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Abstract 
 
Speech signals have a remarkable ability to entrain brain activity to the rapid fluctuations of 
speech sounds. For instance, one can readily measure a correlation of the sound amplitude 
with the evoked responses of the electroencephalogram (EEG), and the strength of this 
correlation is indicative of whether the listener is attending to the speech. In this study we 
asked whether this stimulus-response correlation is also predictive of speech intelligibility. 
We hypothesized that when a listener fails to understand the speech in adverse hearing 
conditions, attention wanes and stimulus-response correlation also drops. To test this, we 
measure a listener's ability to detect words in noisy speech while recording their brain 
activity using EEG. We alter intelligibility without changing the acoustic stimulus by pairing it 
with congruent and incongruent visual speech. For almost all subjects we found that an 
improvement in speech detection coincided with an increase in correlation between the 
noisy speech and the EEG measured over a period of 30 minutes. We conclude that 
simultaneous recordings of the perceived sound and the corresponding EEG response may 
be a practical tool to assess speech intelligibility in the context of hearing aids.  
 

Introduction 
 
When listening to sounds, brain activity follows the the fast fluctuations of the acoustic 
stimulus (<1s; Ding and Simon 2014, Haegens 2018). This is particularly true for speech, 
where both amplitude and spectral fluctuations of the sound have been shown to correlate 
with fluctuations in the EEG and MEG (Luo 2007, Nourski 2009, Ding 2015, Doelling 2014, 
Horton, 2014). This stimulus-related brain activity has been linked to attention (Ding 2012, 
Dmochowski 2017), in particular in a “cocktail party” scenario (Zion Golumbic 2013, 
O’Sullivan 2015, O’Sullivan 2017, Horton 2014, Power 2012), where the correlations are 
thought to reflect the ability of a listener to follow the attended speech. Correlation with the 
stimulus is sometimes referred to as ‘speech tracking’. Others refer to it as ‘neural 
entrainment’, suggesting that the stimulus entrains endogenous ongoing neural activity 
(Peele 2013, Ding 2015). Correlation of the neural signals has also been linked to an 
engagement with the stimulus (Dmochowski 2017) and the perception of phonemes (Kösem 
2017). We attribute this phenomenon to an exogenous stimulus-driven process, which is 
illustrated by the consistent responses elicited across subjects by the same auditory 
stimulus (Ki 2016, Cohen 2017).  
 

Interestingly, for speech in noise, brain responses remain correlated to the 
amplitude envelope of the clean speech (Ding and Simon 2013, Vanthornhout 2017), 
suggesting that neural processing is resistant to this acoustic degradation. This may be a 
reflection of the human ability to understand speech despite significant distortions. In fact, a 
number of studies have found a significant correlation between this neural correlate and the 
comprehension of noisy speech (Luo and Poeppel 2007, Ding and Simon 2013, Peele 2013, 



 

Kong 2015, ​Vanthornhout 2017). However, these studies generally changed speech 
intelligibility by altering various properties of the acoustic stimulus. Therefore, changes in 
speech-tracking could result from changes in low-level stimulus properties, rather than 
genuine changes in auditory processing of speech. In this study, we attempt to control for 
this confound by keeping the acoustic signal unchanged. Instead, we change intelligibility 
using congruent or incongruent audiovisual speech in noise (Park 2016).  

Our experiment asks whether correlation of brain signals to the perceived sound is 
indicative of speech intelligibility in realistic scenarios. We hypothesize that when a listener 
fails to understand the speech in adverse hearing conditions, attention wanes and 
stimulus-response correlation drops, following the well established link between attention 
and speech tracking (Zion-Golumbic and Schroeder 2012, ​Ding and Simon 2012 O’Sullivan 
2015)​. Here, intelligibility is measured objectively using a word detection task following 
Crosse (2015, 2016). To emulate challenging hearing conditions, we utilize speech in noise 
with a matching sound spectrum. Rather than correlating EEG responses to the original 
clean speech, as in previous speech tracking research, we correlate brain responses to the 
amplitude of the noisy speech. This enables us to predict intelligibility from the EEG in 
realistic scenarios where a clean version of a stimulus may not be available. This is 
particularly relevant in the context of hearing aids, where it is impossible to obtain clean, 
noise-free audio outside of a tightly controlled laboratory setting. Despite significant noise, 
we find that the stimulus-response correlations are predictive of whether subjects can 
detect words buried in that noise. This finding may enable next-generation hearing aids to 
be automatically optimized for speech intelligibility.  
  
 

Methods 
 
Subject Recruitment 
 

Subjects were recruited from healthy volunteers using advertisements posted 
around the City College of New York campus, as well as online on the lab website. Subjects 
were screened for normal hearing based on self-report and were generally healthy. All 
recruitment materials as well as the screening questionnaire received approval from the 
CUNY Institutional Review Board. 20 subjects were recruited for this study (11 female, 16 
right-handed, median age = 20).  
 
