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Linear and non-linear

regression techniques for

simultaneous and proportional myoelectric control
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Abstract—In recent years the number of active controllable
joints in electrically powered hand-prostheses has incresed
significantly. However, the control strategies for these deéces
in current clinical use are inadequate as they require sepate
and sequential control of each degree of freedom (DoF). In h
study we systematically compare linear and non-linear regession
techniques for an independent, simultaneous and proportical
myoelectric control of wrist movements with two DoF.

These techniques include linear regression (LR), mixture fo
linear experts (ME), multilayer-perceptron (MLP) and kern el
ridge regression (KRR). They are investigated offline with &ctro-
myographic (EMG) signals acquired from ten able-bodied sub
jects and one person with congenital upper limb deficiency.
The control accuracy is reported as a function of the number
of electrodes and the amount and diversity of training data
providing guidance for the requirements in clinical practice

The results showed that KRR, a non-parametric statistical
learning method, outperformed the other methods. However,
simple transformations in the feature space could linearie the
problem, so that linear models could achieve similar perfomance
as KRR at much lower computational costs.

Especially ME, a physiologically inspired extension of liear
regression represents a promising candidate for the next ger-
ation of prosthetic devices.

Index Terms—Electromyography, regression, prosthetic hand,
robust control.

|. INTRODUCTION

Multiple dimensions have to be controlled sequentially, re
quiring slow and cumbersome mode-switching initiated by co
contractions. Significant research has been devoted totlgire
control many DoFs with classification based approaches (see
e.g. [3] for a recent review). The reported accuracy of recen
approaches is very high and also robustness issues under
real world conditions have been addressed [4], [5]. Yet,tmos
classification based approaches control only one functton a
a time, precluding intuitive control of smooth movements.
Recent efforts have also extended the classification inteemo
than one class (movement) at a time [6], [7]. However these
approaches still limit the type of movements because the
speed of the related DoFs cannot be controlled independent!
if two functions are activated at the same time. Conversely,
natural movements can only be achieved with independent
proportional control of the related DoFs.

To achieve an independent proportional and simultaneous
control, regression techniques can be applied. The mafor di
ference to classification is that a regressor does not démide
certain class but instead a continuous output value is atgimn
for each DoF. This allows for aindependensimultaneous and
proportional estimation and can facilitate a fluent and ratu
control, given a good regression performance. Lacking isf th
natural control is indeed one of the main limitations of the
current myoelectric control approach based on classifinati

[8].

In recent years there have been substantial advances ifRelative litle work has been done on this in the context
constructing electrically powered hand prostheses thatdco©f myoelectric control, most_ly focusing on mquIayer per-
perform complex movements involving many simultaneousfgPtrons (MLPs) for regression ([9], [10], [11]). This syud
controlled degrees of freedom (DoF), including independefiMs at & comprehensive and systematic comparison of state-
finger movements [1], [2]. However, so far there exists r,@f—thejart regression methocjs for mdependel_wt propation
electro-myographic (EMG)-based controller that can axtra@nd S|mult§ne0u_s myoelectric cpntrol of multiple DoF..We
the required control information needed to make full use §PMpare simple linear models with state-of-the-art noedr

these prostheses. Clinically available controllers asetiaon

and non-parametric machine learning methods. For a clinica

very simple techniques that control only one DoF at a tim@Pplication, a method should require little user trainibg,
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computationally efficient and also perform well with few
electrodes. Those aspects are addressed as well in the@tprese
study by reducing the amount of training data, reducing the
number of EMG channels and by evaluating the processing
times of the algorithms.

A major challenge for regression methods in myocontrol is
to obtain accurate movement and force data for trainingen th
absence of the missing limb. Jiang et al. [12] approached thi
problem by applying a semi-supervised algorithm, wherg onl
information about the active DoF and desired direction are
needed to learn the relationship between muscle forces and
EMG features. This approach can only exploit training data
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Radial Deviation

with individual DoFs active. Nielsen et al. [9] investigdte .

a bilateral training strategy that can be applied for uaiiait E Y,

amputees who represent the majority of hand prostheses. user s

The subjects performed bilateral mirrored contractiond an . ,/"\/ “ \

the forces were estimated from EMG signals using artificial /.-y\\ N K r,/’/\

neuronal networks trained with force labels from the contra e /‘.-\{\ 9\3

lateral hand. Muceli [10] and Jiang [11] showed that it isals i ' £\ Ly

possible to estimate wrist angles instead of forces peifaym : REPTIA AU

free dynamic movements from EMG with neuronal networks ﬂ \)> 7’ 2

using this contra-lateral training strategy. Extension - N N " Flexion
Most studies on simultaneous myoelectric control used the ><,\. N

variance of the EMG (also denoted as mean square value Al B

or band power) [12], [11] or, similarly, the lowpass-filtdfe | [_____ Radial Trajectories

down-sampled squared raw EMG-signal [10]. Nielsen et al. m | = Circular Trajectories

([9],[13]) discovered that other features, like the timerin-
feature set (mean absolute value, zero-crossings, sloge si
changes, waveform length) perform significantly bettemtha
the variance.

