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Abstract: 

It is said that we lose track of time - that “time flies” - 
when we are engrossed in a story. How does 
engagement with a story cause this distorted 
perception of time, and what are its neural correlates? 
People commit both time and attentional resources to 
an engaging stimulus. For narrative videos, attentional 
engagement can be represented as the level of 
similarity between the electroencephalographic 
responses of different viewers. Here we show that this 
measure of neural engagement predicted the duration 
of time that viewers were willing to commit to narrative 
videos. Contrary to popular wisdom, engagement did 
not distort the average perception of time duration. 
Rather, more similar brain responses resulted in a more 
uniform perception of time across viewers. These 
findings suggest that by capturing the attention of an 
audience, narrative videos bring both neural processing 
and the subjective perception of time into synchrony. 
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We operationally define engagement as the 
commitment to devote inherently limited resources to a 
stimulus. Unlike self-report assessments, commitment 
can be estimated objectively using the resources 
(time, money, etc.) that an individual is willing to 
allocate to a stimulus. Engagement can therefore be 
assessed like other value-based decisions using a 
comparison between the worth of the narrative 
stimulus and that of possible alternatives (Rangel, 
Camerer, & Montague, 2008).  

Time commitment can be calculated from an online 
video’s ability to retain viewers. For a large enough 
audience, this can be measured from viewership 
survival, 𝑆(𝑡), defined as the fraction of the audience 
that “survives” until time, t, in the video. The rate at 
which the audience shrinks is the risk of viewership 
loss (𝜆(𝑡)). When the stimulus evokes a high level of 
engagement, the risk of losing viewers is low. 

Conversely, when the audience is not engaged, the 
risk is high. Behavioral engagement is therefore 
defined quantitatively for the first time as the inverse of 
the risk of losing viewers: 

𝐸(𝑡)  = 1/𝜆(𝑡) 

Raw viewership survival data, 𝑆(𝑡), from which 
engagement is derived, was acquired for online videos 
in both the real-world (courtesy of StoryCorps) and in 
an experimental condition. 

 

Figure 1: Neural Engagement predicts Behavioral 
Engagement.  



The similarity of electroencephalographic (EEG) 
evoked responses across viewers may be a neural  
marker of engagement (Dmochowski, Sajda, Dias, & 
Parra, 2012). To test this with the proposed behavioral 
measure of engagement, inter-subject correlation 
(ISC), measured using components of EEG that 
strongly correlate across viewers, was extracted from 
the neural activity of 20 individuals who watched the 
same videos for which behavioral engagement had 
been assessed (data and methods the same as in 
Cohen & Parra, 2016). Time resolved ISC in the i-th 

correlated component is denoted as 𝑥(𝑡) =
[𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)] for the three strongest components 
used to predict behavioral engagement (scalp 
topographies are shown in Figure 1a). 

A model was fit to the experimental behavior data, 
and this model’s predictive ability was tested on the 
real-world behavior data. Here, following the survival 
analysis literature, a proportional hazard model was 
used (Cox, 1972), resulting in a regression of 
engagement, 𝐸(𝑡), with a time dependent covariate, 
𝛾(𝑡), that depends on 𝑥(𝑡), and a constant baseline 

engagement, 𝐸0: 

𝐸(𝑡)  = 𝐸0𝛾(𝑡) . 

Following the traditional form of the proportional 
hazard model (Cox, 1972) the time dependent 
covariate, 𝛾(𝑡), equals the exponentiated weighted 
sum of the predictor variables: 

𝛾(𝑡) = 𝑒𝑥𝑝 [∑ 𝛽𝑖𝑥𝑖(𝑡)
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For the experimental data, approximately 30% of the 
commitment to watch the stimuli can be attributed to 
the variation in “neural engagement,” 𝐸0 𝛾(𝑡). This 
contribution was mainly explained by the second 
component of the ISC (Figure 1a, C2). To test the 
neural predictor on unseen data, we compared neural 
engagement to the real-world audience engagement 
and find a strong correlation (r = 0.56, p = 0.003, 
N=78, Figure 1b). 

After establishing the validity of both the behavioral 
and neural measures of engagement, the relationship 
between stimulus engagement and time perception    
was assessed. An additional cohort of viewers 
provided subjective estimates for the durations of brief 
periods of time during the videos. These time 
segments judged corresponded to the time intervals 
over which behavioral and neural engagement were 
assessed Despite prevalent theories that stimulus 
engagement induces time distortion (Nakamura & 
Csikszentmihalyi, 2002), there was no correlation 
between the mean estimates of time duration and 
engagement, measured either behaviorally or neurally 
(p > 0.3). Interestingly,  however,  neural  engagement 

 

Figure 2: Engagement predicts the variability of time 
perception. 

correlated with the variability of time estimates across 
viewers (Figure 2, Pilot: r = - 0.27, p=0.0009, N = 129, 
Replication: r = - 0.23, p = 0.05, N = 129).  

We conclude that if viewers are similarly entrained 
by the stimulus (or activity), thus eliciting a high level 
of ISC, they will be immune to extrinsic costs such as 
the time or money that they are sacrificing for the 
current moment’s enjoyment. Their perception of time, 
one of the many valuable resources that they are 
sacrificing, will thus be driven by the stimulus, and 
consistently so across viewers. 
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