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A B S T R A C T

Background: Transcranial direct current stimulation (tDCS) has been reported to improve various forms
of learning in humans. Stimulation is often applied during training, producing lasting enhancements that
are specific to the learned task. These learning effects are thought to be mediated by altered synaptic
plasticity. However, the effects of DCS during the induction of endogenous synaptic plasticity remain largely
unexplored.
Objective/Hypothesis: Herewe are interested in the effects of DCS applied during synaptic plasticity induction.
Methods: To model endogenous plasticity we induced long-term potentiation (LTP) and depression (LTD)
at Schaffer collateral synapses in CA1 of rat hippocampal slices. Anodal and cathodal DCS at 20 V/m were
applied throughout plasticity induction in both apical and basal dendritic compartments.
Results: When DCS was paired with concurrent plasticity induction, the resulting plasticity was biased
towards potentiation, such that LTP was enhanced and LTD was reduced. Remarkably, both anodal and
cathodal stimulation can produce this bias, depending on the dendritic location and type of plasticity
induction. Cathodal DCS enhanced LTP in apical dendrites while anodal DCS enhanced LTP in basal den-
drites. Both anodal and cathodal DCS reduced LTD in apical dendrites. DCS did not affect synapses that
were weakly active or when NMDA receptors were blocked.
Conclusions: These results highlight the role of DCS as a modulator, rather than inducer of synaptic plas-
ticity, as well as the dependence of DCS effects on the spatial and temporal properties of endogenous
synaptic activity. The relevance of the present results to human tDCS should be validated in future studies.

© 2016 Elsevier Inc. All rights reserved.

Introduction

Transcranial direct current stimulation (tDCS) applies a weak con-
stant current of 2mA or less across the scalp. This apparently simple
technique is currently under investigation for a wide variety of con-
ditions, including psychiatric disorders, neurorehabilitation and
cognitive enhancement [1–3]. Stimulation is often paired with a
training task, leading to task-specific enhancements in learning per-
formance [1,4]. Despite the observation of pharmacological, neuro-
physiological and imaging effects in humans [5] and animals [6], a
coherent picture of the relevant cellularmechanisms is yet to emerge.

Learning and memory are thought to be mediated by synaptic
plasticity [7] and training paradigms in humans presumably influ-
ence learning by inducing plasticity [8]. Despite the common practice
of applying tDCS during training, cellular effects of DCS applied during
endogenous plasticity induction remain largely unexplored. Instead,
the majority of research has analysed effects when DCS precedes
plasticity induction [9–11], or is paired with endogenous activity
otherwise not known to induce plasticity [12–14]. Here we are in-
terested in the effects of DCS applied during training, i.e. concurrent
with synaptic plasticity induction. As a model of endogenous syn-
aptic plasticity, we induced long-term potentiation (LTP) and
depression (LTD) using canonical protocols (pulse trains delivered
to Schaffer collateral synapses in CA1 of rat hippocampal slices). By
sweeping across induction frequencies we capture a frequency–
response function (FRF), which has been widely used to study the
predictions of the Bienenstock, Cooper and Munro (BCM) theory of
synaptic plasticity. Here we show that DCS can shift the FRF, facili-
tating LTP and diminishing LTD, similar to BCM-like metaplasticity
[15].

Abbreviations: tDCS, transcranial direct current stimulation; LTP, long-term po-
tentiation; LTD, long-term depression; FRF, frequency–response function; BCM theory,
theoretical model proposed by Bienenstock, Cooper, and Munro; ACSF, artificial ce-
rebrospinal fluid; fEPSP, field excitatory postsynaptic potential; HFS, high-frequency
stimulation; LFS, low-frequency stimulation.
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A prevailing mechanistic explanation is that tDCS produces shifts
in cortical excitability, with anodal stimulation increasing excit-
ability and cathodal stimulation decreasing excitability [5]. This
excitability hypothesis is rooted in physiological evidence that DCS
modulates membrane potential at neuronal somas, leading to
changes in firing rate and timing [16–20]. Based on these observa-
tions, anodal and cathodal tDCS are often assumed to produce LTP
and LTD-like effects, respectively, for an entire brain region [21–24].
However, this reasoning ignores the gradient of membrane polar-
ization induced in any neuron during DCS and the role of endogenous
synaptic activity in determining effects.