Stimuli and Stimulus Presentation 
 

The stimuli we use in this study were previously used in speech tracking 
experiments with EEG (Crosse 2015, Crosse 2016). Each condition is defined by a different 
level of added noise and whether the visual speech is congruent or incongruent with the 
auditory speech, i.e. the mouth movement of the speaker corresponds to the auditory 
speech, or does not. Stationary, colored noise was added to the signal with a 
signal-to-noise ratio of -9 dB and -6 dB. This noise was matched in spectrum to the speech 
signal for each 60 second segment (using 50 linear-prediction coefficients). In total there 
were four stimulus conditions combining -9 dB/-6 dB noise and congruent/incongruent 
visuals in a 2x2 design.  

The stimuli consisted of 60 audiovisual talking head clips of President Barack 
Obama, each 60 seconds long. The experiment was divided into two sessions (separated 
by at least a week) with all four conditions included in each session. All 60 unique stimuli 
were presented in each session with 15 words per condition. Over the two sessions this 



 

yielded 120 presentations with 30 unique words per condition. Subjects were presented 
with a target word before each video. They were instructed to detect the target word while 
listening and watching the speaker, and to press a button as quickly as possible as soon as 
they heard the target word, which could appear more than once in the 60 second segment. 
Target words were selected so that each word was presented equally often in the four 
different conditions. Additionally, the stimuli were randomized over the two sessions to 
avoid repetition within session. Subjects were given feedback on their detection 
performance after each 60 second segment. We converged on this protocol after pilot 
experiments with a separate cohort of subjects in -9 dB, -6 dB, and -3 dB noise conditions. 
In these experiments we established that the behavioral detection performance at -3 dB 
was not significantly different between the congruent and incongruent conditions (N=24, 
p=0.093, See supplementary Figure S1). It was also found that behavioral word detection 
performance is somewhat erratic when no performance feedback is given during the task 
as subjects lose interest and lack motivation for the rather difficult task.  
 
Behavioral detection performance 
 

 If the subject indicated that they heard the target word within 1.5 seconds of word 
presentation, this was coded as a correct detection. If the subject did not indicate they 
heard the target word, this was coded as a miss. Any errant response outside this 1.5 
seconds window was coded as a false alarm. Correct detections can be reported relative to 
the total number of target words or relative to the total number of responses. In the 
literature on detection theory, the former is typically referred to as recall and the latter as 
precision. Because the term ‘recall’ may be confusing in the context of this paper, we will 
use the term ‘detection’ instead. Increasing the number of responses at random will tend to 
increase detection but reduce precision. A metric that captures both (as a their harmonic 
mean) is the F1 score, with a score of 1 indicating perfect precision and detection. The F1 
score will be used here as the primary outcome measure because it captures the tradeoff 
between precision and detection. We also confirmed after data was collected that 1.5 
seconds is a reasonable cutoff for detection based on the F1 score as a function of this 
time window (see Supplementary Figure S2).  
 
EEG Recording 
 

EEG was recorded using a BioSemi Active II amplifier with 64 electrodes arranged 
according to the International 10-20 System. Additionally, recordings were taken from six 
electrooculogram (EOG) electrodes, with three placed around each eye. The EEG was 
sampled at 512 Hz and saved using the BioSemi ActiView software. All recordings were 
performed inside an isolated chamber to prevent noise interference. Stimuli were presented 
to subjects using Sony MDR7506 headphones at 70 dB SPL, which were calibrated using 
pre-whitening with ten linear-prediction coefficients measured with a KEMAR (Knowles 
head & torso simulator) connected to a B&K type 2231 sound level meter. All stimuli were 
presented on a BenQ FP783 monitor and audiovisual playback was controlled by the 
PsychToolbox package (Kleiner 2007) for MATLAB (Mathworks, Natick, MA). 
 
Stimulus Response Correlation (SRC) 
 

The conventional approach in the speech tracking literature is to correlate the 

amplitude envelope of clean speech, ,​ with the response in each EEG channel  (e.g.(t)s (t)ri  
Zion Golumbic 2013). This models the brain responses as a linear “encoding” of the speech 



 

amplitude. Alternatively, EEG response is linearly filtered and combined across electrodes 
to best reconstruct the speech amplitude (e.g. O’Sullivan 2015). This “decoding” model of 
the stimulus is then correlated to the amplitude envelope of the clean speech. In both 
instances, model performance is measured as correlation, either with the stimulus (t)s  
(decoding) or the response  (encoding). Here we used a hybrid encoding and decoding(t)ri  
approach (Dmochowski 2017), by building a model that maximizes the correlation between 
the encoded stimulus  and the decoded response . These two signals are defined(t)û (t)v̂  
as: 

 
(t) h(t) s(t)  û =  *   

(1) 