In this study we demonstrate that the relationship betwesg

Ulnar Deviation
(a) Target Trajectories

the variance and the wrist angle is highly non-linear an T T Tadiafgev T T 7 Tt
that simple transformations in feature space can simplif 1 |
the problem. This allows to use linear methods, which ar| | o
computationally efficient. We compare four linear and non extension, - _ _ flexion,
linear regression techniques, namely, linear regresdi®), ( live feedbackl\ |
mixture of linear experts (ME), multilayer perceptrons (FH) target f
and kernel ridge regression (KRR). To our knowledge, KRH e ulnar|dev. . |
and ME have not previously been applied to myoelectric corl= L
(b) Setup (c) Feedback

trol. This comparison provides an evaluation of the po#nti
use of EMG for simultaneous and proportional control and

indications on the main factors of influence for regressidﬂ?- 1. Experimental setup: (a) Subjects were instructefltow radial and
circular trajectories (dashed and dash-doted lines). dioates spanned by

performance. the two wrist angley and in polar coordinates-(and ). (b) placement of
electrodes and motion sensors. (c) feedback during rewprdi
Il. METHODS
A. Experimental Setup lead to shifting of muscles relative to skin and electrodes i

This study involved ten able bodied subjects (3 femaleable-bodied subjects — it is not known if this complication
7 males, age 19-30) and one person with congenital upmacurs in persons with limb deficiency).
limb deficiency (male, age 39) performing a series of wrist The target movement trajectories (Fig. 1a) included moving
movements. Accurate data labels were gained by tracking the wrist in 16 (radial) directions, and drawing circles of
wrist angles with a motion tracking system (Xsens with MTiwo different diameters (clockwise and counter-clockyise
sensors, Fig. 1b). EMG was recorded with a high density 19Phe subjects were instructed to keep the fingers in a relaxed
channel electrode grid (ELSCHO64NM 3-3, OT Bioelettroposition and not to rotate the wrist (keeping the thumb pognt
nica, 8 x 24 channels, 10 mm inter-electrode-distance) inugwards). At the beginning of each session, the individual
monopolar configuration. The electrode array was placed mange of motion in both DoFs of the subject was measured.
the proximal portion of the left forearm, covering a range ofhe experimental paradigm was calibrated in such a way that
8 cm. The biosignal amplifier was a 12 bit "OT Bioelettronthe radial trajectories would start at the center (resttjwosi
ica EMGUSB-2", configured to a sampling rate of 2048Hzand reach the maximal range of motion for each direction.
The reference electrode was a disposable Ag/AgCI electrotiiee circular trajectories were located at 90% and 60% of the
placed on the elbow. Ground was formed by an electrodeaximal range of motion. The time from the center position to
band placed at the distal end of the forearm. Synchronizatithe maximal position was 3 s, followed by 2 s at the maximal
between kinematic and EMG signals was performed offlingosition and 3 s for returning to the center position. The
via a square-wave synchronization signal provided by tliene for a full circular trajectory was 10 s. The completion
motion tracking system that was recorded as an additiortdlone trajectory will be referred in the following as a trial
(auxiliary) channel. Previous studies involved all threeF® The experiment was divided into several runs, where each run
of wrist contractions. In this study we focus only on two DpFsontained each type of trajectory (16 radial and 4 circular
namely, flexion/extension and radial/ulnar deviation (Hi@). trials) exactly once. During the recordings, the targetstvri
This restriction helped to prevent long recording times arahgles were displayed on a computer screen together with the
difficulties with recording stability (pronation/supimatt can actual angles obtained by the motion tracking system (Fig. 1
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This online feedback assisted subjects in better matcliiag To obtain good estimation results when using linear methods
target trajectories. Six able bodied subjects and the stbjthe relationship between the features and the target labels
with congenital deficiency performed 15 runs and 4 subjedise., the motion data) should be as linear as possible. As
stopped after 10 runs because of fatigue. The time to recahe first feature we choose thariance As we will show
one session with 15 runs was about one hour plus another hmusection IlI-A, the variance is increasing monotonicalligh
for placing the electrodes and motion sensors and fanzirayi the deflection of the wrist in any direction, but the relasibip
with the system. between deflection anglariance is not linear (see Fig. 3a
To investigate the transferability of the results to thetcmn ). Therefore, we investigated two non-linear transforovagi
lateral training strategy, for five of the ten subjects motiata f(z) = /= and f(x) = log(z), to linearize the relationship
was recorded from both sides while the subjects performbdtween EMG and wrist angle. The transformed features are
bilateral mirrored movements [9]. This allows for comparindenoted by rms and log-var, respectively. All dimensions
the performance of ipsi-lateral training (motion data frdme in feature space were normalized to have on average unit
EMG side were used as training labels) with contra-latergariance. This is useful for methods with parameters that
training (motion data from the other side were used as trginidepend on the numerical range of the features. The scaling
labels). The contra-lateral training is relevant, pattdy for factors were calculated based on the training data sets only
future applications in uni-lateral amputees, where motiata
can only be obtained from the intact side. The feedback for 8- Regression Models
able bodied subjects was given for the EMG side. An exampleThe set of C dimensional feature vectors foF time
of the recorded motion data is shown in figure 2. instances is given a¥ € RE*T, andY € RP*T contains
To prove that the applied methods are also suitable ftite corresponding wrist angles fdp DoFs as data labels.
users of upper limb prostheses, we included one subject withe goal of all regression techniques is to find a mapping
congenital deficiency. The subject’s forearm terminatethat Y = F(X), whereY is an approximation of .
wrist level. This subject performed also bilateral mirebre 1) Linear Regression (LR)tn LR [16], [17] this mapping
contractions. The EMG signals were recorded from the sidienction is linear:
with deficiency (right sid(_a) and_ th_e motiqn data were o_btlzhine ¥ =WTX +w, 1)
from the contra-lateral side with intact limb. All experinte
were in accordance with the declaration of Helsinki and wevéhereW € RC*" contains the weight vectors ang) the bias
approved by the local ethics commission. (Ethikkommissidhat can compensate for possible offsets. By convetigis

d. Med. Fak. Géttingen, approval number 8/2/11) included inW, thus extending< by an additional dimension
including T ones.

