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Abstract—Our society’s information technology advancements difference). Though there is some debate on whether the fun-

have resulted in the increasingly problematic issue of infanation

overload—i.e. we have more access to information than we can

damental processing unit in the nervous system is the neuron
or whether ensembles of neurons constitute the fundamental

possibly process. This is nowhere more apparent than in the . . np . .
volume of imagery and video that we can access on a daily unit of processing, it is nonetheless widely believed tihat t

basis—for the general public, availability of YouTube vide and human visual system is bestowed with its robust and general
Google Images, or for the image analysis professional tastte purpose processing capabilities not from the speed of its

with searching security video or satellite reconnaissancéVhich

images to look at and how to ensure we see the images that are ofa

most interest to us, begs the question of whether there are art

ways to triage this volume of imagery. Over the past decade,
computer vision research has focused on the issue of ranking

and indexing imagery. However, computer vision is limited i its
ability to identify interesting imagery, particularly as “ interest-
ing" might be defined by an individual. In this paper we describe
our efforts in developing brain computer interfaces (BCls)which
synergistically integrate computer vision and human visia so as
to construct a system for image triage. Our approach exploi
machine learning for real-time decoding of brain signals wich
are recorded non-invasively via electroencephalographyHEG).
The signals we decode are specific for events related to image
attracting a user’s attention. We describe two architectues we
have developed for this type of cortically-coupled computevision
and discuss potential applications and challenges for theufure.

Index Terms—brain computer interface, electroencephalogra-
phy, computer vision, image triage, image search

I. INTRODUCTION

Our visual systems are amazingly complex informatiofii the idea that "

individual processing elements but from its massively lara
rchitecture—the brain hd®'' neurons and0'* synapses of
which the visual cortex is by far the largest area.

Since the early 1960’s there have been substantial efforts
directed at creating computer vision systems which possess
the same information processing capabilities as the human
visual system. These efforts have yielded some successes,
though mostly for highly constrained problems. By far the
biggest challenge has been to develop a machine capable
of general purpose vision. A key property of the human
visual system is its ability to learn and exploit invariancAs
mentioned above, we can in most cases effortlessly recegniz
objects under extreme variations in scale, lighting, pase a
other variations in the object and world. Understanding how
this invariance comes about and relating it to the physics
of objects and projections of scenes onto our retinas (or a
machine system’s imager) is one of the most active areas
of computer vision research. More recently the problem of
invariance has been considered from a statistical pelispect
natural scene statistics” may hold thetke

processing machines. We can recognize objects at a glang&y our visual systems learn and represent these invagance

under varying poses, illuminations and scales, and are a
to rapidly learn and recognize new configurations of obje

§ We are, however, many years, if not decades, away from
alizing a computer vision system with general purposeatis

and exploit relevant context even in highly cluttered SSeN&yocessing capabilities.

This visual information processing all happens with indial

components which are extremely slow relative to statehef-t

art digital electronics—i.e. the frequency of a neuron'mdr

A. The image triage problem

is measured in Hertz whereas modern digital computers havgnsiead of focusing on how to build a computer vision

transistors which switch at Giga Hertz speeds (a factarodf

system to emulate human vision, in this paper we consider how
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systems to perform the task mhage triage Assume we start
with a database of imagé¥, which is organized as an ordered
set of N images,Dy = {[;...In}, whereN is very large.
Also assume the state of the database can be characteriaed by
utility function, U which quantifies how "ordered" the database
is with respect to the interest of the persgnsearching the
data at a given time, U(Dy | p,t). For now we will assume
that this utility function has large positive values wher th
database is ordered such that “interesting" images (gierd