(t) r (t)v̂ =  ∑
 

i
wi i  

where  represents, in this case, the sound amplitude envelope at time ​t​, is the(t)s (t)  h  
encoding filter being applied to the stimulus signal,  represents a convolution, are the*  wi  
weights applied to the neural response, and  is the neural response at time ​t​ in(t)ri  
electrode ​i​. We use canonical correlation analysis (CCA) to find the best model parameters 

 and . CCA does this by maximizing the correlation between the encoded stimulus(t)  h  wi  
and decoded response. CCA computes several components, each capturing a portion of 
the correlated signal. The stimulus-response correlation (SRC) reported here is the sum of 
the correlation of  and  for the first three components. In practice, CCA is applied to(t)û (t)v̂  
two matrices, one for the stimulus feature (sound amplitude), the other for the brain 
response (EEG evoked response). Full discussion of the method and how to compute the 
spatial and temporal response functions of each component can be found in (Dmochowski, 
2017). 
 

Here, the decoding-encoding model is trained with CCA on all conditions from all 
subjects (corresponding matrices are simply concatenated in time). We use a version of 
CCA that is regularized with PCA, where we keep ten dimensions (out of 30 and 64 for 
stimulus and response respectively). These correspond to the 30 time lags used for the 
stimulus (corresponding to 1 second), and the 64 electrodes for the response. Note that 
CCA provides multiple dimensions (components) that are correlated in time between the 
two data matrices. The corresponding spatial and temporal response functions are shown 
in Figure 3a and 3b for the first three components. Using the resulting model, SRC is 
measured separately for each subject in each of the four stimulus conditions based on the 
correlation between and  for the segments corresponding to each subject and(t)û (t)v̂  
condition (30 segments x 60 seconds for each condition). The result is a SRC measure for 
each subject in each of the four stimulus conditions.  

 
Sound amplitude envelope computation 

  
The sound amplitude  is calculated as the absolute value of the analytic signal after a(t)s  
Hilbert transform of the raw mono sound signal at its original sampling rate (48 kHz). The 
result is downsampled to match the frame rate of the video stimulus (30 Hz) and is then 
z-scored to standardize across stimuli. Finally, we construct a Toeplitz matrix from the 
z-scored sound envelope with 30 columns to capture up to 1 second delay, and add a 
column with a constant value (1) to model a potential offset. The first 29 rows of the 
stimulus are removed to avoid edge effects of the filtering.  
 



 

EEG evoked response preprocessing 
  

The EEG evoked response is preprocessed as follows. The starting value is(t)ri  
subtracted from the data in order to remove the DC offset and minimize transients from any 
filters that are applied. Then, a high-pass 5th order Butterworth filter with a cutoff frequency 
of 0.5 Hz is applied. Signal from the 6 EOG electrodes is then regressed out from the EEG 
channels with conventional least-squares, leaving 64 EEG channels for analysis. The data is 
visually inspected and any channels that are excessively noisy due to electrode or recording 
quality issues are set to zero. Additionally, any samples that were more than four standard 
deviations away from zero (in a 60 second segment) are set to 0 along with any samples 
preceding or following these outlier samples by less than 40 ms. ​Note that for a zero-mean 
signal setting samples to zero effectively removes those samples from the correlation 
measure, while discounting the correlation values by the fraction of samples removed. ​In 
total 3.18% of the data are set to zero with no ​meaningful difference across the 4 
conditions (congruent -9 dB 3.15%, incongruent -9 dB: 2.15%, congruent -6 dB: 3.14%, 
incongruent -6 dB: 3.21%). ​The EEG is then downsampled to the framerate of the video 
stimuli (30 Hz).  

 
Regression of visual feature 
 

To reduce possible effects of the visual stimulus on the EEG response we regress 
out activity that correlates with frame-to-frame differences in luminance (squared and 
averaged over all pixels). We previously established that this feature correlates well with the 
EEG evoked response during movies (Poulsen 2017). In fact, for some movie stimuli it 
correlates with the EEG significantly better than the sound envelope (Dmochowski 2017). 
Prior to regression, we removed large outliers in frame-to-frame differences due to scene 
cuts by setting values that were over three standard deviations above the mean to zero. We 
then used linear regression to remove any activity in the EEG evoked response that 
correlates with this feature. To do so, and allow for delays and an offset, we built the same 
Toeplitz matrix as we did for the auditory feature, and regress this against each EEG 
electrode. We therefore build, following (Lalor and Foxe 2009, 2010),  an encoding model 
for the visual feature  (the frame-to-frame differences)(t)  s  
 

(t) h (t)  r︿i =  i * s (2) 
 
and subtract that from the EEG response  prior to the CCA procedure to measure SRC.(t)ri  
Fig. 3(c) shows the spatial distribution of the correlation values R for the encoding model 
(Pearson’s correlation coefficient between estimated EEG response  and actual EEG(t)  r︿i  
response ; R​2​ is the more conventional figure of merit in linear regression but we use R(t)ri  
as it lends itself better to visualization and statistical tests). To compare the explanatory 
power of this visual feature to that of the auditory feature, we repeat this regression analysis 
using the sound envelope of the noisy speech that is used in the main analysis. The 
resulting R values are shown in Fig. 3(d). In order to determine whether the R values of 
these two regression models were significantly different from one another (i.e. one feature 
was significantly more predictive than the other), we divided the available data into 20 equal 
segments and generated a visual and auditory regression model for each. We then 
evaluated whether the corresponding R of the 20 auditory and 20 visual regressions were 
significantly different from one another for each electrode using a t-test. Electrodes that are 
significantly better correlated with the auditory feature are indicated with a ‘+’ symbol in 
figures 3(c) and in 3(d) if significantly better correlated with the visual feature. 