3 50 5 40 The least mean squares solution for equation 1 including
= > oz regularization is obtained by minimizing the following err
5 5 |\ function:
E 50
z z_ 1 A
5 s err(w®) = 23 Y1) ~wOTx@ + Zw O Tw? (2)
E T ONON B- = 2 2
£ 5 S -40 T
_S(f)lexion +) loextension (5—% _Soflexion (+)/e?(tension =) %0 The closed form solution is given by
(a) radial trajectories (b) circular trajectories W = (XXT + AI)‘1XYT (3)

, i ) i ) ) wherel is the identity matrix and the regularization constant
Fig. 2. Motion traces obtained by the motion tracking sys{@mdegree) \i imized b id hi d lidati
for both types of trajectories. The motion signals form tiaadlabelsy(t) is optimized by grid-search in a nested cross-validatien.(s
used to train and test the regressors. [I-E).

2) Mixture of linear experts (ME):In LR each column
vectorw(® of W is responsible for the mapping froi to

B. Preprocessing one DoF inY. This means that in LR the same coefficients
Rre used for both antagonistic wrist movements which is phys

The data were filtered using a 4th order Butterworth hig logicall " ble. si th i st -
pass filter . = 20Hz) to remove movement artifacts, glofogically hot reasonable, since the antagonistic moveme

: ; Ive different muscles.
lowpass (¢ = 500Hz) to remove high frequency noise'v° ; . .
and a 50 Hz comb filter to remove power-line interferenc Therefore an extension of LR was applied which uses two

i (d+) (d—)
including harmonics. Sample-wise common mean subtracti%irf;ferent weight vectorsv andw for each DoF that

was performed to remove correlated noise and distortion tﬁ;’:{@rer:gdxsza:gbg?s'n?gsuséggvoe:”y $rr?(ae gjter\lj?slsg\flltgolmtthm&ﬁlter
might be caused by activity at the reference electrode. gativ ' P Y- P . .
are combined smoothly according to the probability to which

. direction the current feature sample belongs to, estimbjed
C. Feature Extraction penalized logistic regression (PLR) [18], [17]:

The features were extracted from non-overlapping interval @ 17
of 200 ms. This window duration is within the acceptable time Galt) = { W(d,) ] { X(t) pa(t) (4)
delay between user command and prosthesis action [14],[15] w X(t) (1 = pa(t))
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With data points; the output of the kernel functibfx:(t = i), z(t =
T 7)) is then stored in thd(;,th entry of thekernel matrix .
pa(t) = o (Ba x(t)) ®) The essence of the kernel trick is that one can express the
prediction of the target labefgT'+ 1) as a linear combination
« of the similarity in kernel feature space between the new dat
pointz(7T+1) and all training data points(1), z(2), ..., z(T)

o(s) = ﬁ is the sigmoid function and the coefficienty
are obtained by iterative reweighted least squares. Thalfyen
term of PLR and the regularization parameteof the LRs
are optimized in a nested cross-validation (sec. II-E). T

For a steep sigmoid function the model can be seen as piece- g(T+1) = Z E(x(T + 1), 2(t)) . (8)
wise linear with some smoothing around the origin. In this t=1

article we will refer to it as a linear method, even thougls thithe 5o callediual coefficients: can be computed by inverting

is not correct in a strict sense. the kernel matrix and multiplying each column with the
3) Multilayer perceptrons (MLPS)MLPs have been often regpective label

used in the present context [9], [10], [17] and will be analyz
here for comparison. Each DoF was estimated by an individual a=(K+1IN""y, 9)
network. Each MLP had one hidden layer with sigmoidal

transfer functions and a single output neuron with Iine%‘fhere[ denotes &' x T identity mairix and\ is a regulariza-

transfer function. The number of inputs were defined b on constant. For a detailed review of kemel ridge regoess
. . . : e e.g. [17], [25].

the dimensionality of the feature space (i.e 192 for the fu - .

channel-set) The hyper-parameters and A have to be optimized using

The number of hidden neurons in each MLP was optimiz&?pmpriate model selection techniques. We used a gridisear

with cross-validation. A grid search on a range betwedh the inner fold of a nested cross-validation to find optimal
rameters (sec. II-E).

one and 20 hidden neurons per DoF have shown that e

performance did not increase with more than three neurons

and decreases when using more than eight neurons. SimiarCross-validation

resu_lts were also reporte_d by other studies ([9], [10]). SThu 14 evaluate performance, five-fold cross-validation was ap

we fixed the number of hidden neurons to three per DOF. pjieq. The folds were formed by entire runs. This was done
The MLPs were trained with the Levenberg-Marquardly orger to keep training and test set not only disjoint but

back-propagation algorithm. All MLP training was imple-5 jndependent as possible [26] and to guarantee a balanced

mented with the Matlab neural network toolbox. In previougnnearance of movements within both sets.

studies where MLP were applied with a high number of the nerformance was in all cases evaluated on test sets

features, the dimensionality of the feature-space (and ”]Hcluding all trajectory types. Training was usually alsone

the number of network inputs) was reduced using princip@hin all trajectory types; only the results shown in figure 8
component analysis (PCA) [10], [19]. The number PCiyere pased on training with subsets of trajectories.

