruction, and we
decided that the error with 12 taps was acceptable. Note
that the odd-symmetric high-pass filter has the same tap
weights as the low-pass filter, except for an alternating
sign. Numerical values for the tap weights of the filters are
given in Table B.1.

For the HIP model we build a wavelet packet tree using
the entropy minimization techniques developed by Saito
(1994). We use half the data to compute a wavelet packet
with minimal entropy, which is analogous to maximizing
the sparsity of the wavelet coefficients. The wavelet packet
that is constructed is shown in Fig. A.2. Note that from this
representation one can see the dimensionality ofg at eachl

scale.

A ppendix C. Parameters

¯Each mixture component (labelm) has parametersg, L
andM. If g has dimensionN andf has dimensionN , theng f

ḡ is N parameters,L is N (N 1 1) /2 parameters, andMg g g

is N N parameters. At level 2, for example,N 5 13 andg f g

¯N 5 12, sog is 13 parameters,L is 91 parameters, andMf

is 156 parameters, for a total of 260 parameters per value
of the label m. These values for all levels in the MDL
optimal positive mass model are shown in Table C.1, along

Table C.1
Parameter counts for mixture components in HIP mass model

Level N N L M Per No. Totalg f

comp. comps.

2 13 12 91 156 260 16 4160
3 11 4 66 44 121 16 1936
4 3 4 6 12 21 16 336
5 3 4 6 12 21 16 336

Fig. A.2. Wavelet packet constructed using entropy minimization. (A) 6 3 4 6 12 21 4 84
Tree structure of wavelet packet with minimum entropy found using 7 3 4 6 12 21 4 84
mammographic mass data. (B) Corresponding wavelet packet decomposi-8 4 0 10 0 14 1 14
tion using conventional representation for images. All blocks of equal size

Total 6950make up the features at a given level,g .l

Table C.2
Parameter counts for scale components in HIP mass modeltwo. The two-dimensional filters are separable, being

products of one-dimensional wavelets. For the one-dimen- Level N Totalz

sional filters we solve for appropriate tap weights (i.e. filter 2 8 7
coefficients) subject to the following constraints: 3 8 7
1. One filter is even-symmetric and low-pass (taps sum to 4 8 7

5 8 7one, zero response at the Nyquist frequency).
6 8 72. The second filter is odd-symmetric (high-pass).
7 4 3

3. The first derivatives of the responses of the filters are 8 2 1
zero at zero frequency and the Nyquist frequency.

Total 394. The second derivatives of the responses of the filters are
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Table C.3
Parameter counts for conditional probability distributions in HIP mass model

Level N N N Pr(c u c ) Pr(m u c ) Pr(z u z ,c ) Totalc m z l l11 l l11 l l11 l11

2 1 16 8 0 2016 1792 3808
3 8 16 8 224 2016 1792 4032
4 8 16 8 224 2016 1792 4032
5 8 16 8 224 2016 1792 4032
6 8 4 8 224 480 896 1600
7 8 4 4 112 240 96 448
8 4 1 2 48 48 0 96
9 4 0 0 4 0 0 4

Total 18,052
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