 

For comparison, we also built an encoding-decoding CCA model (as in Eqs. 1) for 
the visual feature, after subtracting the auditory feature with an encoding model (as in Eq. 
2). These results are shown in figure 3(b). We note that measuring SRC after linear 
subtraction of the nuisance feature is conceptually similar to partial coherence use 
previously in the context of ‘tracking’ audiovisual speech (Park 2016). 
 
Statistical significance of SRC values 
 

In order to estimate statistical significance of SRC values, 1000 sets of circularly 
shuffled EEG data were correlated with the stimuli using the same procedure as the normal 
EEG data. Shuffling was performed along the time dimension. Then, the correlation values 
of these shuffled sets were compared to the correlation values from the normal EEG data. 
For each of the three components, the normal SRC value was higher than all 1000 of the 
values generated from the circular shuffle procedure. Therefore, we concluded that p < 
0.001 for all three components in the CCA model correlating noisy speech with the EEG 
responses. 
 
Power analysis using bootstrapping 
 

We calculate SRC for each 60 second segment for each subject in all four stimulus 
conditions (resulting in a total of 30 x 4 x 20 measured - stimuli x conditions x subjects). We 
then draw for each subject a sample of size N with replacement, separately for the 
congruent -9 dB and incongruent -6 dB conditions. We then perform a Wilcoxon rank-sum 
test to determine if the two conditions differ in SRC with a significance value of 0.05. We 
repeat the bootstrap sampling 1000 times and compute the fraction of these repeats where 
the test detected a significant difference. This fraction is the estimated statistical power.  
 

Results 
 

Study participants (N=20) were presented continuous audiovisual speech (of 
President Barack Obama giving an televised address about the Affordable Care Act). The 
auditory speech was presented with spectrally-matched acoustic noise at signal-to-noise 
ratios of -9 dB and -6 dB. To manipulate intelligibility the visual speech was either 
congruent or incongruent with the auditory speech (Park 2016). Participants were instructed 
to detect one or more occurences of a target word in each 60 second speech segment. 
Detection performance served as the objective indicator of speech intelligibility (Crosse 
2016). We recorded EEG during stimulus presentation to assess stimulus-response 
correlation (SRC) between the envelope of the noisy sound and the EEG evoked response 
(see example in Figure 1). The goal was to test whether SRC is a viable neural predictor of 
speech intelligibility, in the absence of clean speech.  
 



 

 
Figure 1 - Example of correlated stimulus and response in time. This represents 60s of the sound 
amplitude of the stimulus and the EEG evoked response. To be precise, here the filtered sound 
envelope is shown in blue and the projected EEG in red (see Eqs. 1).(t)  û (t)  v̂   
  
Congruent visual speech improves word detection 
 
Behavioral performance for detecting target words was quantified in terms of precision and 
detection rate. Both metrics improve in conditions with higher SNR and the congruent 
visual speech as compared to incongruent speech (Figure 1). In the following we use F1 
score, which combines precision and detection rate, as the primary outcome measure of 
detection performance. We performed a two-way repeated measures ANOVA of the F1 
score with main factors of noise level and congruency. We found a very large effect for 
congruency [F(1, 19) = 917.4, p = 1 x 10​-17​], for noise level [F(1,19) = 284.9, p = 6 x10​-13​], 
and also for the interaction between noise level and congruency [F(1,19) = 118.1, p = 1 x 
10​-9​]. Follow-up comparisons for each noise condition indicate that the effect of congruency 
is significant at both noise levels [-9 dB: t(38) = 13.9, p = 2 x 10​-16​ , -6 dB: t(38) = 3.91, p = 3 
x10​-4​]. Neither one of these effects are surprising as the relative benefits of visual speech at 
different noise levels are well established (Ross 2007). The results do however validate our 
approach of using audiovisual speech to manipulate intelligibility without changing the 
auditory stimulus.  
 

 



 

 
Figure 2. Behavioral word detection performance for congruent and incongruent audiovisual speech at -9  dB 
and -6 dB noise. Labels for the conditions are: -9c: -9 dB congruent, -9i: -9 dB incongruent, -6c: -6 dB 
congruent, -6i: -6 dB incongruent (a) The behavioral word detection performance of subjects. Each line 
corresponds to a different subject. (b) The precision of each subject over all trials in each condition. (c) F1 
statistic for each subject. 
 