components was defined by a threshold on the fraction ofpq 4 performance metric we used the r-square value [27]:
variance captured by those components. This can speed up the

training of the MLPs but leads to a reduced performance. For _
a fair comparison with the other methods no dimensionality >4 Var(y?)

reduction was applied in this study. . . .
4) Kernel Rid%pe Regression (IEIRR)Another simple but wherey? is the wrist deflection angle of thé¢h DoF, measured
powerful non-linear regression methodkisrnel ridge regres- by the motion tracking system, al_yff its estimate predicted
by the models. The numerator is the mean squared error,

sion In KRR the same error function as in LR is minimized. hich i lized by th . £ h ¢ labels i
The decisive difference to LR is that the error function i ng. ICh 1S normalized Dy the varance ot the correct 1abels in

minimized in the input space of the data. Instead the dafa inthe denomina_tor. Thus, the r-square value is n_ot influenced
is mapped through a (potentially non-linear) mappingnto by the numerical range_of t_he labels. The maximal r-square
a kernel feature spaceApplying the kemel trick [20], [21], value at perfect estlma_tlon is one. No_te that also negative r
[22], [23], [24] this mapping does not have to be compute uare values are possible for estimation errors largerttie
explicitly. The kernel trick is based onkeernel functiork(., .) variance of the targets.

that takes two data points as arguments and computes thre inné: ;)r dmethods \I/_v(;tht_parameters Itht Ihave tt% ?ﬁ otptl_m .'Zfd’ a
product(., ), in the kernel feature space nested cross-validation was applied. l.e. wi e trgrep

of each fold, a second (inner) cross-validation was done to

(10)

k(z(i),2(7)) = (p(z(?)), o(x(7)))e- (6) determine the performance for a certain parameter configura

] ] ) tion. This inner cross-validation was repeated for a number

In this study we used a Gaussian kernel function of parameter configurations and the best configuration was
k(2(i), z(j)) = ef(z(i)fx(j))Z/(r’ @) used to train the algorithm for the outer cross-validatidh] [

[26]. The reported performance was measured on the test
whereo is the width of the Gaussian kernel function. Givesets of the outer cross-validation, which was not used to
a fixed data setX € RE*" = [z(t1),z(t2),...,2(tr)] the determine the parameters. Simply repeating a normal cross-
kernel function is evaluated for each pait = i), «(t = j) of validation with different parameter settings would leadato
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wrong performance estimation, since the parameters would Prediction with variance featuresPlot (a) in figure 3
over-fit to the test data sets. illustrates the nonlinear relationship between EMG var&an
A typical session with 15 runs contained 14700 featund wrist inclination. When estimating the labels with LRe t

samples whereof 11760 were used in each outer fold fpredicted wrist angles cannot be modeled well, as depicted i
training and parameter optimization and 2940 for testirgy. Ffigure 3d. For wrist angles close to the origin, the predicted
the investigations in section IlI-D the training sets wherangle isunderestimatedvhile at wrist angles far from the
reduced while the testing-sets were kept unchanged. origin, the predicted angles tend to beerestimated

Prediction with rms featuresThe panels in the middle
column of figure 3 show data and results for the square
root of the variance features. Panel b illustrates that tire n

All presented methods need data to learn the relationstipearity between wrist inclination and EMG features is aet

between EMG features(t) and labelsy(t). For a clinical pronounced as in the case of the variance features in panel a.
application the amount of training data required for caltmg This leads to a better prediction, as visualized in figure 3e.
the controller is an important factor because it determthes Prediction with log-var features:The results obtained
time to fit the prosthesis. To the best of our knowledge Wwhen taking the log of the EMG variance are depicted in
was never explored in a systematical way how much ddtse panels in the right column of figure. 3. In contrast to the
is needed for a proper model fitting. The influence of thether two features, the relationship between wrist angtes a
amount of training data was investigated in two ways. Firgt, EMG log-var is almost linear, as illustrated in panel c. This
decreasing the training data set of each fold within thessrodeads to a significantly better prediction with less under- o
validation by entire runs. Second by removing trainingdri overestimation at small or large targets as shown quaksti
corresponding to certain trajectory-types within each byn in figure 3f.
defining the following subsets:

a) all trajectories (20 trials per run) B. Cross-validation results
b) all radial trajectories22.5° steps, 16 trials per run)

¢) half of radial trajectories46® steps, 8 trials per run)

F. Amount of training data

The effect of linearization is also seen in the cross-véliaa

; ; ; ° : rformance m r he r- I Fig. 4).Tdkch
d) quarter of radial trajectorie9@° steps, 4 trials per run) ?oer s?atisiiczel siger?i?iléaendcgétw?e\y ,Sb\ql\lljg(/epg;/(al—u()e(gf))l%vag pcekrc ec
e) all circular trajectories (4 trials per run ) - )

) J i ( P )_ ) formed. The three factors were regressor, feature and gubje
Both ways were combined and for a fair comparison the piects 8 and 9 had large negative r-square values (at LR
total number of training samples was logged. The aim of thig \ar ~ _10) and were excluded from the test as outliers.
investigation was to assess if it is better to reduce theit;ensrhe full model ANOVA (with all two-way interactions and
of combining the DoFs or to reduce the number of repetitione three-way interaction) revealed no significant threg-w
if the time for collecting training data is limited. interaction f = 0.98), and two-way interactions including