Here we show that DCS effects vary greatly within a small pop-
ulation of neurons, depending on dendritic location and endogenous
synaptic activity. Both anodal and cathodal DCS facilitated LTP, but
in different dendritic compartments. Moreover, when paired with
LTD, DCS effects were independent of polarity. Both anodal and cath-
odal DCS reduced LTD in the same dendritic compartment. Finally,
we show that DCS did not induce plasticity, but rather acted only
as a modulator of endogenous synaptic plasticity. Our results mo-
tivate a more nuanced approach, which accounts for the properties
of endogenous synaptic activity in predicting DCS effects.

Materials and methods

All animal experiments were carried out in accordance with
guidelines and protocols approved by the Institutional Animal Care
and Use Committee (IACUC) at The City College of New York, CUNY
(Protocol No: 846.3).

Hippocampal brain slices were prepared from male Wistar rats
aged 3–5weeks old, whichwere deeply anaesthetizedwith ketamine
(7.4mg kg−1) and xylazine (0.7mg kg−1) applied I.P., and killed by cer-
vical dislocation. The brain was quickly removed and immersed in
chilled (2–6 °C) artificial cerebrospinal fluid (ACSF) containing (in
mm): NaCl, 125; KCl, 4.4; NaH2PO4, 1; MgSO4, 1.5; CaCl, 2.5; NaHCO3,
26; d-glucose, 10; bubbled with a mixture of 95% O2–5% CO2. Trans-
verse slices (400 μm thick) were cut using a vibrating microtome
(Campden Instruments) and transferred to a holding chamber for
at least 1 h at ambient temperature. Slices were then transferred
to a fluid–gas interface chamber (Harvard Apparatus) perfused with
warmed ACSF (30.0 ± 0.1 °C) at 1.0 ml min−1. The humidified atmo-
sphere over the slices was saturated with a mixture of 95% O2–5%
CO2. Recordings started 2–3 h after dissection.

Field excitatory postsynaptic potentials (fEPSPs) were evoked
using a platinum–iridium bipolar stimulating electrode placed in
either stratum radiatum or stratum oriens of CA1. Recording elec-
trodes made from glass micropipettes pulled by a Sutter Instruments
P-97 and filled with ACSF (resistance 1–8MΩ) were placed in either
stratum radiatum or stratum oriens approximately 250 μm from the
stimulating electrode in CA1 to record fEPSPs. fEPSPs were quan-
tified by the average initial slope, taken during the first 0.5 ms after
the onset of the fEPSP. Stimulus intensity was set to evoke fEPSPs
with 40% of themaximum slope, which was determined at the onset
of recording. Stable baseline fEPSPs were recorded every minute for
at least 20minutes before any plasticity inductionwas applied. fEPSPs
were then recorded again every minute for 60 minutes after plas-
ticity induction. Plasticity was induced by evoking a train of 900
fEPSPs at varying frequency, based on previous studies of bidirec-
tional synaptic plasticity [25]. Induction frequencies were chosen
to be 0.5, 1, 5, and 20 Hz. DCS was applied throughout plasticity in-
duction, lasting 30, 15, 3, and 0.75 minutes for 0.5, 1, 5, and 20 Hz
induction, respectively.

DCS was applied between two parallel Ag–AgCl wires (1 mm di-
ameter, 12 mm length) placed in the bath on opposite sides of the
brain slice separated by 10 mm with the recording site approxi-
mately equidistant from each wire. DCS wires were connected to

a current-controlled analogue stimulus isolator (A-M Systems) that
was controlled by PowerLab hardware and LabChart software (AD
Instruments). Slices were oriented such that the somato-dendritic
axis of CA1 pyramidal neurons was parallel to the electric field
between the DCS wires (Fig. 1A). Before each recording, DCS current
intensity was calibrated to produce a 20 V/m electric field across
each slice (typically 100–200 μA) by adjusting the current so that
two recording electrodes separated by 0.8 mm in the slice mea-
sured a voltage difference of 16 mV (16 mV/0.8 mm = 20 V/m).

For NMDAR antagonist experiments, 100 μM MK-801 (Sigma
Aldrich) was included in the ACSF perfused in the recording chamber
throughout the experiment. Because MK-801 is an open channel
blocker, baseline fEPSPs were recorded for at least 40 minutes to
ensure complete blockade of NMDAR channels [26].