Congruent visual speech enhances auditory stimulus-response correlation 
 

We compute stimulus-response correlation (SRC) between the sound envelope of 
the noisy speech and the EEG evoked response. We use canonical correlation analysis 
(CCA) to ​relate the stimulus at various delays on one side, to the EEG response at multiple 
electrodes on the other side. The CCA model captures​ several components that correlate 
between the stimulus and the response (see Methods; Dmochowski 2017). The 
corresponding spatial and temporal response functions of the CCA model are shown in 
Figure 3 (a) for the three components with the strongest SRC. While correlation values are 
relatively small, they are nonetheless significant given the large amount of data available. [r 
= 0.039, 0.025, 0.009, respectively for each of the first 3 components, p < 0.001 using 
circular shuffle statistics]. We measure overall SRC by summing these correlation values 
over the first three components, but compute this separately for each subject and stimulus 
condition (Figure 4). SRC appears to improve with improved SNR and is larger for the 
congruent visual speech as compared to incongruent speech (Figure 4). A two-way 
repeated-measures ANOVA confirms a very significant effect for both congruency [F(1, 19) 
= 109.4, p = 2 x 10​-9​] as well as noise level [F(1, 19) = 44.54, p = 2 x 10​-6​], but reveals no 
interaction between the two [F(1,19) = 0.87, p = 0.363], suggesting that congruent visuals 
were equally effective at changing SRC at both noise levels. A follow-up pairwise 
comparison confirms that the congruency effect is present at both noise levels. [-9 dB: t(38) 
= 3.68, p = 7 x 10​-4​, -6 dB: t(38) = 2.43, p = 0.02]. 

We suspected that these effects were the result of stronger evoked activity, not just 
in response to the speech, but also to the noise fluctuations. To test for this, we repeated 
the analysis now correlating the EEG to the envelope of the clean speech, and the envelope 
of only the noise (Figures S3). The SRC of EEG with the clean-speech envelope [r = 0.05, 
0.03, 0.01, respectively for each of the first 3 components, p < 0.001 using circular shuffle 
statistics] increased numerically as compared to the noisy-speech envelope [from above: r 
= 0.039, 0.025, 0.009]. The SRC for the clean-speech envelope was modulated with SNR 
[F(1, 19) = 52.53, p = 7 x 10​-7​] and congruence [F(1, 19) = 54.43, p = 5 x 10​-7​], just as much 
as for the noisy-speech (see above). In contrast, the SRC with the noisy-only envelope was 
much weaker [r = 0.01, 0.0047, 0.0019, respectively for each of the first 3 components, p < 
0.001, p = 0.001, p = 0.14 using circular shuffle statistics] and was not modulated by either 
noise level [F(1, 19) = 0.019, p = 0.89] or congruence [F(1, 19) = 0.82, p = 0.38]. This result 
conflicts with our initial hypothesis, and instead suggests that the listeners managed to 



 

extract speech fluctuations from the noise (the envelope of clean-speech and noisy-speech 
correlate weakly; -9 dB: r = 0.22 ± 0.092, -6 dB: r = 0.20 ± 0.14), and were more successful 
at this when the visual cues were congruent with the sound.   
 
Visual fluctuations do not account for gain in auditory stimulus-response  
 
An important confound in our experimental design is the visual information that is presented 
to the subject. In the congruent condition there may be visually evoked responses in the 
EEG that are correlated with the speech amplitude (elicited by lip or head movements), 
while in the incongruent condition this should not be the case. We made an effort to 
measure and remove evoked activity that can be explained from the visual stimulus. As a 
feature of the visual stimulus we used frame-to-frame differences in luminance, which has 
been previously established as a good correlate to the EEG (Poulsen 2017, Dmochowski 
2017), and captures both head and lip movements as these are the dominant changes in 
these talking-head videos. First, we build a linear (encoding) model to predict the EEG from 
the visual and auditory features. The correlation of each EEG electrode with the 
stimulus-predicted EEG is shown in Figure 3c and 3d with auditory and visual features as 
predictors, respectively. We find that 40 electrodes are significantly better predicted by the 
sound envelope (these electrodes have higher R​2​, indicated with a ‘+’ in Figure 3c), whereas 
four electrodes are better predicted by the frame-to-frame differences (indicated with a ‘+’ 
in Figure 3d). Thus, the auditory features dominates the EEG responses in most electrodes. 
Importantly, if we subtract the activity predicted by the visual feature from the EEG, the 
resulting SRC measure (between sound amplitude and EEG) are virtually unchanged from 
what is shown in Figure 4. The conclusions on the statistical comparisons for the effects 
also remain unaltered [congruency: F(1,19) = 82.71, p = 2 x 10​-8​, noise: F(1,19) = 50.17, p = 
9 x 10​-7​, and the interaction of noise and congruency: F(1,19) = 0.85, p = 0.368].  