If the feature space is also linear with respect to the Dogﬁbject 6 = 0.09 with regressor and p=0.11 with feature
(i.e., if the features sum when activating more than one DEgpectively). These interaction terms were pooled andegh
at a time) we would expect that it is not necessary to traway ANOVA with only the two-way interaction between

with all trajectories. Conversely, if this linearity doe®tn reqressor and feature was performed, from which significant
occur, eliminating trajectories would negatively impabet ; taraction was detecteg & 10-3).

performance. Subsequently, compartmentalized two-way ANOVA tests

were performed by fixing the level of one of the two interagtin

IIl. RESULTS factors. When the level of regressor was fixed at LR, ME,
MLP, and KRR, the 2-way ANOVA tests found that feature
was significant § < 1073, p < 1073, p = 0.026, and

Figure 3 illustrates the linearization of the feature spmweg p = 0.031 respectively), regardless of the regressor. Post-hoc
the impact on the estimation by LR. Since it is impossible tdukey-Kramer tests showed that var was always significantly
visualize the relationship between the labels and the featworse than log-var in all cases, while rms was never signifi-
space in full dimension, the features were averaged owantly different from log-Var. Further, for the two non-diar
all channels:zintensity (t) = % Zle x.(t). Although this methods, rms was not significantly better from var, but lag-v
"feature intensity” does not contain enough informatiom fovas (Fig. 4a).
the regression task, it can give insights to the complexity When the level of features was fixed at var, rms, and log-
of the underlying relationship. The top row (a-c) illusasit var, the 2-way ANOVA tests found that regressor was not
the relationship between wrist inclinationand EMG feature significant for log-var (p=0.14), while it was significant fear
intensity. Several trials of the radial trajectories aretgeld. and rmsp < 10~3 for both cases). Post-hoc Tukey-Kramer
The x-axis shows the distance from center position, the tests showed that, for the var feature, LR was significantly
axis shows feature intensity, and different target dicediare worse than the other three regressors, ME was significant
distinguished by different colors. The curves are obtaibgd worse than MLP and KRR, while there was no significant
polynomial fitting with a model complexity limited to third difference between MLP and KRR. For the rms feature, LR
order. was significantly different from MLP and KRR, and no other

A. Effect of feature transformation
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Fig. 3. Visualization of feature intensity (features agam over all channels) vs. wrist inclinationfor radial trajectories in polar coordinates (a-c). Each
line was obtained by polynomial fitting of the intensities éme direction of wrist inclinatiord. For this illustration, only radial trajectories were usedl the
color of each curve indicates the direction of the trajgct@s illustrated in the legend in panel a. The lower panelf &how an example of the estimations
y by linear regression (solid lines) and the true lahgel@ashed lines) for all features. For the log-var featurertiationship between wrist inclination and
feature intensity is almost linear (a) which results in thestoestimation (f).

significant different pairs were found. For log-var feagjneo (black lines in Fig. 6, lower panel). Evidently the perfomoa

significant differences were found among all the regressorgdrop is largely a result of the inability of the subject to foem
All in all the linear methods performed significantly worseexact mirror movements.

than nonlinear methods with variance features. It is veegrcl

that here the feature transformations had the largestteffgg Impact of reduced training data

But even for the non-linear methods MLP and KRR the log- . — . .

transformation led to a small but significant improvement. Fforachmgal application a‘T‘e‘hOd should be: calibratedwit

Because for log-var features all regressors perform egua s few training data as possible and generalize from a small

well, throughout the rest of this study all results are based amoynt of training ‘?'?‘ta to as many_posgble motor actions as
possible. We quantified the generalization performancdlof a

the log-var feature. : ) .
g 0r}nethods by successively reducing the amount of training dat

For th j with congenital deficien he eff . ) . o
or the subject with congenital deficiency, the effect nd the regions in data space from which training data was

feature transformation was similar to able-bodied subjec?bt ined. Th it based on the si biects f h
(Fig. 5). With the log-var feature, the r-square value Was obtaned. These resulls are based on the six subjects fanwho

o . ilable.
to 0.8, which is almost as good as the average able—bodléé runs are aval
08 9 9 1) Reduction by runsAs expected, performance decreases

subjects. when the amount of available training data is reduced (Fig.
o 7). KRR and ME and LR are similarly robust to a reduction
C. Contra-lateral training in data set size, whereas the MLP does require a large set of

In order to assess the ability of all methods to be applied éxamples.

uni-lateral amputees, we trained each model with the contra 2) Reduction by runs and trials per runThe cross-
lateral labels and tested with the ipsi-lateral labels i{@abée validation performance of a combined reduction of the numbe
for five subjects, Fig. 6). The performance decreased framh training-runs and the types of motor actions performed
approximately 0.8 - 0.9 (ipsi-lateral training, upper parte  within each run are shown for the ME in figure 8 (similar
0.6 - 0.7 (contra-lateral training, lower panel) for foubgcts results were obtained with the other regressors). The perfo
and to 0.3 - 0.4 for one subject. This is to be compared to theance depends mainly on the amount of training data. When
reproducibility of the left and right hand mirror movementgnough sample are used (e.g. more than 1500) the type of
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of time for training (up to 5 min).