t) are at the front of the database. Conversely, if “intengsti
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images appear randomly in the database ttien 0 *. been well-studied in visual psychophysics and it has been
The image triage problem can then be defined as findisgown that we can get the "gist" of what is in an image at
a transformatiori’(-) which operates oDy, or more gener- RSVP rates of greater than 10Hz [5, 6, 7] . The specifics of
ally D, where: indexes the database after applying fie the RSVP paradigm we use will be outlined later in the paper.
transform, to re-order the images so as to maxintizand Given RSVP presentations and the binary discrimination
minimize the cost of computing and applying tfg-); problem formulation, how do we detect the subject’s denisio
e.g. whether a given image in the sequence is of interestt@r no
One way is to have the subject behaviorally respond, perhaps
Dit1 = T(Di|p,t): ar%gaX(U(T(Di) | p,1) = AC(T(Dy)) by pressing a button or making an eye-movement. However
(1) an explicit response by subjects has several drawbacks. The
where \ balances the cost df(-) relative to its utility. One firstis that there is substantial trial-to-trial resporiseet (RT)
potential cost of computing and applyirfig-) is time—i.e. if Variability and at high RSVP rates this can result in errars i
it takes very long to compute and apgly(-), then this will localizing the image to which the subject responded [8]. In
reduce the rate at which interesting images will be disaeyeraddition, by dissociating the response from the decisiod on
and therefore reduces the overall utility of the triage. can potentially speed up the process and make it less taxing.
In this paper we describe a basic set of principles we witastly, the subject may over-analyze the image, resulting i
use to construct a re-ordering transform which leverages thehavioral decision threshold which is higher than one tigh
strengths of both computer (CV) and human vision (HV)—i.gvant for the triage task. For all these reasons we monitor the
the transform will be a synergistic combinationf (-) and Subject's EEG during the RSVP and use machine learning to
Tav () . identify neural "components” reflective of target detectmd
attentional orienting events, which in turn can be used ferin
. . the binary discrimination—i.e. the reordering transfaria) ;v
B. Human vision and “gist will be based on EEGT'(-) pz¢. Our framework for decoding
In considering the human vision reordering transform, WeEG using machine learning is described in Section Il below.
will first take advantage of our ability to get the “gist" of aSeveral groups, including ours, have investigated image de
scene. That is, for a very brief presentation of an image, wection/classification based on EEG [9, 8, 10, 11, 12, 13].
are able to extract a tremendous amount of information whigh contrast to this previous work, in this paper we focus
enables a general characterization of the image content. ba the integration of computer vision and EEG, specifically
example, if an image is flashed for 50ms, we might be abdescribing two architectures for the integration of the two
to infer that the image contained a car, but perhaps not whaége transform systems, presenting results for each.
model car it was. This is exactly the operational mode of the
image triage problem. Given images in our databBsewe o
are using HV to obtain a general characterization of what §s ©Organization of the paper
in the image. "Gist" processing by humans has been an activefhe remainder of the paper is organized as follows. Sec-
area of research [2] leading to several theories of the typetmn Il will describe the neurological basis for the signals
features we use to infer general scene characteristicsurin atilized to detect attentional shift and orienting, suates
triage system we are less concerned with how we "get the gigif the "that is interesting" response to a flashed image. We
and more interested in whether a subject gets a particudar giill also describe the signal processing and machine lagrni
within the context of a binary discrimination—i.e. if thedteed framework we utilize for decoding these signals and geiragat
image contains a car or not, or more generally whether or rprobability-based "interest" score for each image. 8edti
there is something "interesting" in the scene. The defimitib describes two systems we have developed for coupling com-
the binary discrimination can be explicit, such as insingct puter vision and decoding of cortical EEG signals for image
the subject to look for a particular class of object or setsiage. The first uses computer vision as a preprocessor to
of objects, or implicit, such as a subject being interested provide an initial re-ordering transform and then samplemf
certain objects or characteristics of images, as one might this reordered; to generate sequences to pass through EEG-
during casual browsing. The binary discrimination can &leo based reordering. This architecture is particularly appete
dynamic and context dependent—i.e. depend on the previeusen prior information about target/object class is knowd a
images the subject has seen in the sequénce can be incorporated into a CV model. The second method
To maximize the throughput of the triage and thus minimizeegins with the EEG-based reordering and samples ffgm
the time it takes to appl¥’'(-), we want a sequence of imagedased on the user browsing these samples. The result of
having a presentation rate which is as rapid as possiblewhihe EEG-based browsing is used to reor@igrand samples
still enabling the subject to get the gist of images in thef the reordered database are used as exemplars in a semi-
sequence. For this we use a presentation methodology termegervised CV system for further reordering. This framéwor
“rapid serial visual presentation” or RSVP [3, 4]. RSVP hds most appropriate when the object of interest is unknoveh an
examples can only be generated after the subject browses the
Lif interesting images are at the end of the database, tiveay be defined gatabase. We conclude the paper by discussing future tethni
so as to have large negative values. Note that this ordesifgst as good as . .
development and ethical and human factors issues related to