To further test whether there are visual contributions to the audio-correlated EEG 
activity, we attempted to relate the EEG of the incongruent condition to the audio envelope 
matching the video, i.e. we try to relate the EEG to the audio that was not heard, but may 
have been inferred by subjects from the visuals. This should capture any nonlinear 
contributions the video might have on the EEG that is correlated to the auditory features. To 
this end we measured the SRC of the envelope of the clean unheard speech with the EEG 
in the incongruent video condition. A new CCA model is built for this analysis (neither the 
heard nor seen features were regressed out here). If the visuals alone allowed the subject to 
infer the speech, we would expect to find that there is a significant correlation between the 
seen visuals and the unheard audio. Instead, we find that the SRC generated by this 
analysis does not reach significance (neither individually nor in the sum of the first 3 
components, r = 0.0075, 0.0057, 0.0047, measured for all four conditions combined, p>0.2 
when compared against 1000 circular shuffled data).  

Thus, in total, it is unlikely that the strong effects of congruency observed in Figure 4 
are due to a direct contribution of correlated visual evoked activity.  Instead, the results 
point to an interaction of the visual queues with the auditory processing. 



 

 
Figure 3 - Models for different features: (a, b) Models derived with canonical correlation analysis (CCA) for the 
auditory feature (a) and the visual feature (b). The auditory feature is the amplitude envelope of the noisy speech 
stimulus. The visual feature is the frame-to-frame difference of the video stimulus.  The CCA model correlates 
the EEG response with each of these features. Stimulus-response correlations (SRC) values shown separately 
for each of the three CCA components indicate the average across all subjects and conditions. Scalp 
distribution (top) indicates the spatial EEG response of each component. Time courses indicate the temporal 
EEG response (bottom). (c, d) Prediction performance for the linear regression model for the auditory feature (c) 
and visual feature (d). Scalp distribution indicates the R​2​ performance for predicting the EEG response from the 
features.  ‘+’ signs in panel (c) indicate that in those electrode locations the auditory feature predicted the EEG 
with higher R​2​ than the visual feature, and vise versa in panel (d).  
 



 

 
Figure 4 - SRC scores for each subject over all conditions. Each subject is shown in a different color and 
subject performance within each noise condition is connected with a line. Labels for the conditions are: -9c: -9 
dB congruent, -9i: -9 dB incongruent, -6c: -6 dB congruent, -6i: -6 dB incongruent. 

 

Behavior is Correlated with Stimulus Response Correlation 
 
We have shown that both behavioral performance on the task as well as SRC increase in 
congruent conditions and in less noisy conditions. To summarize this, we display the results 
together in Figure 5(a). Evidently, for the majority of subjects, and in both noise conditions, 
an improvement in SRC coincides with an improvement in word detection performance 
(positive slope in Figure 5a). The same is evident in Figure 5(b) where most of the subjects 
tested appear in the 1st quadrant, meaning that the change in SRC and F1 have the same 
sign [p = 0.0026, p=0.0004 for -9 dB and -6 dB respectively, sign test]. These results 
indicate that the SRC is a significant predictor of behavioral performance within subjects. 



 

.  
Figure 5 - (a) Comparison between behavioral word detection performance and SRC over conditions. Each line 
represents a subject. (b) Difference between congruent and incongruent conditions for each subject and both 
noise conditions. Each subject is represented as a point. Subjects that fall in first quadrant indicate that gains in 
one metric coincide with gains in the other metric for these subjects. (c) bootstrap estimate of statistics power, 
i.e. chance to detect a difference in SRC (between the -9 dB incongruent and -6 dB congruent conditions) with 
type 1 error rate of 0.05, as a function of EEG signal duration. Each curve represents one of the 20 subjects. (d) 
Bootstrap estimates of statistical power as a function of signal duration. Data was averaged over all 20 subjects 
to show contrast between predictive power of the full 64 electrode montage and a reduced 8 electrode 
montage. Shaded area represents standard error. 
 
 

Detecting changes of stimulus-response correlation in single subjects 
 
In order to use stimulus-response correlation in practice, say, to adjust a hearing aid for 
improved intelligibility, one needs to be able to assess this within single subjects after 
recording a limited amount of data (both perceived sound and EEG). Thus, we are 
interested in estimating how much EEG/sound data is needed to reliably measure a change 
in SRC for individual subjects. To this end we perform a statistical power analysis using 
bootstrapping. Specifically, we measure for each subject the odds of detecting a difference 
in SRC between two stimulus conditions for varying sample sizes. Each SRC value is 
calculated on 60 seconds of data, thus sample size corresponds to the number of minutes 
available to detect a change in SRC. In practice, changes in SRC may be due to changes in 
SNR as well as changes in neural processing (with an otherwise identical stimulus). To 
emulate this, we ask whether we can detect a difference between the -9 dB incongruent 
condition and the congruent -6 dB conditions, which correspond to robust gains in word 
detection performance. The results of Figure 5(c) suggest that for most subjects (15 out of 
20) one can detect differences in SRC with 80% power with 5-20 minutes of data. In the 
context of hearing aids only a few electrode around the ears may be available (Mirkovic 
2016, Debener 2012). To determine if our approach still works in this context, we repeat the 
analysis using only 4 electrodes immediately above the left and right ear (FT7, FT8, T7, T8, 