The computational cost for applying the methods is shown
in figure 9b. The time to apply LR, ME and MLP does
not depend on the amount of training data and is very fast
(LR:5 ms, ME:40 ms and MLP:100 ms for the entire test data
of 3000 samples or 600 seconds of EMG data). KRR is a
non-parametric model and needs to access all training data
samples during testing. Testing time for KRR thus increases

r-square

LR ME MLP KRR with increased training-set and reaches around 2.5 s for the
(a) factor regressor fixed largest training set (L0ms per sample). This, together thigh
memory requirement KRR may make embedded processing
x M 1
L

E. Reduced channel-set

For this study data was recorded with 192 channels. Cost
and power consumption will set limits on the number of
channels that can be used in a clinical prosthetic system.
Therefore we investigate the performance of the algorithms

var rms log-var with reduced sets of 96, 48, 24, 16, 12 and 6 channels
(b) factor feature fixed (Fig. 10a) with regular spacing (Fig. 10c). For all methdus t

performance increases with increasing number of channdis a
Fig. 4. Mean cross-validation performance of ipsi-lateraining for all Saturates at half of the available channels. When the number
ot S e o Sty e oot o oo, hannels s reduced below approximately 12 (0 16, te
E;e:s (;,.V(I)S).Slr?cases when the line ends in between two bgrs both aretmea?\erforrm_ince drops abruptly. KRR perfo_rms best in all cases

and achieves an r-square value of 0.8 with only 12 monopolar
channels. However, the differences between the methods are
rather small, e.g. the computational cheaper method ME has
with the same number of channels still a median performance
of 0.73.

Similar results were obtained for the subject with congenit
deficiency (Fig. 10 b). The number of channels differs from
figure 10c because the electrode array had to be cut to fit
the size of the residual limb without overlap. Again, KRR
performance was best and a drop in performance below a
certain number of channels was observed (22 channels in this

Fig. 5. Cross-validation performance for a subject withgemital deficiency, CaSe).
trained with contra-lateral motion data. Error bars inticater-fold standard
deviation. The effect of feature transformations is the esa for able-bodied
subjects: rms lead to better and log-var to best results [faegressors and

the effect was stronger for linear methods.

r-square

0.8
0.7
0.6
0.5
0.4
0.3
0.2

r-square

LR

Ipsi-Lateral Training

1 T T T T
o 038
- . . . . 8 0.6
training trajectories had no strong influence. Even if only % 0.4 H
single DoF were active in training (1/4 radial trajectoyjebhe L
regressors performed still very good on the testing dathvhi 0'2 q LR..? M.E._.-. 'ﬂf_‘;l KRR
included many combined movements. This shows that the 6 7 8 9 10
algorithm is able to generalize also to regiongydbr which Contra—Lateral Training
no training data was provided. The models can generalize 1
from a small set of co-activations to various mixtures of o 08 _
independently combined DoFs. This indicates that the featu g 0.6
space is also linear with respect to the DoFs. i 0.4
3) Processing timeAs an indication of the computational 0.2
load of the algorithms the processing time for training was 0 6 7 8 9 10
measured (Fig. 9a). All processing was done in MATLAB 64 subject

bit, running on a system with a 2.67 GHz processor and 8 GB

: ; ; ig. 6. Cross-validation performance for ipsi- (u.) andtcaitateral training
of memory. Evidently the LR is exceedingly fast (100 mgi); the decrease in performance form ipsi- to contraddteraining is ap-

with all data included) thus permitting potential realim proximately proportional to the ability of the subjects wpy the movements
adaptation. In contrast, the MLP can take substantial amodmm left and right wrist as indicated by the black horizdritaes.
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Performance for reduced training runs 103 ,
1 . . . . . . 10
) LR
1 3 5 7 9 11 12 »n 10 1 — — —ME
0.9} - P 210 — — MLP
. — - £ 10* a KRR|
= = 10 /
v 08} £ 10° 2
: g R et
g =10 N
Loz 10°
~ 5 - ME 0 5000 10000 0 5000 10000
061 oo MLP # training samples # training samples
—<&— KRR (a) training times (b) testing time
0.5 : : : : : :
0 2000 4000 6000 8000 10000 12000
# of training samples Fig. 9. Training and testing time as functions of the trajnget size

Fig. 7. Cross-validation results with reduced number dhing runs. Curves

indicate median across subjects and whiskers show 25/7emées. The . . .. . .
numbers above the curves indicate the number of runs use. fsature- (Where direction is indicated by changing sign). The goal of
samples correspond to 200 s of data. ME, KRR and LR are lesgeifed  the mixture of expert technique proposed here was to break

by the reduction of training data as compared to the MLP. the linear trajectory into two regressors, each specigiito
positive or negative displacements. With this modificatioa
remaining non-linearity is largely addressed and perforrea
increases to levels comparable to state-of-the-art nuradi
regression algorithms (ME, see section 11-D2).

ME - training set reduced by runs and trajectories

B. Clinical applicability

]
g 1) Amount of calibration data:ln clinical practice it is
| 4 . . L
<07 "2 _ all trajectories deswablg that the controllgr requires as little cahhmtda;a
—v— all radial trajectories (22.5° steps) as possible. Importantly, it should be able to generalize to
0.6f —B— 1/2 radial trajectories (45° steps) | movements for which exhaustive training data is not avélab

* - 1/4 radial trajectories (90° steps)
—©6— only circular trajectories

This is particularly important for simultaneous proponiid
control with many DoFs, because the amount of data and
recording time increases exponentially if the space of move
ment is to be uniformly and densely sampled. We found that
Fig. 8. Cross-validation performance for training setwucedi by number of dense sampling of all movement directions is not as impbrtan
training runs and training trajectories. Shown is the medieross subjects for as overall number of training samples This indicates that
the ME. Performance increases with increasing number ofitiga samples . . - )
nearly independently of the specific choice of trajectories the featl_-lre space IS also linear with respeCt to th_e D_OFS-
In practice this means that not all possible combinations
of DoFs are required for calibration, which can reduce the
IV. DISCUSSION complexity of the training protocol and thus alleviate the

