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Abstract

Human brain mapping relies heavily on fMRI, ECoG and EEG, which capture different physiological

signals. Relationships between these signals have been established in the context of specific tasks or during

resting state, often using spatially confined concurrent recordings in animals. But it is not certain whether

these correlations generalize to other contexts relevant for human cognitive neuroscience. Here, we address

the case of complex naturalistic stimuli and ask two basic questions. First, how reliable are the responses

evoked by a naturalistic audio-visual stimulus in each of these imaging methods, and second, how similar are

stimulus-related responses across methods? To this end, we investigated a wide range of brain regions and

frequency bands. We presented the same movie clip twice to three different cohorts of subjects (NEEG = 45,

NfMRI = 11, NECoG = 5) and assessed stimulus-driven correlations across viewings and between imaging

methods, thereby ruling out task-irrelevant confounds. All three imaging methods had similar repeat-

reliability across viewings when fMRI and EEG data were averaged across subjects, highlighting the potential

to achieve large signal-to-noise ratio by leveraging large sample sizes. The fMRI signal correlated positively

with high-frequency ECoG power across multiple task-related cortical structures but positively with low-

frequency EEG and ECoG power. In contrast to previous studies, these correlations were as strong for

low-frequency as for high frequency ECoG. We also observed links between fMRI and infra-slow EEG

voltage fluctuations. These results extend previous findings to the case of natural stimulus processing.
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1. Introduction

The most frequently-used functional neuroimaging techniques are functional magnetic resonance imaging

(fMRI) and electroencephalography (EEG). Both are complementary in that fMRI provides high spatial but

low temporal resolution, while the opposite is true for EEG. Invasive methods such as electrocorticography

(ECoG), on the other hand, combine high temporal resolution with relatively high spatial resolution; how-

ever, such procedures are only used in small cohorts of neurological patients. ECoG, EEG and fMRI also

differ in their underlying neurophysiological origin, are susceptible to different noise sources (e.g., artifacts,

pathological activity), and generally differ in terms of their inherent signal-to-noise ratio (SNR). From a

practical perspective, it is, therefore, of interest to quantify and map out the amount of task-related infor-

mation that each imaging modality contains in order to decide on the appropriate technique for a particular

study.

At the same time, it is an ongoing endeavor to reveal the relationships between brain imaging techniques

in order to better understand the physiological foundations underlying these methods. There have been

significant efforts to relate the electrical neural signal measured with EEG/ECoG (Buzsáki et al., 2012) to

the hemodynamic blood-oxygen-level dependent (BOLD) signal captured by fMRI (Logothetis, 2003). In

respective experiments, imaging modalities are linked either through simultaneous recordings or through

separate recordings tied together by a common task. Numerous studies in humans have used simultaneous

fMRI–EEG recordings, including Laufs et al. (2003); Moosmann et al. (2003); Ritter and Villringer (2006);

Scheeringa et al. (2008); Ritter et al. (2009); Scheeringa et al. (2011, 2016). Simultaneous fMRI–ECoG

recordings are only available in animals (Logothetis et al., 2001; Niessing et al., 2005; Magri et al., 2012)

with a recent exception in human (Carmichael et al., 2017). Most human studies have relied instead on

a common task (Mukamel et al., 2005; Nir et al., 2007; Hermes et al., 2012; Winawer et al., 2013; Harvey

et al., 2013). The main findings of these studies are that high-frequency power in the ECoG correlates

positively with fMRI, while low frequencies correlates negatively with fMRI. These effects may, however,

not be uniformly distributed across cortical brain structures, and can display frequency-dependent spatial

variations (Scheeringa et al., 2008, 2009; Harvey et al., 2013). The observed correlations may also depend on

the specific task (Muthukumaraswamy and Singh, 2009; Maier et al., 2008). Recent evidence suggests that

the correlations between hemodynamic and electrical activity can have a non-neuronal physiological origin

(Mateo et al., 2017), which can be decoupled from task-related neural processing (Winder et al., 2017).

Thus, it is not certain whether the results of previous studies apply also in more realistic stimulus condition

in humans, nor is it clear which of these relationships persist once controlling for physiological confounds

unrelated to the brain functions under study.

The link between scalp EEG and invasive electrical recordings has been explored predominantly in non-

human primates using simple visual stimuli. While visually evoked gamma activity generally correlates in
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the two imaging modalities (Whittingstall and Logothetis, 2009), there appears to be a complex relationship

between lower frequency activity in the EEG and high-frequency intracranial activity (Snyder et al., 2015).

In human, the link between ECoG and EEG has been explored mostly in the context of epileptic activity, but

we are not aware of a systematic analysis of different frequency bands. Such an analysis may be warranted,

given that results on visual evoked gamma activity, for instance, do not seem to readily extend to humans

(Juergens et al., 1999) and likely depend on the stimulus (Scheeringa et al., 2016).

Here, we consider the case of a complex audio-visual movie stimulus and ask two basic questions that

have not been sufficiently addressed in the previous literature. First, how reliable are the responses evoked

by such a stimulus in EEG, fMRI and ECoG, given the cohort sizes that are typically available in respective

studies? And, second, to what extent are these three imaging modalities reflecting the same stimulus-related

brain activity?

To study these questions, we analyzed correlations within and between EEG, fMRI and ECoG recordings

across different brain structures and frequency bands. Data were acquired from three different cohorts

of subjects within separate EEG, ECoG and fMRI studies, in which subjects watched an audio-visual

movie. The richness of the movie stimulus thereby ensured that not only auditory, visual and multi-

sensory systems were engaged in the viewing task, but also a host of higher-level cognitive functions such

as language, memory, and attention. Using the same movie for all subjects allowed us to temporally

align data of different recordings, and to quantify their similarity using correlations (Hasson et al., 2004,

2010). Relationships between imaging modalities were studied in a common anatomical space in terms of

correlations between signals of different subject cohorts, here referred to as inter-method correlations (IMC).

Additionally, the presence of two repeated viewings within each subject allowed us to assess repeat-reliability,

which we quantified here in terms of inter-viewing correlations (IVC). The use of IMC/IVC thereby ruled

out correlations induced by physiological or artifactual fluctuations not related to the task, which would

be present in concurrent multi-modal recordings. To allow meaningful comparisons of correlations across

methods, we harmonized the spatial and temporal scales of the different datasets using spatial co-registration

and the standardization of correlation coefficients using data-dependent null distributions. For EEG and

fMRI, we analyze data of single subjects as well as the grand-average across subjects. This grand-averaging

captures stimulus-related activity that is similar across subjects and increases correlations across repeated

viewings and between imaging methods. Our study represents the first comprehensive quantification of

the stimulus-related brain activity that is expressed within and shared between three important functional

brain imaging modalities. As such, it complements and extends parallel work on the relation between

magnetoencephalography and fMRI (Lankinen et al., 2018).
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2. Methods

Three separate cohorts of subjects were presented with a 325 s long segment of a feature film (Dog Day

Afternoon; previously used by Honey et al., 2012) two times, and neural activity was recorded with EEG

(N = 45 subjects), fMRI (N = 11) and ECoG (N = 5). We analyzed correlations of ‘raw’ broad-band signals

of all imaging methods as well as of EEG/ECoG power fluctuations in five frequency bands: θ (4–8 Hz),

α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz) and the high frequencies (HF, 64–116 Hz). To quantifying the

effects that can be resolved from entire cohorts of realistic sizes, we performed grand-averaging (GA) of the

EEG and fMRI data after spatial normalization. In ECoG, averaging across subjects is not possible, as

electrode montages differ between subject; we, therefore, combined the ECoG channels of all subjects into

a single dataset (without averaging). For comparison we also present fMRI and EEG results obtained on

single subjects.