Data acquisition and stimulation waveformswere controlled with
PowerLab hardware and LabChart software (AD Systems). Extra-
cellular fEPSPs were amplified (100×), low pass filtered (3 kHz), and
digitized (10 kHz). Synaptic plasticity was quantified for each slice
by taking the average of the last ten fEPSP slopes (51–60 minutes
after plasticity induction) and normalizing to the average of base-
line fEPSP slopes (20–1minutes before plasticity induction). All data
are reported as the mean ± standard error of the mean (SEM). The
statistical difference between groups (critical value = 0.05) was es-
timated using two-tailed Student’s t-tests, after checking for
normality in each group (Lilliefors test for normality, p > 0.05 in all
cases). Conditions were not repeated in slices taken from the same
animal. Reported n values therefore represent the number of slices
and animals used in each condition.

Here we name the polarity of stimulation based on the orien-
tation of DCS relative to pyramidal neurons. Following convention
in human tDCS, DCS with the anode closer to CA1 apical dendrites
is referred to as anodal stimulation. Conversely, DCSwith the cathode
closer to CA1 apical dendrites is referred to cathodal stimulation.
Importantly, apical dendrites are polarized oppositely from basal
dendrites and somas, regardless of DCS polarity [16,27,28]. So anodal
DCS will depolarize somas and basal dendrites, while hyperpolar-
izing apical dendrites. Conversely, cathodal DCS will hyperpolarize
somas and basal dendrites, while depolarizing apical dendrites
(Fig. 1A).

Acute effects were determined based on the first response (two
responses for paired pulse data) during DCS and were normalized
to the average of baseline responses. Fibre volley amplitudewas taken
as the difference between the trough of the fibre volley and themean
of the two surrounding peaks. Paired pulse ratio was taken as the
ratio of the second and first fEPSP slopes during 20 Hz HFS (50 ms
inter-pulse interval) in each condition.

Results

DCS shifts the frequency–response function

Trains of synaptic activity have conventionally been used to
induce synaptic plasticity in hippocampal slices [25,29]. As a model
of endogenous synaptic plasticity, trains of 900 pulses at varying
frequencies (0.5, 1, 5, 20 Hz) were applied to the Schaffer collater-
al pathway synapsing on CA1 apical dendrites. Low frequency
stimulation (LFS) generated LTD (0.5 Hz: 84.1 ± 2.7%, p < 0.001, n = 10;
1 Hz: 78.9 ± 2.9%, p < 0.0001, n = 9), while high frequency stimula-
tion (HFS) generated LTP (20 Hz: 114.1 ± 2.7%, p < 0.001, n = 13), and
an intermediate frequency marked the transition between LTD and
LTP (5Hz: 95.9 ± 3.7%, p = 0.30, n = 9). The resulting FRF (Fig. 1B)maps
the degree of synaptic activity during induction to the degree of re-
sulting synaptic plasticity and is consistent with existing literature
[15].
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DCS was then applied during plasticity induction at each fre-
quency. Our previous experiments with the present preparation
demonstrate that cathodal DCS depolarizes CA1 apical dendrites
(Fig. 1A; Bikson et al. (2004), fig. 10), and was therefore expected
to facilitate LTP in this dendritic region [29]. DCS significantly at-
tenuated LTD induced by 0.5 Hz (Fig. 1C; 97.5 ± 5.9%, p = 0.04, n = 8)
and 1 Hz LFS (Fig. 1D; 89.2 ± 3.1%, p = 0.03, n = 10) and enhanced LTP
induced by 20 Hz HFS (Fig. 1F; 128.8 ± 4.7%, p = 0.01, n = 14). DCS
had a smaller effect at 5 Hz that was not significant (Fig. 1E;
102.3 ± 2.2%, p = 0.14, n = 11), consistent with smaller effects ob-
served previously at the threshold between LTP and LTD [30–32].
The resulting DCS FRF was significantly shifted compared to control
(F = 17.93, df = 1, p < 0.0001). Similar shifts of the FRF have been as-
sociated with enhanced learning in cortex [15,33].