This study presents a systematic comparison of EMG seffort for the user. With approximately 2000 feature sarsple

tures and control algorithms for simultaneous and propoaii (€SS than seven minutes training data) the ME algorithm
control of a hand prostheses with multiple DoFs. The evaljérforms already reasonably well. Increasing the recgrdin

ation scenarios in which the methods were compared, hd{f§e beyond this point provides diminishing returns. Witie t
targeted aspects that are important for clinical appticei current implementation of MLP about 5000 training samples
(more than 15 minutes) are needed to avoid a substantial drop

] in performance. However, there exist techniques that could

A. Feature representation increase the performance for small training sets [28].

Previous studies have often used variance to capture EM&X) Computational costsThe current clinical standard for
activity [12], [11], [10]. However, power (variance) of EMGfitting the prosthetic device involves a computer to viszeali
increases disproportionately as force increases to aetgev the EMG signals and configure the parameter settings. Thus,
treme wrist inclinations. A simple non-linear transforioat the computational cost of training is of lesser concern. How
(square root or logarithm) can account for this non lingaritever, future devices may aim to adaptively calibrate theagev
and thus improves performance for all methods tested. Thisreal-time in which case efficient learning algorithms are
is particularly true for the linear methods (LR and MEkey requirement. The training times for LR is negligible and
which attained with this simple modification a performancene algorithm is readily converted into a real-time settiRgr
closer to the more complex non-linear algorithms. Oppositee full data set ME and KRR needed almost a minute. But
direction of movement engages different muscles. Thisdeaalssuming a reduced data set of 2000 samples which would
to an additional non-linearity of the problem as stated hestill lead to a reasonable performance, ME and KRR could be

0.5 : : - : -
0 2000 4000 6000 8000 10000 12000
# of training samples
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r-square

r-square

(b) performance for subject with congenital deficiency

0.9}
0.8}
0.7{]
0.6

05

Performance with reduced number of channles

¢ LR
- & —ME
—O— - MLP

—<— KRR ]

6 12 16 24 48 96 192
N channels

(a) performance of able bodied subjects
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//F ==
0.6 Sy 1
/7
0.5 Y/ |
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Fig. 10.

Reduced channel-sets: (a) Cross-validation pegnce with
reduced channel-sets for able-bodied subjects (mediarRaf7® percentiles
across subjects). The performance decreased with theadeciie the number
of channels and dropped abruptly when fewer than 12 to 16ngisrwere
used. (b) Cross-validation performance with reduced cblasets for the
subject with congenital deficiency. The results were simitathose from
the able-bodied subjects, but the performance drop oatwhen fewer than
22 channels were used. (c) The definition of the channel suibse

(c) channel-sets

for the test sample with all training data points and a matrix
vector multiplication with the kernel matrix. Since the ker
matrix is growing quadratically with the number of training
points, the processing costs and the memory requirements ar
very high already for medium training data sets. (e.g. for
2000 data points the kernel matrix has< 10°) entries. This
makes the use of KRR prohibitive with currently available
prostheses hardware. Note that there exist techniquedticee
the memory requirements and computational costs of KRR
(see e.g. [29],[30],[31]).

3) Number of channelsBecause of costs, power consump-
tion and reliability, the number of electrodes for a clinica
application should be as small as possible. Reducing the
number of channels leads to a reduced performance for all
investigated methods. But even with 12 channels the regress
were still able to estimate the wrist position with an r-sgua
value of(0.7 to 0.8. For the subject with congenital deficiency,
22 channels were sufficient to reach an r-square valug6of
to 0.7. The number of needed channels may vary significantly
for subjects with limb deficiency depending on the individ-
ual anatomy and capabilities. The channels were selected
arbitrarily with a regular spacing. It is expected that with
automatic channel-selection methods a higher performance
can be reached with even fewer channels. This is important
particularly for potential users of myo-prostheses.

4) Transfer to amputees / training strategontra-lateral
training is one possibility to apply the methods to unitate
amputees. The performance in this case depends on the amount
of residual muscles, the ability of the user to execute the
contractions with his disabled side and the ability to copy
the movements from the intact side. The last factor has been
evaluated in this study with five able-bodied subjects. Our
results suggest that even for able-bodied subjects thesge is
large variability in how precise bilateral mirrored movents
can be executed. These results indicate that user traimdg a
feedback will be essential for a successful application of
regression techniques for a simultaneous proportionairabn
of multiple DoF prostheses. Given good mirror movement
performance, all other results of this study apply to thescas
of contra-lateral training. This was shown for one subject
with congenital limb deficiency, whose performance was only
slightly below that of able-bodied subjects. Moreover, the
main findings of our study, including the positive effect of

trained in less than 5 seconds. To train MLP with 5000 samplgfe feature transformations, were valid also for this stibje
requires approximately 60 seconds which would preclude re@his indicates that our findings may transfer to potentiaisis
time adaptation. This could perhaps be mitigated by reducisf myoelectric prostheses and emphasizes the relevanhésof t
the number of channels and more efficient implementationsyork.