2.1. Study subjects

fMRI—Eleven subjects (six female; 20-35 years old) participated in the fMRI experiment. All subjects

were in good health without history of psychiatric or neurological disorders and gave their informed consent

to participate in the study and consent to publish in accordance with procedures approved by the Princeton

University Institutional Review Board and with ethical standards set out by the Federal Policy for the

Protection of Human Subjects (or ’Common Rule’, U.S. Department of Health and Human Services Title

45 CFR 46). Subjects had normal or corrected-to-normal visual acuity. All subjects were experienced MRI

subjects that were well trained to lay still during scans. There were no specific recruitment goals with

respect to gender or race/ethnicity; however, fluency in English was required.

ECoG—ECoG data used in this study have been described in detail in Honey et al. (2012). The following

description is quoted from Honey et al.: “Five patients (four female; 20–47 years old) experiencing phar-

macologically refractory complex partial seizures were recruited via the Comprehensive Epilepsy Center of

the New York University School of Medicine. Patients had elected to undergo intracranial monitoring for

clinical purposes and provided informed consent both pre- and post-electrode implantation in accordance

with National Institutes of Health guidelines administered by the local Institutional Review Board. For

each patient, electrode placement was determined by clinicians based on clinical criteria. We focus here on

patients with entirely or predominantly left-lateralized coverage, all of whom had left-lateralized language

function.” We are excluding right-hemisphere electrodes available from two patients with bilateral coverage.

EEG—Data were obtained from two separate batches. In the first batch, thirty healthy subjects were

recruited (fifteen male; 19–31 years old). Procedures were approved by the Western Institutional Review

Board (Puyallup, WA). These data have previously been used in Dmochowski et al. (2017). In the second

batch, fifteen healthy subjects were recruited from the campus of City College (nine male; 18–28 years old).
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These additional data have not been previously published. All procedures for this batch were approved by

the Institutional Review Board of the City University of New York. Prior to the start of the experiments,

all subjects gave written informed consent. There were no specific recruitment goals with respect to gender

or race/ethnicity; however, fluency in English was required.

2.2. Experimental setting

The audiovisual stimulus was a 325 s long movie clip selected from the 1975 commercial film Dog Day

Afternoon (DDA, Lumet, 1975).

fMRI—Subjects viewed two repetitions of DDA clips. In addition to original (intact) clips, two manipulated

variants, in which the scene order was randomized either on a coarse or fine level, were presented.

Presentation order was randomized across individuals. In most cases, two scrambled movies were in-

terspersed, amounting to about 11 minutes between the two intact movies. The Psychophysics Toolbox in

MATLAB was used to display the movie clips and synchronize the movie onset with the MRI data acquisi-

tion. Audio for the movie was delivered via in-ear headphones. Movie clips subtended 20° horizontally and

16° vertically.

ECoG—Subjects viewed DDA in alternation with two more movie clips (two presentations per clip) at

bedside on a MacBook laptop located 40–60 cm from their eyes. PsychToolbox Extensions (Kleiner et al.,

2007) for MATLAB (MathWorks, Natick, MA) were used to display the movies and trigger their onsets.

Subjects viewed intact, coarse, and fine renditions of the clips. The order of presentation was fixed: intact,

coarse, intact, fine, coarse, fine. Presentation of each clip was preceded by a 30 s period in which subjects

fixated on a central white square (< 1° visual angle) on a black background. The time elapsed between two

viewings of the intact movies was 12 minutes.

EEG—Subjects of the first batch watched two repetitions of the intact movie interspersed with single

presentations of the manipulated version: intact, coarse, fine, intact. Before the second presentation of the

intact movie, three recordings of an unrelated audio clip of 7 min length were played. Between 40 and 45

minutes elapsed between the two viewings of the intact movie. In-house software (Neuromatters LLC, NY)

was used for video playback. Only data recorded during presentation of intact stimuli (two viewings per

subject and imaging method) were analyzed in the present study. Subjects of the second batch watched the

intact DDA clip twice, with each exposure separated by approximately 45 min, at the beginning and the

end of an unrelated experiment. The video clip was presented via a custom version of mplayer (Mplayer

media player, http://mplayerhq.hu), modified to generate parallel port triggers once per second.

2.3. Signal acquisition

fMRI—Data were acquired with a 3T Skyra magnetic resonance imaging (MRI) scanner (Siemens, Munich,

Germany) using a 16-channel head coil. All functional acquisitions used a gradient echo, echo planar sequence
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with a 64 square matrix (slice thickness of 4 mm, interleaved acquisition) leading to an in-plane resolution of

3 × 3 mm2 (field of view [FOV], 192 × 192 mm2, GRAPPA iPAT = 2, 27 slices per volume; repetition time

[TR] = 1.5 s; echo time [TE] = 30 ms; flip angle = 72 degrees). High resolution structural scans were acquired

in each scan session for registration to surface anatomical images (MPRAGE sequence; 256 × 256 matrix;

240 × 240 mm2 FOV; TR = 1.9 s; TE = 2.1 ms; flip angle = 9 degrees; 0.9375 × 0.9375 × 0.9375 mm3

resolution).

ECoG—Signals were recorded from 922 electrodes across all five subjects. Subdural arrays of platinum

electrodes embedded in silastic sheeting (8 × 8 square grids, 4 × 8 rectangular grids, or 1 × 8 strips) were

placed purely according to clinical criteria. Electrodes had an exposed diameter of 2.3 mm and were spaced

10 mm center-to-center. Depth recordings were not analyzed in the present study. Screws in the skull

served as reference and ground. Signals were sampled at 30 kHz using a custom-built digital acquisition

system (based on the open-source NSpike framework (L.M. Frank and J. MacArthur, Harvard University

Instrument Design Laboratory, Cambridge, MA) that included a 0.6 Hz high-pass filter in hardware.

EEG—EEG data were recorded with a BioSemi Active Two system (BioSemi, Amsterdam, Netherlands) at

a sampling frequency of 2,048 Hz. Subjects of the first batch were fitted with a standard, 32-electrode cap

following the international 10/20 system, while subjects in the second batch were fitted with a 128-electrode

cap according to an equiradial system (Biosemi). Six additional electrooculogram (EOG) electrodes were

placed around the eyes to record and allow for the removal of eye-movement artifacts. Sony MDR 7506

headphones were used for audio playback during video viewing for the first batch of subjects, whereas the

second batch of subjects were presented the audio over a pair of studio monitors, each situated at a 45° angle

to the subject (e.g., left/right side) and at a distance of approximately 1 m (Fostex, PM0.3 Active monitors,

Tokyo, Japan).