DCS effects on LTP depend on dendritic location

DCS is known to modulate the membrane potential of neuro-
nal compartments [16,19,27,28,34] and dendriticmembrane potential
is known to be a critical determinant of NMDAR-dependent plas-
ticity [29]. Other DCS effects in humans and animals have been
shown to be NMDAR-dependent, and it is widely speculated that
tDCS exerts long-term effects through membrane polarization and
NMDARs [24]. An important subtlety that is often lost in this dis-
cussion is that DCSwill simultaneously depolarize and hyperpolarize
different compartments within the same neuron. Indeed, previous
work from our own groupwith a similar experimental setup showed
that cathodal DCS simultaneously depolarizes CA1 apical den-
drites while hyperpolarizing their basal dendrites and soma.
Conversely, anodal DCS hyperpolarizes CA1 apical dendrites while
depolarizing their basal dendrites and soma [16]. We therefore ex-
pected that the effects of anodal and cathodal stimulation would

vary with dendritic location. To test this we paired both anodal and
cathodal DCS with 20 Hz HFS in both CA1 apical and basal den-
drites. In apical dendrites, cathodal DCS enhanced LTP, while anodal
DCS had no significant effect (Fig. 2C,D; control: 114.1 ± 2.7%, n = 13;
cathodal: 128.8 ± 4.7%, p = 0.01, n = 14; anodal: 111.7 ± 4.5%, p = 0.63,
n = 8). In basal dendrites, anodal DCS now enhanced LTP while cath-
odal DCS had no significant effect (Fig. 2E,F; control: 148.6 ± 3.6%,
n = 10; cathodal:142.5 ± 5.2%, p = 0.34, n = 10; anodal: 180.4 ± 9.1%,
p < 0.01, n = 5). As expected, the effects of anodal and cathodal DCS
were dependent on dendritic location.

DCS effects are polarity dependent for LTP but not LTD

Anodal and cathodal DCS apply stimulation with opposite po-
larity and are canonically expected to produce opposite effects [35].
As reported above, we find that cathodal and anodal DCS have asym-
metric effects on LTP for a given dendritic location. Moreover, when
paired with 1 Hz LFS we observe no polarity dependence of effects.
LTD is reduced by both anodal and cathodal DCS, i.e. synaptic strength
is increased compared to control (Fig. 2G,H; control: 78.9 ± 2.9%, n = 9;
cathodal: 89.2 ± 3.1%, p = 0.03, n = 10; anodal: 95.6 ± 5.9%, n = 8,
p = 0.04). These results reveal that modulation of synaptic plastic-
ity by DCS depends on both the physical location of concurrently
active synapses (basal or apical dendrites) and the rate of their ac-
tivity (LFS or HFS) (Fig. 2B).

DCS effects require a concurrent endogenous source of NMDAR
plasticity

tDCS is often applied under the assumption that stimulation can
induce plasticity where there was none before [5,6,12,23]. However,
given the modest effects on membrane potential for typical
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Figure 1. DCS shifts synaptic plasticity in apical dendrites towards potentiation. A: Schematic depicts cathodal DCS of a hippocampal slice, with expected membrane po-
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response function towards potentiation. C–F: DCS applied during plasticity-inducing LFS attenuated LTD (C,D) and enhanced LTP (F), but the effect was not significant near
the crossover point between LTD and LTP (E). Sample fEPSP traces are provided for each condition (grey/black: before/after control; light blue/blue: before/after cathodal;
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stimulation intensities [19,27,28], we propose that DCS instead acts
as a modulator of NMDAR plasticity. DCS would therefore require
a concurrent endogenous source of plasticity to modulate. To test
this requirement we again applied cathodal DCS, but removed en-
dogenous NMDAR-dependent plasticity in two ways: first by
weakening synaptic activity to well below the plasticity thresh-
old, and second by directly blocking NMDAR current during strong
synaptic activity. When applied during weak synaptic activity (30
pulses, 1/60 Hz), cathodal DCS had no effect (Fig. 3C; control:
99.3 ± 1.1%, n = 9; cathodal DCS: 100.8 ± 4.0%, n = 7; p = 0.68). When
paired with strong synaptic activity (20 Hz HFS) but NMDARs were
blocked with antagonist MK-801, cathodal DCS also had no effect
(Fig. 3B, control: 92.0 ± 1.6%, n = 10; cathodal DCS: 94.3 ± 2.3%, n = 9;
p = 0.42). These results suggest that DCS may act as a modulator of

endogenous synaptic plasticity, rather than an inducer of de novo
synaptic plasticity.