an ordering with &/ >> 0, however the search must start at the end of th
database and proceed to the front these types of BCI systems.
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[I. DECODING BRAIN STATE B. Hierarchical Discriminant Component Analysis

There has been substantial interest, which has accelerated i ) L L
over the past decade, for decoding brain state. Efforts have/é begin by assuming that the discriminant activity, i.e. th

ranged from decoding motor commands and intentions, 3GtVity that differs the most between positive and negativ
emotional state and cognitive workload. There has also be@ffMPles, is a deflection of the electrical potential froraeba
a variety of neural signals which have been targeted fBp€ (€ither positive or negative) over a number of electsd
decoding, ranging from spike trains collected via invasigY @veraging over electrodes with just the right coefficsent
recordings to hemodynamic changes measured non-invasii@CSitive or negative with magnitudes corresponding to how
via fMRI [14, 15]. Our focus is on using EEG as a nondiscriminant .each elect_rode is) we obtain a Welgh.ted aeerag
invasive measure to relate brain state to events correfitad Of the electrical potentials that will be used to differefi
the detection of "interesting” visual objects and imagekaw POSitive from negative examples:
is the neural correlate of an "interesting" image? It is neac
that there is such a well-defined correlate. However, we do Y = Zwixit- )
know from neuroimaging studies that there are neural sggnal i
that can be measured non-invasively which are related to theHerex;; represents the electrical potential measured at time
detection and recognition of rapidly shown images [7, 5, 8].for electrode: on the scalp surface, while; represents
A very robust signal measurable from the EEG is the P300.thte spatial weights which have to be chosen appropriately.
reflects a perceptual “orienting response” or shift of d@tten The goal is to combine voltages linearly such that the gum
which can be driven by the content of the sensory input streasnmaximally different between two conditions. This can be
[16]. Additional signals that may be indicative of a subject thought of as computing a neuronal current souggethat
attentional state are oscillatory activity often found idgr differs most between times samplés following positive
resting state (10Hz oscillations known as “alpha” actvityexamples and the times— following negative examples,
as well as transient oscillations sometimes associatedl wit+ > y; .2 There are a number of algorithms available
perceptual processing (30Hz and higher known as “gamnia’ find some optimal coefficients; in such a binary linear
activity). However, as of yet, none of these oscillatorynsilg classification problem, e.g. Fisher Linear Discriminafisiy),
have been identified in the RSVP paradigms. penalized Logistic Regression (PLR), or Support Vectors Ma
chines (SVM) [17].

In [8] we assume that these maximally discriminant current

A. Signal detection via spatio-temporal linear projecson  sources are not constant but change their spatial distibut

The approach we have taken for interpreting brain activiWithin the second that folloyvs th.e presentation of_an image.
is to constrain the experimental paradigm such that we ave/fd€€d, we assume a stationarity tirife of approximately
distinguish only among two possible brain states: (+) pasit 100ms. Therefore, we find d|st|n_ct optimal welght vectors,
examples in which the subject sees something of interest!: fOr €ach100ms window following th.e presentation of the
an image, versus (-) negative examples for which the imaljd29€ (indexk labels the time window):
contains nothing of particular interest. The goal is not to
deduce from the brain signal what the exact content is, or ~,  _ Zwmxit, t=T,2T,..(k— )T, kT  (3)
what the subject sees in the image. This would indeed be Z

a difficult task given the limited spatial resolution . . . .
9 P of EEG These different current sourcgs, are then combined in an