For this investigation, we pooled the data of the two EEG batches. To this end, 32 out of 128 electrodes

used in the second batch of recordings were matched with the 32 electrodes used in the first batch of

recordings based on nearest Euclidean distance of their standardized locations (median distance: 6 mm,

maximum: 12 mm). This yielded N = 45 recordings with 32 EEG and six EOG electrodes available in each.

2.4. Spatial registration

All data were processed using in-house MATLAB code unless otherwise noted.

fMRI—Data were preprocessed using AFNI (Cox, 1996). Subject-wise data were transformed to MNI

standard space using a two-step linear and nonlinear registration (AFNI’s 3dAllineate and 3dQWarp), and

re-sampled to a common rectangular grid at 4 mm resolution using linear interpolation. Data were then

spatially smoothed using a Gaussian kernel (full-width-at-half-maximum: 10 mm; with less smoothing IVC

were lower and areas above significance more disconnected). After extraction of the brain volume, 32,798

voxels were retained. Volumetric data were further mapped to the cortical surface of the ‘New York Head’
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(Huang et al., 2016), a high resolution anatomical template extending the ICBM152 head (Fonov et al.,

2011), based on minimum Euclidean distance. This resulted in the selection of 16,037 grey matter voxels

(8,080 in the left hemisphere) to be analyzed.

ECoG—T1-weighted MR images were acquired from each subject both before and after the implantation

of electrodes. Electrodes were localized on the individual cortical surfaces using a combination of manual

identification in the T1 images, intraoperative photographs, and a custom MATLAB tool based on the known

physical dimensions of the grids and strips (Yang et al., 2012). Subsequently, the individual-subject T1

images were non-linearly registered to an MNI template using the DARTEL algorithm via SPM (Ashburner,

2007), and the same transformation was applied to map individual electrode coordinates into MNI space.

Out of 656 artifact-free labeled and MNI-registered electrodes obtained from Honey et al. (2012), only those

511 located in the left hemisphere were retained (see Fig. 1 for a depiction of the electrode locations). Note

that this set slightly differed from the total of 573 electrodes reported in Honey et al., as we excluded

right-hemisphere electrodes based on MNI coordinates, while Honey et al. used channel labels indicating

the intended position as the exclusion criterion.

EEG—For plotting purposes, electrode coordinates were aligned with the surface of the New York Head

(Huang et al., 2016) using MNI coordinates provided by EEGLAB (Delorme et al., 2011) (see Fig. 1 for

electrode locations). Source reconstruction (see EEG source modeling) was conducted in order to map EEG

activity to cortical anatomy in MNI standard space.

ECoG EEG

1

Figure 1: Location of ECoG and EEG electrodes on the scalp/cortical surfaces. ECoG electrodes are drawn in a

different color for each of the five subjects.

2.5. Data preprocessing

fMRI—Functional data were slice-time and motion corrected (AFNI’s 3dvolreg). The remaining data were

linearly detrended, and high-pass filtered at 0.01 Hz using the discrete Fourier transform (DFT) and its

inverse.

ECoG—For each subject, the mean voltage time course of all channels was removed from the time course of
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each individual channel using linear regression. Signals were also down-sampled to 400 Hz (see procedures

described in Honey et al., 2012). Data of all five subjects were pooled and subsequently treated as one

single dataset. In order to facilitate comparisons between ECoG and EEG data, ECoG data were further

decimated to 256 Hz after appropriate low-pass filtering using anti-aliasing finite impulse response filters

(8th order Chebyshev Type I, MATLAB’s resample function).

EEG—Data were decimated to 256 Hz using MATLAB’s resample. Data were then high-pass filtered at

0.5 Hz and notch-filtered between 59 and 61 Hz using third order Butterworth infinite response (IIR) filters.

Signal from six electrooculogram (EOG) channels was removed from all EEG channels through multivariate

linear regression and subtraction, i.e. noise canceling using standard procedures (Parra et al., 2005); code

available from Cohen and Parra (2016). Artifact channels, defined as those with unusually small or large

standard deviations (SD < 1 µ V or SD > 50 µ V or SD > meanch(SD) + 2 SDch(SD), where SDch are

mean and standard deviations over channels, respectively) were set to zero. This, however, affected only

one channel per subject on average and had a negligible impact on the overall results.

In all datasets, the first 15 and the last 13 seconds were excluded, leaving a period of 297 seconds to be

analyzed. The initial time is typically removed to allow the T1 saturation to reach a steady state and avoid

any potential evoked responses due to scanning onset. There was also a brief blank screen period at the end

of the recording. The number of EEG/ECoG samples at 256 Hz sampling rate was T = 76,032, while the

number of fMRI samples (TR’s) at 0.67 Hz was T = 198.

2.6. EEG source modeling

For source analysis, EEG data at 32 channels were mapped to 2,004 locations covering the entire cortical

surface (1,002 in the left hemisphere) by inverting a precise standardized volume conductor model of current

flow in an average human head (Huang et al., 2016). This step was performed on grand-average signals

for analyses of raw broad-band EEG time courses, as grand-averaging and source reconstruction using

eLORETA are both linear operations whose order of execution can be reversed (as linear mappings are

commutative). For analyses of the log-power of brain oscillations (see below), source reconstruction was

performed separately for each subject. This inefficient treatment is necessary, because the computation of

the log-power is a non-linear operation that neither commutes with the linear source reconstruction applied

beforehand nor the linear grand-averaging applied afterwards.

Prior to source imaging, data and head model were transformed into common average electrical reference.

The inversion was carried out using eLORETA (Pascual-Marqui, 2007). The regularization parameter λ was

adjusted on grand-average raw EEG data using two-fold cross-validation. To this end, electrodes were split

into two subsets comprising 19 and 13 electrodes, respectively, both covering the whole scalp. Sources were

first estimated based on the subset of 19 electrodes for 11 logarithmically spaced choices of the regularization

parameter λ. The resulting source activity was projected back to the scalp using the volume conductor
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model. The resulting scalp potentials were evaluated at the 13 remaining channels, and the discrepancy

to the potentials actually recorded at those electrodes was measured in terms of the mean-squared error

(MSE). Using the value of λ that minimized this MSE, sources were re-estimated based on all 32 electrodes.

This choice of λ was used in all subsequent source analyses, including the band-power analyses in source

space.

Three-dimensional source current estimates were further reduced to scalar activations. This was done by

projecting the current vector using location-specific 3D projection vectors that were designed to maximize

the correlation of the grand-average raw EEG signal between the first and the second viewing (Dmochowski

et al., 2012). We verified – using a separate analysis involving disjoint training and test datasets – that the

spatial filter optimization was not affected by overfitting and, therefore, could not induce any upward bias

in the presented inter-viewing and inter-modality correlations. The projection vectors computed on the raw

source EEG data were used throughout all further source analyses.