Acute effects of DCS on synaptic transmission

To determine whether the effects of DCS were already appar-
ent in acute synaptic effects, we examined several measures of
baseline synaptic transmission. However, one-way ANOVAs yielded
no significant effect of stimulation on fEPSP slope (Fig. 4A; F = 0.23,
df = 1, p = 0.63, n = 31 control apical, n = 9 control basal, n = 30 cath-
odal apical, n = 12 anodal apical, n = 10 cathodal basal, n = 4 anodal
basal, n = 11mk-801 apical, n = 6mk-801 cathodal apical), fibre volley
amplitude (Fig. 4B, F = 0.33, df = 1, p = 0.57, n = 27 control apical, n = 9
control basal, n = 26 cathodal apical, n = 12 anodal apical, n = 9 cath-
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odal basal, n = 4 anodal basal, n = 11 mk-801 apical, n = 6 mk-801
cathodal apical), or paired pulse ratio (Fig. 4C; F = 0.11, df = 1, p = 0.74,
n = 12 control apical, n = 10 control basal, n = 14 cathodal apical, n = 7
anodal apical, n = 9 cathodal basal, n = 4 anodal basal, n = 9 mk-
801 apical, n = 6 mk-801 cathodal apical).

Discussion

LTP, LTD, and learning

There is now strong evidence for a role of both LTP and LTD-
like processes in various types of learning and memory [36–41]. At
the behavioural level, learning is likely to involve both of these pro-
cesses, with the precise degree of each depending on the specific
behaviour. For example, some learned behaviours directly require
habituation to a familiar stimulus and are specifically dependent
on LTD [42,43]. Other learned behaviours involve formation of new
associations and responses to the environment, which require LTP
and are eliminated by LTD [36,40]. We observed that LTP is facili-
tated in dendrites that are depolarized by DCS. This cellular DCS effect
may contribute to enhanced learning when tDCS is pairedwith train-
ing that induces plasticity, such as motor rehabilitation [41,44].
Indeed, similar shifts in the FRF have been linked to facilitation of
learning on both theoretical and experimental grounds [15]. We also
observed a reduction of LTD for both stimulation polarities (Fig. 2B).
One may therefore expect that these effects would disrupt learn-
ing that requires LTD.

Plasticity dependence may underlie task-specific effects

When tDCS is paired with training, the observed effects are often
specific to the trained task [4,45]. While electrodes are typically
placed over an intended target region, it is unlikely that task speci-
ficity is solely the result of spatial selectivity of current flow. Even
in the most focal tDCS applications (e.g. HD-tDCS), current flow
through the brain is diffused, reaching large swaths of cortex and
subcortical structures [46,47]. Moreover, within any particular brain
region, there are likely to be neurons involved in many disparate
memory engrams or behaviours. The common assumption that tDCS
induces plastic effects indiscriminately [35], or even at weakly active
synapses [12], therefore implies broad effects on any cognitive output
in the stimulated brain regions. This is at odds with the observed
specificity of effects. Instead, to explain task-specificity, tDCS may
act as a selective modulator of endogenous synaptic plasticity. Our
results support this hypothesis, as DCS had no effect when synap-
tic input was too weak (Fig. 3C) or when NMDARs were blocked
during strong synaptic input (Fig. 3B), indicating that synaptic ef-

ficacy is modulated by DCS only when NMDAR-dependent plasticity
is already present. This provides a basis for effects to be task-
specific, as synapses associated with the paired task are more likely
to be undergoing plasticity and therefore subject to modulation
during tDCS. Moreover, this predicts that tDCS effects should be en-
hanced when paired with tasks that induce synaptic plasticity.
Indeed, there is some evidence for this [4,48]. The precise role of
endogenous synaptic activity in DCS effects remains an important
area for future research.

A potential role for dendritic membrane polarization

Under the conventional excitability hypothesis, ‘anodal tDCS’ is
assumed to produce inward cortical current flow, which depolar-
izes pyramidal neuron somas and hence increases cortical excitability.
‘Cathodal tDCS’ is soma-hyperpolarizing and thus should reduce cor-
tical excitability [35]. However, it is becoming increasingly clear that
this reasoning is an oversimplification, particularly when it comes
to long-term effects and learning [49–51]. While effects on somatic
membrane potential must still be considered, our results here point
to a potential role for dendritic membrane polarization in deter-
mining DCS effects on synaptic plasticity.