Instead, we aim to utilize the high temporal resolution OEEavera e over time to provide the ootimal discriminant astiv
to detectwhenan individual recognition event occurred. For 9 P P atgt

individual images we aim to detect the brain signals elithig over the entire second of data:
positive examples, and distinguish them from the brairvigti
generated by negative example images. The task for the EEG y= Z Z UkYtk;
analysis algorithm is therefore to classify the signal lestv Lok
two possible alternatives. For an efficient on-line implementation of this method we

In our RSVP paradigm images are presented very rapidye FLD to train coefficients;, within each window of time,
with 5 to 10 images per second. To classify brain activitye-» We seekw;, such thaty... > yw—. The coefficients
elicited by these images we analyze 1 second of data, retor@e are learned using PLR after the subject has viewed the
with multiple surface electrodes, following the preseiotat €ntire training set such that, > y_. Because of the two
of an image. With 64 electrodes and approximately 100 tin¥€P process of first combining activity in space, and then
samples within this second, this amounts to a data vectoragain in time, we have termed this algorithm “Hierarchical
6,400 elements. In the specific case of image triage, we miaipcriminant Component Analysis”.
have hundreds or thousands of images that are to be ignorelfote that the first step does not average over time samples
and a very few, perhaps a dozen or two, which are assunéghin each window. Instead, each time sample provides a
to attract the subject’s attention. The goal is to identify a, ., . o _ _

Label '+ always indicates that the expression is evaluatéith a signal

clgssmcatlon criterion in this Iarge_spano-temporaladapace z;; recorded following positive examples and '~ will indicatee same for
using only a few known example images. negative examples.

(4)
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. .. 1-100ms 101-200ms 201-300ms 301-400ms
separate exemplar that is used when training the ¥bese

multiple samples within a time window will correspond to a ¢
single exemplar image and are therefore not independent, y||
they do provide valuable information on the noise-statisti
variations in the signal within the time window are assumed
to reflect non-discriminant “noise”. In other words, we as-
sume that spatial correlation in the high-frequency atstivi
(f > 1/T) is shared by the low-frequency discriminant
activity. In addition, by training the spatial weight seataly
for each window we assume that the discriminant activity iS\g
not correlated in time beyond the 100ms time scale. Botlethes
assumptions contribute crucially to our ability to combine
thousands of dimensions optimally despite the small numbe
of training images with known class labels [10].
An example of the activity extracted for one subject wit I
this algorithm is shown in Figure 1. The spatial distribngo
show the portion of the electrical potentials measured on

401-500ms

r.801 -900ms 901-1000ms

the electrodes that correlates with the discriminant curre A
source$. For example, as shown, the activity measured —,  Olasscondiional ikeihood ; ROC Curve
frontal areas 801-900ms post-stimulus presentation (stasv I rontarget

0.3} | I target

o
©

red in the scalp plot) strongly correlates with the classdi#-
put y. Class-conditional histograms, computed via integratir
the 10 component activities, show the distributionyef and £
y_ computed on unseen test data (5-fold cross-validatiord. T§ o.1s ‘ ‘ ‘ ]
Al ‘ |

0.25

o
)

bility

0.2

o
~

True positive rate

receiver-operator characteristic (ROC) curve is compftrad 0.
these histograms. |

The HDCA algorithm is computationally very efficient anc 1 |] ] . fe =08
easy to implement in real-time. It is thus the algorithm ¢ =% - 240 =0 o ° % L AN A
choice for the current implementation of the C3Vision syste
More recently we have developed new learning algorithms to B C

flhd optlmal "”ear. Welghts (See Appenc_zllx). While t.hese ¢ Ig. 1. Activity extracted by the Hierarchical Discrimirta€omponent
yield better classification accuracy their computation@$tc anaiysis method. (A) Plotted is the forward model for thecdiminating
makes them problematic for real-time implementations.  component at each time window, which can also be seen as thealized
correlation between the component activity in that windowl ¢he data [17].