2.7. Calculation of EEG/ECoG band-power

In addition to the ‘raw’ broad-band EEG and ECoG signals (preprocessed as described above), we also

calculated the instantaneous amplitude in five common frequency bands. These bands included θ (4–8 Hz),

α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz) and a high-frequency band (HF, 64–116 Hz). Subject-level data

were filtered in each band using third-order Butterworth IIR filters. We applied the Hilbert transform to

obtain the complex-valued analytic signal, the absolute value of which provides the instantaneous band-

amplitude. For single-subject analysis (see supplementary Fig. S1 B, C), the logarithm was then applied.

Additional sets of grand-averaged instantaneous log band-power were obtained as described in Section 2.8.

Additional down-sampled datasets were obtained by reducing the EEG and ECoG band data to the fMRI

sampling rate of 0.67 Hz using Matlab’s resample.

2.8. Grand-averaging

In addition to the subject-level data, grand-averages (GA) across subjects were calculated from the fMRI

and EEG data.

fMRI—A grand-average fMRI signal was obtained by averaging the pre-processed BOLD data at the 8,080

previously-selected left-hemisphere cortical voxels across subjects.

EEG—Grand-average EEG signals were computed for raw broad-band time series and the log-band-

amplitude traces in sensor and source space. Raw signals were averaged at the level of the 32 EEG sensors

to yield the sensor-space GA. The corresponding GA in source-space was obtained by performing source

reconstruction of the sensor-space GA using eLORETA. Grand-average instantaneous log band-power in

sensor space was obtained by taking the mean of the subject-wise squared band-amplitudes at each EEG

channel across subjects, and applying the logarithm on the mean. The corresponding GA in source space
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was obtained by applying the same procedure to the squared band-amplitudes of the reconstructed source

at each of the 2,004 source voxels.

2.9. Inter-Viewing correlation (IVC) within imaging methods

All data were linearly detrended. Correlations between time series recorded during the first and second

movie viewing were assessed using the Pearson product-moment correlation coefficient, yielding one inter-

viewing correlation (IVC) coefficient per channel, frequency band and imaging method.

2.10. Mappings between fMRI, ECoG and EEG spaces

In order to study correlations across imaging methods we selected channels (electrodes/cortical locations)

that were co-located. The procedures to match channels between methods as well as to harmonize the

temporal scale of the data for each pair of methods are outlined below.

ECoG–fMRI—For each of the 511 ECoG channels, corresponding BOLD activity was defined as the average

of the activity of all cortical fMRI voxels within a 6 mm radius around that ECoG electrode. The down-

sampled ECoG log band-power data at 0.67 Hz sampling rate were convolved with a canonical hemodynamic

response function (HRF, SPM package, Penny et al., 2011). ECoG data were then detrended, high-pass

filtered at 0.01 Hz using the Fourier transform, and cropped to the common 297 s interval.

ECoG–EEG—EEG channels pick up activity from the entire brain as a result of the spread of neu-

ronal electrical activity in the head. It is, therefore, impossible to associate individual EEG channels with

ECoG/fMRI counterparts, which is why we worked on EEG source estimates obtained as described above.

Source locations were assigned to the closest ECoG electrode based on minimum Euclidean distance.

fMRI–EEG—EEG source log band-power traces at 0.67 Hz sampling rate were convolved with a canonical

HRF, detrended, high-pass filtered at 0.01 Hz, and cropped. EEG sources were interpolated to match fMRI

voxel locations based on minimum Euclidean distance.

2.11. Inter-method correlation (IMC) analysis

For each of the three pairs of measurement techniques, correlations between the appropriately mapped

time courses (averaged across the two viewings) were assessed using Pearson’s product-moment correlation,

yielding one inter-method correlation (IMC) value per channel and pair of imaging techniques.

2.12. Statistical significance of correlations

As neurophysiological time series are auto-correlated, correlations between them cannot be assessed

using standard analytical tests assuming independent and identically distributed samples. Instead, the

distribution of observed correlations under the null hypothesis of zero true correlation needs to be estimated

empirically. For each correlation score measured on the original data, we generated 100 surrogate datasets
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using the method of Theiler et al. (1992), following the suggestions of Schaworonkow et al. (2015). This

procedure uses the discrete Fourier transform and its inverse to randomize complex phases separately for

each frequency while leaving the corresponding amplitudes intact. The resulting surrogate data have the

same power spectrum as the original data but lack any measurable dependency across viewings or modalities;

thus, these data are consistent with the null hypothesis of zero (inter-viewing or inter-modality) correlation.

To preserve potential non-Gaussianity of the original data, data were transformed to obey a Gaussian

distribution prior to phase-randomization, and the reverse transformation was applied after randomization,

such that original and phase-randomized data were also identically distributed (amplitude-adjusted Fourier-

transform, Theiler et al., 1992).

Correlation values r obtained on original and surrogate data were mapped to the interval [−∞,∞]

using the Fisher z-transform ρ = atanh(r), where atanh is the hyperbolic tangent. For each channel, we

confirmed that the null distribution of the z-transformed correlation scores is consistent with a Gaussian

distribution using the Kolmogorov-Smirnov test (p < 0.05). Means µ0 and standard deviations σ0 estimated

from surrogate data were used to standardize correlation coefficients observed on the original data, yielding

z-scores z = (ρ-µ0)/σ0. We derived p-values assuming that these z-scores are standard normal distributed

under the null hypothesis. We demonstrate the exactness of this approach empirically with numerical

simulations in Testing for significant correlation between auto-correlated time series: simulation.

As we did not expect any negative inter-viewing correlations, right-tailed tests were used for all IVC

analyses. In contrast, inter-method correlations were assessed using two-tailed tests, except for correlations

involving ‘raw’ EEG or ECoG signals, the polarity of which depends on recording and inverse source recon-

struction parameters, and is essentially arbitrary, as is the sign of the resulting inter-method correlations.

Consequently, we tested the absolute value of the IMC in these cases using a one-tailed test. For each anal-

ysis, the false discovery rate (FDR) was controlled at level q = 0.05 by applying the Benjamini-Hochberg

correction (Benjamini and Hochberg, 1995) across all voxels. Only z-scores that were significant after FDR

correction are reported.

2.13. Visualization

Color-coded r-values and z-scores were rendered onto the surface of either the outer head surface or

the cortical surface of the ‘New York Head’ (Huang et al., 2016). EEG sensor-space results were projected

onto the outer head surface using a spherical harmonics expansion interpolation. fMRI results as well as

results of EEG–fMRI IMC analyses were mapped to the cortical surface using to the nearest-neighbor rule,

where distance was measured along the geodesics of the cortical manifold. ECoG results as well as results of

ECoG–fMRI and EEG–ECoG IMC analyses were mapped onto the cortical surface by coloring all surface

nodes within 6 mm distance of each ECoG channel. Cortical surfaces were smoothed for display purposes.

Electrodes/voxels with z-scores significant after FDR correction are shown in color, while non-significant
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locations are shown in gray. Identical r-values/z-scores are displayed in identical colors in all plots throughout

the paper except for Fig. 2 D and for supplementary Fig. §1. To cover the entire range of values observed,

we used non-linear saturating color scales. For each analysis, a colorbar is plotted that shows the range of

attained r-scores/significant z-scores.