Membrane polarization due to DCS can in principle affect the
function of all voltage-dependent channels distributed through-
out a neuron, particularly the relief of NMDARs from magnesium
blockade. This influence may be most pronounced in dendrites,
where DCS has been shown to modulate excitability involving mul-
tiple voltage-dependent channels [27]. While we do not directly
measure membrane polarization in the present experiments, our
group has done this previously with the same preparation, showing
membrane polarization to be maximal in dendrites (Bikson et al.
(2004), Fig. 10), with opposite polarization in apical and basal den-
drites. Indeed we observe modulation of synaptic plasticity that is
consistent with this variable dendritic, rather than a singular somatic
polarization effect (Fig. 2).

Given that DCS effects can vary with dendritic location, tasks that
activate synaptic pathways with different dendritic locations may
respond differently to the same stimulation. A lack of control over
the location of active pathways could therefore lead to highly vari-
able results in clinical studies. Indeed variable plasticity in response
to tDCS has been linked to differential recruitment of interneu-
rons and dendritic compartments during stimulation [52–54].
Attention to dendritic polarization may therefore help to explain
mixed effects observed in tDCS outcomes [49,50,55,56]. Moreover,
functional differences between dendritic compartments could be lev-
eraged to optimize stimulation outcomes. For example, “top-
down” inputs to sensory cortices are known to arrive predominantly
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onto pyramidal neuron apical dendrites [57]. Stimulation could there-
fore be designed to depolarize cortical apical dendrites and bias
plasticity at these inputs. Similarly, CA1 basal dendrites receive inputs
almost exclusively from CA2/CA3, while CA1 apical dendrites also
receive input from entorhinal cortex [58]. Targeted depolarization
of apical synapses with DCS may therefore selectively enhance
entorhinal inputs carrying spatial information [59].

While our results are consistent with a role for DCS-induced den-
dritic polarization, we cannot rule out differences between basal and
apical synapses other than polarization, or the involvement of other
cellular DCS effects, such as on inhibitory interneurons, glia,
neuromodulator systems, or immune response [6]. Further inves-
tigation into the involvement of these systems is an important area
for future work. The lack of effects observed on fibre volleys and
paired pulse ratio suggests that DCS does not affect recruitment or
vesicle release probability at presynaptic terminals. This is ex-
pected, as Schaffer collateral fibres are oriented perpendicular to the
applied DCS electric field vector. However, the sample size here was
too small to conclusively rule out these effects. Similarly, the lack
of an acute effect on fEPSP slope may result from smaller sample
size [27], weaker fields [16,53], or a differing preparation [27], com-
pared to previous studies.

Low frequency stimulation effects

The horizontal axis of the FRF is often equated with the degree
of postsynaptic calcium influx during induction. HFS leads to strong
calcium influx and triggers LTP, while LFS leads to moderate calcium
influx and LTD. Based on this calcium control hypothesis, we ex-
pected DCS-induced dendritic polarization to modulate calcium
influx through NMDARs and produce horizontal shifts in the FRF
[15]. The effects we observe with 1 Hz LFS may therefore be ex-
pected, as a horizontal shift of the FRF in either directionwould result
in less LTD if 1 Hz is near the point of maximum LTD (minimum
synaptic strength). This interpretation is less adequate in account-
ing for the effect observed at 0.5 Hz LFS (Fig. 1C), as a left horizontal
shift would produce more LTD at 0.5 Hz. However, recent evi-
dence suggests a deviation from the calcium control hypothesis, as
LTD can be induced by metabotropic NMDAR function rather than
calcium influx [26,60–63]. The calcium and voltage dependence of
LTD remains controversial though [62,64], making it more diffi-
cult to interpret results with LFS. We also note that the duration
of DCS was particularly long with 0.5 Hz LFS (30 minutes), poten-
tially producing effects that occur on longer time scales, such as on
protein synthesis. For example, priming of BDNF synthesis at the
start of DCS [9] may lead to increased BDNF release later on during
DCS, which reduces LTD [31]. Future experiments directly measur-
ing calcium influx during these induction protocols may provide
some resolution to these issues.