 

TP7, TP8, C5, C6). When using only these 8 electrodes we still find a strong dependence of 
SRC on  signal-to-noise ratio [F(1,19) = 23.59, p = 1x10​-4​] and congruence [F(1,19) = 43.58, 
p = 2x10​-4​]. And with eight electrodes one now requires ~30-40 minutes of data to detect 
changes in SRC with 80% power. (Figure 5d). 
  

 

Discussion 
 
There is a large body of recent work on the phenomenon of “speech tracking” -- the 
correlation of brain activity to the rapid fluctuation of speech that a listener is attending to. 
Our main finding is that improved speech perception coincides with an increase in 
stimulus-response correlation, which is consistent with much of the previous literature (e.g. 
Ding and Simon 2013, Peele 2013, Vanthornhout 2017). Previous work has also shown that 
this correlation can be increased by adding the corresponding visual speech to the auditory 
speech (Crosse 2015), and that this gain correlates with gains in speech detection 
performance across subjects (Crosse 2016). We extend this earlier work by using 
incongruent speech as a control condition in noise. We demonstrated for the first time that 
this effect correlates with gains in behavioral word detection performance within individual 
subjects.   

The amplitude fluctuations in noisy speech used in the present study at -9 dB are 
dominated by noise (they are only weakly correlated with the original clean speech). The 
fact that correlation of brain responses to these mostly-random noise fluctuations are 
predictive of speech intelligibility is, in our view, quite remarkable. Previous speech tracking 
work assumed that the correlation to the clean speech is an indication of speech 
processing. One compelling theory is that the correlation of EEG to speech reflects the 
parsing of hierarchical semantic features of language (Ding 2015), i.e. endogenous cortical 
rhythms are entrained to the rhythmic structure of words, phrases, and sentences that 
occur in natural speech. Others claim that this is not necessary and that the correlation can 
be explained simply as a response to the acoustic features of words presented in the 
stimuli (Frank 2018). The present results suggest that when a listener successfully identifies 
speech embedded in noise, this speech also evokes correlated EEG responses, and that 
EEG responses are weaker when the identical speech sound is not detected by the listener. 
Note that we make no causal claim here in terms of word detection causing the evoked 
responses or vise versa. It is just as possible that when a listener fails to understand the 
speech in adverse hearing conditions, attention to the speech sound wanes, responses 
evoked by speech diminish, and stimulus-response correlation drops.  

Our work was motivated by the desire to objectively assess intelligibility in the 
context of hearing aids. There are several important novel contributions over prior work on 
speech tracking in this regard. First, we have shown reliable prediction of intelligibility within 
individual subjects. This is a key requirement to tuning a hearing aid for intelligibility in each 
individual. Second, we have maintained the auditory stimulus unchanged, thus ruling out 
the possibility that changes in auditory stimulus characteristics altered the estimate of 
stimulus-response correlation. Thus changes in SRC observed here are likely due to the 
differences in how the auditory stimulus itself is processed. In contrast, most previous 
literature on speech-tracking modified the sound (Kösem 2017, Luo 2007, Nourski 2009) 
and thus changes in SRC may have resulted from altered characteristics of the sound itself. 
One exception is the work of Crosse (2016), who did maintain the auditory stimulus 
constant, but did not include a visual control condition as we have done here with the 
incongruent speech. Third, our measure of stimulus-response correlation did not require 
access to the original clean speech, which is not available in practical scenarios. To our 



 

knowledge all prior work on speech tracking has relied on access to the original clean 
speech.  

Given our pragmatic interest in hearing aids, we also tested how much data is 
required to reliably predict the modulation of SRC to allow inferring changes in intelligibility. 
We find that 5 to 30 minutes of data are sufficient to detect changes in SRC (with 80% 
power in the majority of subjects). In this study, the auditory stimulus was kept constant in 
order to explore purely cognitive effects. In practice, the stimulus conditions do continually 
change. In this regard it is interesting to note that when the SNR improves, SRC also 
increases. Thus, SRC may be a useful metric for speech intelligibility within and across 
signal conditions.  