The colormap for the scalpplot represents the normalizeceledions, with

red being positive and blue being negative. The series opafiad maps thus

Ill. SYNERGISTIC COMBINATIONS OF COMPUTER AND shows that the spatial distribution of the forward model fe tiscriminant
EEG-BASED HUMAN VISION activity changes across time. Activity at 300-400ms hasadiapdistribution

which is characteristic of a P3f, which has been previoudsniified by our

. . . . roup and others [18, 19] during visual oddball and RSVP gigmas. In
Given the HDCA algorithm for EEG decoding, we C('-)r‘s'deiddition, the parietal activity from 500-700ms is consistavith the P3b

how to integrate the results of EEG-based binary clasdificat (or P300) indicative of attentional orienting. Other sfggint discriminant

with computer vision (CV). There are three basic modes f@iﬂ”""' can be found at earlier and later time and often vamynfsubject
0 subject and the specifics of the experimental paradigm, presentation

creating such a cortically-coupled computer vision system gpeed. Note that all scalp maps are on the same color Sc3leTH® 10
Computer vision followed by EEG-RSVP, ijé(-')cv fol-  components characterized by the scalp maps above arelyinie@grated to
owed by Given prior information of a target type 27, 370 cessfesion Sre wih can be e coss
(e.g. examples of the target class or description of theifeat via the ROC curve which is computed from these class-canditihistograms.
and or context associated with the target class) one can
instantiate a CV model, including contextual cues, to ofgera
onD; so as to eliminate regions of very low target probabilitjargets are then foveated when presented to subjese top
and provide an initial ordering of regions that have higlgéar M images of the reordere®; are sampled and presented
probability. In addition, CV should place potential regsonto the subject for EEG-RSVP. Thus the CV processing is
of interest (ROIs) in the center of the test images. Thigned to produce high sensitivity and low specificity, with
will improve human detection performance since potentitie EEG-RSVP mode increasing specificity while maintaining
sensitivity;
SFor instance, we may have 50 training exemplars and 10 sanpse EEG-RSVP followed by computer vision, &) zzc fol-

window resulting in a possible 500 training samples for thessification lowed by7'(-)cv: In the absence of prior knowledge of the

algorithm that needs to find 64 spatial weighting coeffident,. for the kth

window. 50ur research has shown that, for the RSVP paradigm, thegsitrer the
4This is also called a forward-model and is computed frof, andz,, EEG signals falls substantially as a function of the ecdeityrof the the

within the relevant time window (see [17, 10] for more detail target, thus indicating the importance of CV for centerirmjeptial targets.

o
)

Az =091
0.

=}
a
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target type or a model of what an "interesting" image is, thepproximated by a composition of shape parts. In turn, those
EEG-RSVP is first run on samples Bf, the result being a re- parts can correspond to further compositions or geometric
ordering which ranks images based on how they attracted gmémitives. For instance, airfields in aerial images usuall
subject’s attention. This re-ordering is used to geneiels decompose into a set of straight lines (i.e. airstrips) and
for a computer vision based learning system which, givenhbaildings (i.e. terminals), buildings into a set of lines.
partial labeling ofD;, propagates these labels and re-orders theln order to obtain a feature dictionary that also can help
database. Thus the EEG-RSVP is designed to identify a smallining regions of no interest to the human observer, we have
number of "interesting” images which are then used by a seritieluded features that are used to assign image regionssto on
supervised CV system to re-order the entire image databasemore scene categories using a statistical classifienetai
. on small (typically= 200 x 200 meters) image patches. The
Tight coupling of EEG-RSVP and computer vision; i.&ategories are defined by a taxonomy of scene contexts, that
T(-)ev and T(-)grc are applied in parallel and results discriminate between main scene contexts (i.e., terrgiesy
integrated Both EEG-RSVP and CV are run in parallel anduch as “Forest” or “Desert”) that occur in aerial scenes on
coupled either at the feature space level, or at the outguicoarse level, and specific scene contexts, such as differen
(or confidence measure) level, leading to a single combinpdilding densities in an urban context, on a finer level. The
confidence measure that can serve as a priority indicatstatistical classifier and features are inspired by welketigped
As with the first coupling mode, this mode requires priofexture classification techniques that operate in the spéce
information on the target type. textons, where textons are identified as texture featuistanisi
These modes also potentially include feedback or multiplging vector quantization of labeled data, as describe@0}y |
iterations within a closed-loop system. Below we descnb@ t Descriptors are then constructed from histograms over the
cortically-coupled computer vision systems we have devekpresentative textons w.r.t. training images. This kjisto
oped, together with results, which demonstrate the first twepresentation serves as input for a statistical classeier,