Effect asymmetry

Our results demonstrate an asymmetric DCS effect on synaptic
plasticity, such that DCS was only able to increase synaptic strength
(enhance LTP, reduce LTD). Asymmetries have been found in
other animal studies [10,13] and human studies [1,50]. In parallel
work in our lab, we find an asymmetry in acute DCS effects on
cellular excitability. This nonlinearity could be the result of the
nonlinear voltage dependence of NMDARs [65] or other voltage
dependent channels. Similarly, these asymmetries may reflect
floor or ceiling effects of any number of cellular processes, where
the endogenous state is such that it can only be modulated in one
direction.

Comparison to human tDCS

While some human tDCS studies target the hippocampus [66,67],
tDCS is typically thought to influence the cortex [24]. Here, the hip-
pocampal preparation was chosen to facilitate isolation of dendritic
compartments, which are clearly segregated in CA1. While there are
differences in network wiring and activity, the mechanisms for
NMDAR-dependent plasticity appear to be highly conserved between
CA1 and cortical pyramidal neurons [29]. We can therefore draw
parallels at the level of pyramidal neurons that are undergoing
NMDAR-dependent plasticity during stimulation, but our observa-
tions should be validated with cortical preparations in the future.

Electric fields produced in the cortex during tDCS are thought
to be less than 1 V/m [47]. Based on acute effects in previous studies
we expected that a 1 V/m field may produce 1% effects on synap-
tic efficacy [20,28]. In pilot LTP/LTD experiments, we observed
approximately 15% variability in plasticity between slices. Assum-
ing a linear dose response, which previous animal studies have
demonstrated [20,28], a power analysis (power = 0.8, p = 0.05) es-
timated that 20 V/m fields would be required to resolve effects with
a reasonable number of animals (n = 9 for 20 V/m, cf. n > 3000 for
1 V/m fields). Indeed our results are consistent with ~1% modula-
tion of synaptic plasticity per 1 V/m DCS (we observe 10–20%
modulation with 20 V/m). However, the assumption that effects of
DCS scale linearly with electric field magnitude still requires vali-
dation for synaptic plasticity experiments. The ~1% modulation that
might be expected in humans is likely functionally relevant, as a
1%modulation of fEPSP plasticity can reflect binary plasticity events
at hundreds of synapses per pyramidal neuron [68,69].

tDCS is typically applied for up to 20minutes in humans [5]. Here
we aimed to study the interaction of DCS with canonical synaptic
plasticity induction protocols. Stimulationwas therefore only applied
during induction, and was shorter when combined with more com-
pressed induction paradigms. For example, DCS was only applied
for 45 s when combined with 20 Hz plasticity induction. Some time-
dependent DCS effects may therefore be excluded here, and future
studies should examine whether these effects could be amplified
with longer stimulation duration.

Conclusions and context

DCS is likely to affect many cellular processes simultaneously [6].
Previous studies in animals [9–14,70] and humans [71–73] have im-
plicated various effects related to synaptic plasticity (NMDAR, BDNF,
adenosine, noradrenaline). However, it remains unknown exactly
how the DCS electric field interacts with cellular activity to produce
these effects. The brain slice preparation used here allows for precise
control over the electric field with respect to neuronal morpholo-
gy and synaptic activity, facilitating a bottom-up approach. Previous
work has taken advantage of this to elucidate acute effects on py-
ramidal neuron somas and axon terminals [28]. While DCS effects
have been demonstrated in multiple neuronal compartments
[16,19,20,28], the interaction between these compartments can be
nonlinear, dynamic, and antagonistic. Here we provide an example
where dendritic, rather than somatic polarization, “wins” in modu-
lating frequency-dependent plasticity induction. This highlights the
importance of dendritic effects, which have received little atten-
tion in the DCS literature. Whether dendritic, somatic, or axonal
effects dominate though is likely a function of ongoing neural ac-
tivity and the orientation of applied fields, which requires further
studies. For example, axonal effects may drive plasticity modula-
tion in response to electric fields that are tangential to the cortical
surface [28]. The complexity of inter-compartment interactions
during DCS warrants computational models and their experimen-
tal validation by testing various endogenous activity states, electric
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field orientations, and neuronal compartments. Despite this com-
plexity, we highlight that DCS may be most effective when paired
with learning paradigms that are known to induce synaptic plasticity.
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