3. Results

3.1. Reliability of responses within imaging methods

To assess the repeat-reliability of stimulus-related brain activity for each method, we calculated the

correlation of the continuous neural responses across the two renditions of the stimulus, which we refer to

as the inter-viewing correlation (IVC). Correlations were assessed separately for each anatomical location

using Pearson’s r, and their statistical significance was assessed by comparing observed values to a null

distribution obtained from surrogate data. The resulting z-scores correct for unequal variances of the

estimated correlation coefficients that arise from different sampling frequencies and data-dependent auto-

correlation spectra. We interpret z-scores as objective measures of how much the observed correlations

stand out against random fluctuations in the data. They can be directly compared across different imaging

methods and differing sampling rates, whereas r-values are sensitive to the sampling rate and spectral

content of the signals.

3.1.1. Comparable repeated-reliability when averaging over typical cohort sizes

We observed strong IVC of neural activity for all three imaging methods (r-values in Fig. 2, and corre-

sponding z-scores to determine significance in Fig. 3). The grand-average fMRI BOLD signal (GA-fMRI)

reached a maximum IVC of rmax = 0.79, where strongest correlations were observed in temporal, pari-

etal, occipital and fronto-temporal areas known to implement auditory and visual processing hierarchies

(Fig. 2 A).

Strong IVCs of single-subject ECoG band-power traces were observed in very similar areas in all studied

frequency bands (Fig. 2 B). In contrast to fMRI, significant IVC were present in central sensori-motor areas,

while the lack of ECoG electrode coverage in parietal regions (see also Fig. 1) prevented IVC analysis in

these regions. The strongest IVC were in the same range as those observed for GA-fMRI (rmax = 0.77), and

were observed in the superior temporal gyrus for high-frequency oscillations.

GA-EEG band-power in the lower frequency bands (θ, α, and β) reached maximal IVC levels only

slightly below what is observed for ECoG and GA-fMRI (rmax = 0.72, see Fig. 2 C). The levels of IVC were

comparable when computed on scalp sensor data and on cortical sources estimated using a linear solution to

the EEG inverse problem (Pascual-Marqui, 2007, eLORETA). In both cases, the topography of IVC showed

a broad global pattern, with low IVC values observed only in fronto-temporal regions. High-frequency and
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Figure 2: Repeat-reliability of stimulus-related brain activity measured with EEG, ECoG and fMRI BOLD

measured as inter-viewing correlations (IVC), r of signals acquired during two separate viewings of a 325 s long audio-visual

movie stimulus. EEG-45: Grand-average EEG data of N=45 subjects were analyzed at 32 sensors and 2,004 cortical locations

after source reconstruction by eLORETA. fMRI-11: Grand-average fMRI data of N=11 subjects were analyzed at 16,037

cortical locations. ECoG-1: Single-subject ECoG data were analyzed pooling here electrodes from 511 cortical locations

across five subjects. ‘Raw’ broad-band EEG and ECoG voltage fluctuations were analyzed at 256 Hz sampling frequency

(panels D, E). In addition, the instantaneous log-power of EEG and ECoG oscillations in the following frequency bands were

analyzed at the same sampling frequency as fMRI (0.67 Hz, panels A–C): θ (4–8 Hz), α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz)

and high-frequency (HF, 64–116 Hz). EEG data of 45 subjects and fMRI data of 11 subjects were grand-averaged before IVC

analysis. IVC was measured in terms of Pearson correlation, r, and plotted onto the outer head surface (sensor-space EEG) or

the smoothed cortical surface of the left brain hemisphere (ECoG, fMRI, source-space EEG, shown from left, top, and bottom).

Numbers above the color bars indicate maximal correlation values. As ECoG data do not provide a full coverage of the cortex

(see Fig. 1), dark gray areas mark the absence of any electrode within 12 mm distance.
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γ-band activity has negligible IVC, speaking to the susceptibility of the EEG signal to movement artifacts

and the relative weakness of coherent brain activity reaching scalp sensors in these frequency ranges.

Raw broad-band EEG and ECoG voltage fluctuations (Fig. 2 C, D), IVC reached maximal values of

rmax = 0.56 in GA-EEG and rmax = 0.26 in ECoG. The topography of raw EEG was similar to the

topography obtained with EEG θ-band power, while the raw-ECoG topography closely resembled the ICV

distribution observed in HF-ECoG.

To demonstrate the effects of grand-averaging, we also computed IVC on single subjects (supplementary

Fig. S1). Without averaging, the maximum IVC in fMRI reached only rmax = 0.39 with a similar spatial

distribution (panel A). Grand-averaging was particularly effective for EEG (compare Fig. 2 C, E with

supplementary Fig. S1 B, C). Without grand-averaging, IVC for single-subject EEG only reached values

around 0.1 (notice that the color map has been enhanced to show these smaller value). These smaller IVC

are consistent with previous reports in EEG and MEG (Dmochowski et al., 2012; Lankinen et al., 2014,

2018).

3.1.2. Repeat-reliability is highly significant in all modalities, independent of sampling rate

To ensure compatibility with fMRI and previously published ECoG results (Honey et al., 2012), the

IVCs computed for EEG and ECoG band-power traces shown in Fig. 2 B, C were obtained on data reduced

to the fMRI sampling rate of 0.67 Hz. Note, however, that correlation values typically depend on the

spectral content of the signal and should not be directly compared across different sampling rates. Similarly,

maximum values should not be directly compared between differing sampling rates as they depend on the

number of samples. Indeed, when evaluated at a higher sampling rate of 256 Hz, IVCs of the band-passed

powers dropped to a maximum of rmax = 0.23 for ECoG and rmax = 0.53 for EEG (compare supplementary

Fig. S2 A, B with Fig. 2 B, C).

The z-scores we calculated (Fig. 3) measure how much the observed IVCs depart from values obtained

with random signals that have the same spectral content as the original signals (see Statistical significance of

correlations). Significant z-scores were obtained for all three imaging modalities across large portions of the

cortex (Figs. 3). The by far strongest values were observed for the raw GA-EEG and single-subject ECoG

(zmax = 23.4 for both, see Fig. 3 D, E) despite the moderate to weak r-values (compare with Fig. 2 D, E).

The dependence of the r-values on sampling rate noted above largely disappear for the z-scores (compare

Figs. 3 B, C and S3 A, B). An explanation for this stability is that the noise (non-stimulus-related activity)

above 0.33 Hz diminishes inter-viewing correlations as well as correlations that arise under the null hypoth-

esis, limiting the variance of the latter. Removing that noise through low-pass filtering increases IVC, but

to the same extent also correlations that could arise under the null hypothesis, leading to the same level of

significance (see also Fig. S4 in the supplement). If anything, maximal z-scores were higher for EEG power

fluctuations in the θ-, α-, and β-bands when sampled at 256 Hz (zmax = 15.9) as compared to 0.67 Hz
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Figure 3: Statistical significance of inter-viewing correlation (IVC). Observed correlations, r, were standardized based

on the mean and standard deviation of a null distribution established from phase-randomized surrogate data, yielding a standard

normal distributed z-score for each scalp/cortical location. z-scores are shown in color if they indicate statistical significance

at level q < 0.05 (one-tailed test, FDR corrected). The figure shows that even small IVC values observed for ‘raw’ broad-band

EEG/ECoG voltage fluctuations (c.f., panels D, E to corresponding panels of Fig. 2) are highly significant when compared

to surrogate time series with identical autocorrelation spectrum but no IVC. Numbers above the color bars indicate maximal

correlation values.
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(zmax = 9.2). The same was observed for HF-ECoG oscillations (zmax = 15.3 for 256 Hz compared

to zmax = 10.5 for 0.67 Hz sampling rate). This increase in correlation suggests that stimulus-related

amplitude fluctuations in these data are predominantly occurring at frequencies below 0.33 Hz (see Fig. S4

in the supplement). However, down-sampling reduced z-scores because a substantial amount of reliable

activity occurs above 0.33 Hz, as verified by applying a spectrally-resolved inter-viewing coherence analysis

(supplementary Fig. S4).