One caveat to our results is that the congruent visual stimulus (e.g. lip movements) 
could have elicited brain responses that are correlated to the auditory stimulus (​Crosse 
2016​), whereas in the incongruent condition additive evoked response would be 
uncorrelated (Park 2016). Thus, increased stimulus-response correlation with the sound 
envelope could be a reflection of this additive evoked activity and not a reflection of altered 
auditory processing. To mitigate this confound, we remove any EEG activity that could be 
linearly explained by features of the visual stimulus (similarly to Park 2016). Here we used 
frame-to-frame differences of the video stimulus as visual features because it was 
previously found to capture a significant fraction of the EEG evoked response in video 
(Poulsen 2017, Dmochowski 2017), and because it captures lip and head movements, 
which can both aid speech recognition in noise (Sumby and Pollack 1954, Thomas and 
Jordan 2004, Munhall 2004). While there may be other visual features that contributed to 
such a confound, we note that visually-related EEG activity captured almost as much of the 
EEG variance as the sound envelope, and that removing this activity had only a marginal 
effect on the link between SRC and intelligibility. Most importantly, we demonstrated that 
the EEG activity elicited by the incongruent video does not significantly correlate with the 
corresponding ​unheard​ audio. Thus the video is unlikely to contribute directly to the evoked 
response that correlates with the sound ​in the incongruent condition​. Instead, the enhanced 
evoked responses​ in the congruent condition​ are likely the result of an interaction between 
vision and auditory processing​, consistent with the results of Crosse et al. 2016. ​Ultimately, 
however​, this caveat ​about the visual confound​ remains.  

There are a number of open questions worth addressing in future research. For 
instance, there have been attempts to narrow the range of endogenous neural rhythms that 
are the source of neural entrainment with speech. Some researchers claim that delta range 
oscillations (1-4 Hz) are primarily responsible (Molinaro 2018). Others argue that theta range 
oscillations (4-8 Hz) are the primary driver (Ghitza 2012, Bosker 2018), and still others claim 
that it is both, or that oscillatory activity in other frequency bands, such as gamma activity 
(30-50 Hz) plays a large role as well (Nourski 2009). Future work could focus on specific 
frequency bands to determine which is most predictive of intelligibility as we have 
measured here. The present paradigm may be particularly useful in this context as the 
auditory stimulus is kept constant, thus ruling out spectral differences that are due to 
differing stimulus properties.  

Here we have measured stimulus-response correlation after filtering the stimulus in 
time and filtering the EEG response in space. We refer to these operations as ‘encoding’ 
and ‘decoding’ respectively (Dmochowski 2017). Correlation between stimulus and 
response is then assessed on these filtered signals, which may contribute to the robustness 
of the approach because the filters are optimized to remove unrelated activity. The 
approach differs from the conventional approaches used in the speech-tracking literature, 
which measure correlation with the stimulus after only ‘decoding’ the EEG activity (e.g. de 
Taillez 2018, Mesgarani 2012, O’Sullivan 2015, Vanthornhout 2017), or only ‘encoding’ the 
stimulus (e.g. Ding 2014, Hyafil 2015, Power 2012, Zion Golumbic 2013). Future work could 



 

compare the relative merits of these various methods for the purpose of predicting speech 
intelligibility.  
  Here we have used EEG recorded over the entire scalp, which is not realistic in the 
context of hearing aids. An important practical question is whether it suffices to record EEG 
in the ear (Kidmose 2012, Looney 2014, Goverdovsky 2016) or around the ear (Mirkovic 
2016) in order to reliably measure SRC that is predictive of intelligibility. In this context it 
may be worth noting that attentional modulation of SRC to continuous speech have been 
measured with auditory brainstem responses with just two electrodes (mastoid and Cz), 
although the signals are admittedly difficult to detect (Forte 2017). 

In total, we have provided a first proof of principle that variations in intelligibility, as 
assessed objectively in terms of word detection, can be predicted from a subject’s EEG 
without access to the clean speech. Future work outlined here are only the initial steps 
required to develop neurally-adaptive speech enhancement for hearing aids as we have 
envisioned it here.   
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Supplement 

 
Figure S1 - Performance on the behavioral task at -3 dB SNR in 24 subjects. We did not find a significant 
difference in the performance. We note that in this pilot experiment subjects did not receive performance 
feedback during the experiment. Providing this feedback was useful to keep subjects motivated. We ascribe the 
low performance of a few subjects in this relatively easy task a lack of motivation. Additionally, it is known that 
at -3 dB, the difference of congruent and incongruent speech is relatively small (Ross 2007) 
  

 
Figure S2 - Results for the F1 score over all subjects and conditions using different size windows for 
categorizing hist, miss and false alarms. The window used in the main analysis (1.5 s) is marked in red. At this 
specific value, F1 score no longer improves substantially.  
 
 

 



 

 
Figure S3 - (a-b) SRC scores for CCA model trained, respectively, with clean speech envelope (a) and 
noise-only audio envelope (b). The noise-only signal is extracted from the noisy speech heard by subjects after 
subtracting the clean-speech signal. (c-d)  Spatial and temporal response for the clean-speech model and the 
noise-only model respectively. 
 
 
 



 

 
 
Figure S4 - SRC scores for all subjects using a CCA model trained using clean speech and an 8 electrode 
subset of the full 64. 