The computational costs during execution is critical beeau The experiments in this study are based on 2 DoF, namely,
they need to fulfill real-time requirements on an embeddsd sylexion/extension and radial/ulnar deviation of the wrishe
tem with little computational power. The time to evaluateonlatter is not available in current prosthesis hardware. The
test sample must not exceed a few milliseconds. Therefere thuscles for those movements are located close to the skin
processing times measured on the machine described inseclitading to good EMG signals and less problems due to skin-
[1I-D3 can only give a rough assessment. The processingiscle-shifts are expected compared to pronation/supmat

for LR consists only of a single matrix-vector multiplicari

These problems might be a minor issue when applied to

and is negligible. ME and MLP consist of several matrixamputees because of different anatomy. However, the dontro
vector multiplications and evaluations of sigmoid funoso signals from radial/ulnar deviation can also be used torobnt
This is also possible on a relatively simple system. Thie rotation unit of the prosthesis if this leads to more Istab
application of KRR involves evaluating the kernel-funatio results.
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C. Linear vs. non-linear methods

[2

—

Performance comparisons indicate that linear methods can
achieve very good results comparable to state-of-theart n

linear regression algorithms. In fact, when using an aprisip

(31

EMG feature representation and a proper regularization the
results with ME are almost indistinguishable from those of
non-linear methods. A major advantage of linear methods !
the dramatically reduced computational demand for trginin
and evaluation; both LR and the ME model are convex
problems that can be solved very efficiently. Moreover,dine %]
methods are less prone to over-fitting than non-linear ntstho
LR and ME can be easily realized on a very simple and chedpl

micro-controller with little power consumption and aredia
modified for real-time adaptation. In contrast to linear imoels

(7]

non-parametric models like KRR suffer from large memory
requirements and significantly longer evaluation times for

large calibration data sets. Parametric non-linear moslett

8

—_

as artificial neural networks on the other hand do not require
as much memory and are relatively fast during evaluatioqg]

but training can be slow and they required longer calibrati

sessions.

V. CONCLUSION

We systematically compared state-of-the-art regressicm-t

(o]

[10]

nigues for independent simultaneous and proportional myo-

electric control. Linear and non-linear methods were caiega
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V. D. Niet Otrand, O, A. Heleen, R. M. Bongers, H. Bouwsenad
C. K. V. D. Sluis, “The i-LIMB hand and the DMC plus hand comgdr
A case report,"Prosthetics and Orthotics Internationalol. 34, no. 2,
pp. 216-220, Jan. 2010.

E. Scheme and K. Englehart, “Electromyogram patterrogadion for
control of powered upper-limb prostheses: state of therattchallenges
for clinical use,”Journal of Rehabilitation Research and Development
vol. 48, no. 6, pp. 643-659, Sep. 2011.

A. Fougner, E. Scheme, A. Chan, K. Englehart, and O. Sthvd
“Resolving the limb position effect in myoelectric pattenecognition,”
IEEE Transactions on Neural Systems and Rehabilitationirteeging
vol. 9, no. 6, pp. 644-651, dec 2011.

J. Hahne, B. Graimann, and K.-R. Muller, “Spatial filtey for robust
myoelectric control,”IEEE Transactions on Biomedical Engineering
vol. 59, no. 5, pp. 1436-1443, May 2012.

Y. Geng, D. Tao, L. Chen, and G. Li, “Recognition of comih
arm motions using support vector machine,’liformatics in Control,
Automation and Roboticglan. 2012, no. 133, pp. 807-814.

A. Young, L. Smith, E. Rouse, and L. Hargrove, “Classifica of
simultaneous movements using surface EMG pattern re¢oghitEEE
Transactions on Bio-Medical Engineeringpl. 60, no. 5, pp. 1250-1258,
May 2013.

N. Jiang, S. Dosen, K.-R. Muller, and D. Farina, “Myoetéc control of
artificial limbs; is there a need to change focud2EE Signal Processing
Magazine vol. 29, no. 5, pp. 152-150, Sep. 2012.

J. L. Nielsen, S. Holmgaard, N. Jiang, K. B. Englehart, FEarina,
and P. A. Parker, “Simultaneous and proportional forcemestion for
multifunction myoelectric prostheses using mirrored teilal training,”
IEEE Transactions on Biomedical Engineeringl. 58, no. 3, pp. 681—
688, Mar. 2011.

S. Muceli and D. Farina, “Simultaneous and proportloestima-
tion of handkinematics from emg during mirrored movements a
multipledegrees-of-freedom|EEE Transactions on Neural Systems and
Rehabilitation Engineeringvol. 20, no. 3, pp. 371-378, May 2012.

] N. Jiang, J. L. Vest-Nielsen, S. Muceli, and D. FaringEMG-based

under carefully designed experimental paradigms in order t

assess their performance in terms of accuracy and robsstnes , B
[12] N. Jiang, K. B. Englehart, and P. A. Parker, “Extractisignultaneous

targeting clinical requirements.

We identified that a logarithmic transformation of the well

established variance feature linearized the relationssiyeen

EMG and wrist angles. This allows to apply very simple ang®!

computationally cheap linear methods.

The models generalized very well to DoF-combinations for
which no training data was provided. This indicates that tHhE"
log-var feature space is also linear with respect to DoFs and
that it is not necessary to record training data for all dassi [15]

combinations of DoFs.

An additional linearization was achieved by separatings)
movement in opposing directions, which is motivated by the

fact that opposing movements are controlled by differe

sets of muscles. The resulting ME algorithm representsi]
promising candidate for the next generation of prosthetic

devices. If adequately regularized, it performs similatdy

[19]

or better than more complex non-linear methods, even when

only little training data is available. It is superior in thes

of computational cost during both calibration and predicti
phase and can be implemented on a very simple hardware. gy

including one subject with congenital limb deficiency we éav
shown that our findings transfer well to potential users obmy 21]
prostheses. Future studies will explore the case of cotagap

learning strategies [32].
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