3.2. Similarity of responses between imaging methods

To assess the similarity of responses between imaging methods, we measured the inter-method correlation

(IMC) after spatial co-registration (see Spatial registration and Mappings between fMRI, ECoG and EEG

spaces for technical details). As before, results for fMRI and EEG were computed with the signal averaged

across subjects (grand-average). We observed significant correlations of stimulus-related responses between

all three neuroimaging methods (IMC are shown in Fig. 4 and the corresponding z-scores in Fig. 5). IMC

were strongest between the GA-fMRI and ECoG band-power with absolute values exceeding rmax = 0.61 in

all frequency bands (Fig. 4 A). ECoG power in the lower frequency bands (θ, α, β) was negatively correlated

with BOLD in virtually all studied areas with large IMC (θ: rmin = − 0.72, α: rmin = − 0.72, β:

rmin = − 0.70). In contrast, γ- and HF-ECoG power in the same areas was positively correlated with

fMRI (γ: rmax = 0.61), HF: rmax = 0.72). Negative correlations between ECoG γ-power with GA-fMRI

were not significant (Fig. 5 A).

EEG low-frequency band-power was positively correlated with ECoG low-frequency power but nega-

tively correlated with high-frequency ECoG (Fig. 4 B). Positive correlations in the low-frequency bands

(θ, α, β) extended over central and temporal cortices, and are strongest in occipital cortex (in the range

of rmax = 0.48 to 0.58. For γ and HF ECoG, correlations with low-frequency EEG were predominantly

negative and again strongest in occipital cortex (rmax = 0.47).

EEG α- and β-power fluctuations correlated negatively with fMRI in occipital and parietal areas (Fig. 4 C,

rmin = − 0.67 for both).

When analyzing ‘raw’ EEG and ECoG evoked responses (not powers but phase-sensitive signals), we

observed significant correlations between the fMRI signal and raw infra-slow EEG below 0.33 Hz (Fig. 4 C),

predominantly in temporal areas (rmax = 0.51). There was also highly significant correlation of the raw

ECoG with raw EEG fluctuations over temporal areas (Fig. 4 D, rmax = 0.11). A similar IMC analysis

between raw ECoG and fMRI was not possible due to a high-pass filter of 0.6 Hz that was applied to the

ECoG data at recording time.

Finally, note that correlations between fMRI, EEG band-power and ECoG band-power were assessed

above on data sampled at 0.67 Hz so that correlations and in particular maximum values can be compared

between methods (Fig. 4). When repeating these analyses at 256 Hz sampling frequency, we obtain similar
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Figure 4: Similarity of stimulus-related brain activity between EEG, ECoG and fMRI BOLD as measured in

terms of inter-method correlations (IMC) between co-localized single-subject ECoG, grand-average EEG and grand-average

fMRI BOLD activity. IMC was assessed in terms of Pearson correlation, r, between ‘raw’ broad-band EEG and ECoG voltage

fluctuations at 256 Hz sampling rate (panel D, notice the different color scale compared to panels A–C as well as between

fMRI and raw EEG, between fMRI and EEG band-power, between between fMRI and ECoG band-power, and between EEG

and ECoG band-power (panels A–C) at 0.67 Hz sampling rate. Frequency bands are the same as in Fig. 2. Matching of

co-localized ECoG electrodes and cortical fMRI voxels was based on Euclidean distance. Source-reconstructed EEG activity

(eLORETA) was computed for each fMRI voxel location. Numbers above color bars indicate maximal correlation values.
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results (supplementary Figs. S5–S6).

4. Discussion

In this work, we addressed two basic questions concerning fMRI, ECoG and EEG. First, how reliably

can each imaging modality measure responses elicited by naturalistic stimuli? Second, how similar are these

stimulus-responses in the three modalities? Our analyses identified brain areas related to the processing of a

complex audio-visual narrative in temporal, occipital, parietal and sensori-motor areas, in line with previous

reports (Honey et al., 2012; Jacques et al., 2016). Reliable stimulus-related activity in these areas was found

not only in fMRI BOLD signals and high-frequency power of the ECoG, but also in low-frequency EEG and

ECoG rhythms as well as in raw broad-band EEG and ECoG voltage fluctuations. The regions involved in

stimulus-related processing are strikingly consistent between fMRI and ECoG, suggesting that both methods

pick up similar brain responses, as previously established. This finding was further corroborated by studying

correlations between methods. In line with results obtained in simultaneous fMRI-ECoG recordings in

animals (Logothetis et al., 2001; Niessing et al., 2005; Magri et al., 2012) as well as in human (Carmichael

et al., 2017), we observed positive correlations between fMRI and high-frequency ECoG activity and negative

correlations with low-frequency ECoG. We also observed negative correlations between EEG α band-power

and BOLD in parietal, occipital and rolandic areas in line with previous reports on simultaneous recordings

(Laufs et al., 2003; Moosmann et al., 2003; Ritter et al., 2009; Scheeringa et al., 2009). Overall, these results

are in line with the accepted notion that fMRI and HF ECoG capture similar activity, namely, neuronal firing

(Logothetis, 2003; Nir et al., 2007; Manning et al., 2009), yet low-frequency oscillations are qualitatively

different. α-band activity in particular is often said to reflect top-down inhibitory processes (Klimesch et al.,

2007; Halgren et al., 2017) that suppress neuronal firing, and is thus negatively correlated with HF activity

(Spaak et al., 2012). Importantly, and contrary to previous work (Magri et al., 2012), here we find that

these lower frequencies are just as much correlated with fMRI BOLD as high frequencies for the studied

natural-stimulus viewing task.

A noteworthy result of the present study is that we identified strong stimulus-induced correlations of

the BOLD signal and the infra-slow EEG signals below 0.33 Hz (Fig. 4, panel B). Previous links between

hemodynamic responses and infra-low EEG had been associated with resting-state fluctuations (Hiltunen

et al., 2014), slow cortical potential such as the contingent negative variation (Nagai et al., 2004; He and

Raichle, 2009), and arterial blood pressure (Nikulin et al., 2014). Recent research in mice has revealed that

infra-slow electrophysiological activity is a distinct neurophysiological process that is different from higher

frequency local field potential activity but reflected in fMRI blood oxygen signals (Mitra et al., 2018). Most

studies in this field, however, use simultaneous recordings; correlated activity could therefore be the result of

common physiological or artifactual confounds such as heart beat, breathing, etc. . Here, we could exclude
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Figure 5: Statistical significance of inter-method correlations between single-subject ECoG, grand-average EEG

and grand-average fMRI BOLD activity. Using a null distribution established from phase-randomized surrogate data,

observed correlations were transformed into standard normal distributed z-scores. Significant z-scores (using FDR control at

level q = 0.05) are drawn in color.
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the presence of any confound unrelated to the cognitive task. The observed correlations between infra-slow

EEG and fMRI were most pronounced over temporal areas, suggesting auditory and speech perception

processes as drivers, though this may be specific to the present audiovisual video stimulus.

4.1. Benefits and limitations of inter-subject correlations

Our analyses relied on correlations between separately-acquired but synchronized recordings within and

across imaging methods. While this framework is limiting in that it requires identical timings of all relevant

events, it does allow us to assess the similarity of signals from different imaging methods without requiring

multi-modal recordings. An advantage of this approach is that one can prevent the technical complications

and significant signal-loss resulting from simultaneous recordings. More importantly, the approach prevents

task-irrelevant physiological processes from driving the results (Hasson et al., 2004; Mukamel et al., 2005), a

concern that has been recently highlighted for fMRI, in particular during ‘resting state’ (Winder et al., 2017).

The study of cognitive processes using inter-subject correlations is well established in fMRI (Jääskeläinen

et al., 2008; Mantini et al., 2012; Chen et al., 2017), ECoG, (Honey et al., 2012), EEG (Dmochowski

et al., 2012; Ki et al., 2016; Cohen and Parra, 2016), and MEG (magnetoencephalography, Lankinen et al.,

2014). As with those studies, all correlations reported here exclusively relate to brain processes involved

in processing the audio-visual narrative. The spatial distribution of reliable brain activity reported here

must, therefore, be interpreted exclusively in terms of that cognitive task, and should not be mistaken as

representative of all brain signals captured by the different imaging methods.

4.2. Cohort size and impact of grand-averaging

EEG and fMRI data presented here were averaged across subjects before assessing the reliability of the

task-related responses they contain. This form of ‘grand-averaging’ is well established to analyze evoked

potentials in EEG and has recently also been used in fMRI (Schmaelzle et al., 2017). We did not average

across subjects in ECoG due to inconsistent electrode montages in each of the five subjects. Using grand-

averaging in EEG and fMRI, the repeat-reliability could be increased to reach similar levels of reliability

as in single-subject ECoG. Without grand-averaging, the observed reliability of fMRI was lower than in

ECoG. This drop was even more pronounced in EEG. Note that the sample sizes used here are typical in

research studies, and are indicative of the ease of obtaining these data for the different methods. The obvious

disadvantage of averaging is the potential loss of spatial (and functional) resolution due to anatomical or

functional misalignment across subjects, as well as the loss of subject-level information. Whether or not

grand-averaging is a useful approach in a given neuroimaging study will depend on this trade-off between

(functional) resolutions and signal-to-noise ratio as well as the general analysis goal.

Among the various signals analyzed here, raw EEG/ECoG times series (above 0.6 Hz), typically referred

to as ‘evoked responses’, were somewhat less reliable across stimulus repetitions, but were highly significant
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compared to chance fluctuations (for the EEG, after grand-averaging). Raw stimulus-evoked EEG activity

has traditionally been studied by averaging brain responses across many repetitions of a simple stimulus

within highly controlled experiments (Luck, 2014). More recently it has been used with naturalistic stimuli

by correlating activity between subjects (Dmochowski et al., 2014; Ki et al., 2016; Cohen and Parra, 2016).

Recent evidence places the origin of these evoked responses to superficial cortical layers with broad spatial

coherence (Halgren et al., 2017), suggesting a likely reason for why they dominate the scalp EEG. Here we

found that the potential fluctuations evoked by the video stimulus correlate between EEG and ECoG, most

strongly over temporal cortex.

4.3. Identifying the most reliable time-scale

We analyzed amplitude fluctuations in EEG and ECoG at the original sampling rate of 256 Hz as well

as at 0.67 Hz. Low-pass filtering to the lower sampling rate substantially increased inter-viewing and inter-

method correlations. Slow fluctuations below 0.33 Hz were found to capture most of the stimulus-related

signal in these amplitude traces. Interestingly, z-scores were found to be larger before low-pass filtering,

while corresponding inter-viewing correlations increased. This suggests that z-scores are less sensitive to the

power-spectrum of the stimulus-related and noise portions of the signal, and a drop in z-scores indicates

that reliable activity has been removed.

4.4. Comparing reliability between imaging methods

An important advantage of z-scores over r-values is that they allow direct comparison between datasets.

For homogeneous datasets consisting of a fixed number of independent samples, there is a monotonous re-

lationship between r-values and z-scores. Thus, comparisons of datasets in either of the two metrics lead

to the same conclusion. This is not anymore the case if the number of samples differs between datasets,

as correlations estimated on fewer samples are more variable and therefore reach statistical significance less

easily. The same effect is caused by dependencies between samples, which lead to increased variance by

decreasing the effective number of samples. Such dependencies are naturally present in all neurophysio-

logical time series, and are expressed in dataset-specific autocorrelation spectra. The appendix Testing for

significant correlation between auto-correlated time series: simulation provides a numerical demonstration

that z-scores as computed here achieve correct false-positive rates (p-values) despite different number of

samples and autocorrelation spectra. Thus, z-scores are suitable to compare IVC in EEG, fMRI and ECoG

despite differing numbers of samples and differing spectra of these signals.

In practice, the choice of the ‘right’ metric depends on one’s analysis goals. Strong correlations (if

significant) are useful if one wants to predict one time course from another, where stronger correlations imply

better predictability. This could, for example, be of practical relevance if one wanted to approximate ECoG

activity from non-invasive EEG measurements. In contrast, if one is interested in statistical significance,
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then the relevant metric is the z-score. For example, one may want to test if IVC differs between task

conditions. In those instances, the relevant question is not how large or small the correlations are, but

rather, how stable they are in the face of chance fluctuations. There, a high z-score is more relevant than a

large r-value.

One limitation of the present study is that the original data were collected in different experimental

contexts. For instance, differences in time between repetitions could have variably affected IVC for the

different modalities due to psychological effects that depend on time (e.g. fatigue or novelty). Moreover,

differing intervening stimuli (scrambled movies vs. listening to an unrelated story) likely incurred different

psychological effects.

4.5. Spatial heterogeneity

The EEG, ECoG and fMRI datasets studied here strongly differ in the number of simultaneously-acquired

measurements, as well as in the spatial domains sampled by these measurements. EEG was measured at

32 scalp sites, whereas ECoG and fMRI were assessed at about 100 intra-cranial electrodes and thousands

of brain voxels, respectively. In this light, one of the most interesting findings of this study is that EEG

signals reached absolute levels of reliability that are comparable to levels achieved by ECoG and fMRI. A

likely explanation for the competitive performance of EEG is again the larger number of subjects entering

the grand-average, as discussed above.

Computation of inter-method correlations was hampered by different spatial coverages. fMRI signals

were available from the entire brain, but only cortical activity was used for inter-method comparisons. EEG

sensors pick up mixtures of activities of sources located all across the brain, and therefore often suffer from

lack of straightforward anatomical localization. To visualize and relate EEG to ECoG and fMRI activity in

a common anatomical space, scalp EEG data were mapped to the cortical surface using an inverse source

reconstruction technique. The blurring observed in EEG source estimates could in principle be reduced by

making prior assumption on the spatial focality of the underlying brain sources (e.g., Haufe et al., 2008,

2011). However, it was accepted here as being reflective of the low spatial resolution of the scalp-level data.

ECoG electrodes were available at superficial cortical locations of the left hemisphere, with little coverage for

large parts of the right hemisphere, the medial surface of the left hemisphere, and several larger patches of

the occipital, parietal, central and frontal cortex of the left hemisphere. Inter-method correlations involving

ECoG were thus only assessed at those locations.

4.6. Future work

Two restrictions of the present study are that we assessed only linear relationships and only looked at

co-localized anatomical structures. Future studies may assess task-related interactions between different

brain structures (Simony et al., 2016) across imaging methods and use non-linear measures of functional
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connectivity in order to better characterize the mechanisms linking the neurophysiological phenomena picked

up by different methods. Using partial correlation analysis and information theory, future studies may also

attempt to dissociate task-related signals that are method-specific from signals that are reflected by multiple

imaging methods. Specific multivariate techniques (e.g., McIntosh and Lobaugh, 2004; Bießmann et al., 2010;

Dmochowski et al., 2012; Dähne et al., 2014; Lankinen et al., 2014; Dähne et al., 2015) could, moreover, be

used to identify brain networks characterized by maximal IVC/IMC in optimal data-driven ways.

5. Conclusion

Our results provide a comprehensive spatio-spectral account of the neural correlates of natural audio-

visual stimulus processing in fMRI, ECoG and EEG, three of the most widely used neuroimaging methods in

humans. All three methods reached similar levels of reliability when data were averaged across the subjects

of each cohort. Correlations between methods confirmed prior findings of an opposing sign of high and

low frequency electrical activity, perhaps indexing different neural mechanisms (direct neuronal firing in

high-frequency ECoG and fMRI BOLD, inhibitory drive in low-frequency EEG/ECoG).
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APPENDIX

Appendix A. Testing for significant correlation between auto-correlated time series: simula-

tion

We assessed the validity of the statistical test for non-zero correlations between auto-correlated time

series introduced in the Statistical significance of correlations section. Two independent time series were

generated either as univariate third-order linear auto-regressive (AR) processes, as Gaussian-distributed

pink noise, or as squared (non-Gaussian distributed) pink noise. The number of samples was set to either

N = 198 or to N = 76,032, amounting to a recording of 297 s length at the fMRI and EEG/ECoG sampling

frequencies, respectively. For each pair of time series, 100 surrogate datasets were constructed using phase

randomization, and a p-value was derived. An alternative p-value was derived using MATLAB’s corr()

function under the assumption that samples are independent. For this approach, correlation scores were

transformed into a Student-t distributed test statistic, which gave rise to an analytic solution for the p-value.

Each experiment was repeated 2,000 times. From the distribution of the p-values we derived the empirical

false-positive rate (FPR) as a function of the required FPR (alpha-level). For a statistical test to be exact,

it is important that the relation between the two is close to identity, while undershoots of the empirical

FPR are generally more tolerable than inflated FPR’s. Results shown below (Fig. A.1) indicate that the

statistical test based on surrogate data is faithful to the desired alpha level for all possible FPR’s and in

all tested scenarios. In contrast, the standard analytic test is characterized by highly inflated FPR’s in the

alpha ranges of interest in practice (α = 0.01, α = 0.05). This behavior is more pronounced for pink noise

than for auto-regressive processes, and for longer compared to shorter time series. In extreme cases, FPR’s

of up to 92% (pink noise data, N = 76,032) are observed at a nominal alpha level of 5%.
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Figure A.1: Comparison of two approaches to test the statistical significance of correlations between auto-correlated

time series: the surrogate data based approach used throughout this paper (see Statistical significance of correlations section)

and the conventional analytic approach assuming independent samples. The surrogate based approach leads to empirical false-

positive rates (FPR) that are close to the desired FPR (alpha level) regardless of the sample size or temporal dynamics of the

time series, while the conventional approach leads to strongly inflated FPR’s in the practically relevant alpha ranges (α = 0.01,

α = 0.05) in all cases.
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Figure S1: Inter-viewing correlations observed within single subjects for EEG and fMRI. In contrast to previous

analyses, IVC scores, r, were computed in each subject, and averaged across subjects. To highlight this difference, we used the

abbreviations fMRI-1 and EEG-1. No statistical testing/thresholding was performed. Observed IVC scores are smaller than

those observed on grand-averaged data (c.f., Fig. ??, but notice the different color scale here), yet exhibit similar topographies.
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Figure S2: Inter-viewing correlation of EEG/ECoG band-power computed at 256 Hz sampling rate, i.e., without low-

pass filtering the instantaneous log band-power. Observed IVC values are smaller than for down-sampled data, but exhibit

similar spatial topographies.
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Figure S3: Statistical significance of EEG/ECoG band-power inter-method correlation at 256 Hz sampling rate. Note

that even small IVC values (as, e.g., observed for high-frequency ECoG data, c.f. Fig. S2) are highly significant.
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Figure S4: Analysis of inter-viewing coherence (frequency-resolved correlation) of high-frequency (56–116 Hz)

ECoG band-power fluctuations for the ECoG electrode exhibiting highest IVC in the HF band. Top panel shows the power

spectrum for first and second viewing. The HF power signal is dominated by activity below 2 Hz. The coherence spectrum

shows significant correlation (red bold line) also below 2 Hz. The black vertical line indicates the low-pass filter at 0.33 Hz that

is applied when sampling at the fMRI resolution of 0.67 Hz. For this signal, an inter-viewing correlation of r = 0.17 (z = 15.3)

was observed at 256 Hz sampling rate. After low-pass filtering and down-sampled to 0.67 Hz, IV correlation increased to

r = 0.77, but was slightly less significant (z = 10.5). This drop in significance is explained by the fact that the low-pass filter

removes correlated signal components that do not exist in random surrogate data. On the other hand, restricting the signal

content to the strongest and most correlated portion through the low-pass filter increases inter-viewing correlation, as less

correlated signal parts are removed.
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Figure S5: Inter-method correlation (IMC) between the instantaneous log-power of EEG and ECoG oscillations in the

θ (4–8 Hz), α (8–12 Hz), β (12–28 Hz), γ (28–56 Hz) and high-frequency (HF, 64–116 Hz) bands at 256 Hz sampling rate.
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Figure S6: Statistical significance of inter-method correlations between EEG and ECoG band-power at 256 Hz

sampling rate. While correlation values are much smaller than for 0.67 Hz sampling rate, they remain equally significant as

compared to null distributions.
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