modes of fusion. k-nearest-neighbof Note that the dependency on training
data is not problematic since the scene context is typicedty
A. Computer Vision followed by EEG task specific, hence, can be pre-computed for a wide problem

1) System descriptionfigure 2 illustrates the software,do'ﬁn"’un and re-used f-or unseen objects: )
hardware and functional components of our system for theQUr grammar and inference formulation [21, 22] is based
triage application when objects of interest are well defingd! first order predicate logic. In the present context, e
and known, a problem routinely encountered, for example, g0iC allows for (i) the specification of domain knowledge

aerial image analysts. This system is comprised of three m&d (ii) reasoning about propositions of interest. In order
software modules: to properly deal with uncertainties in patterns (which are

Jery typical in computer vision problems), the predicatgido
target detection framework and a chipping engine formulation is augmented with a mathematical structuréedal

. an EEG triage module using the RSVP paradigm to alloe/llatnce [26]. Bilattices assume partial orders along tve

the user to rapidly browse through a selective set of ima ges of truth and the amour_1t of ewden_ce, and, by d_omg SO,
locations and to detect those most likely to contain ovide a formal method of inference with uncertaintiest Fo

object of interest, which we call here a “target”. morr(]a detail, r%fer to.[23,f 21, 22]. Ki lied b f
« aVvisualization interface for final confirmation by the user The target detection framework is applied to a subset o

- . . ixels in large aerial images and assigns detection cordeten
The computer vision target detection framework is a model- I . . L

. 0 each pixel in this selection. The pixel selection is cutlse
based framework that relies on two components:

o defined by a uniform grid, whose density can be determined
1) afeature dictionarya set oflow-levelfeature extractors paseq on the image type and content. Based on a user specified
that — when combined — provide a general platforrg,ashoq for the detection confidence, a list of the mogtyik
for describing and discriminating numerous differenfgtection candidates is generated and passed to the apippin

(aerial) object classes. engine. The engine then generates image chips centered on
2) grammar formulation and inference formal grammar 1o detection candidates.

for specifying domain knowledge and describing com- The EEG triage module receives the list of image chips

plex ObJeTCtS usmgmd-andhlgh-levelcomposmons, and and detection details from the computer vision module, that
an algorithm that performs inference on such 9rammafciudes pixel locations and detection confidence scomas, a
While the feature dictionary can include generic, and pejises this input to generate the RSVP image sequences that wil
haps complex, shape and feature extraction operators, gdfysed for triage. It then performs three main tasks: it megu
initial implementation has been specifically addressing th,g records the EEG signals, orchestrates the Rapid Serial
problem of detecting objects in aerial imagery. Thus afsual Presentation, matches the EEG recordings with the
expressive element for identifying an object in aerial iemg presented images, trains an underlying triage classifieigus

is its geometric shape, e.g., the shape of its edge contoyfgining sequences and uses the classifier with new gederate
boundaries of different textures, etc. To ensure that oututso

remains scalable and .adaptqble to new objects of interestye thank Roberto Tron and Rene Vidal for providing an impletation
we have employed a hierarchical approach, where shapes dtgeir texture classification.

o a computer vision preprocessing module that include
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Computer Vision module
User launches Computer Vision
Target detection computer vision [rererssesassasanas »  Module
preprocessing
Target selection
Chip generation

: i RSVP training set User trains with
CY triage |!S't ) e . for EEG triage (RSP il
(high sensitivity, low specificity) sequences

(__EEG Triage module \ l

RSVP test set M=======sssssssnnnnns sets: chips
EEG decoded centered on
targets
Priority
list

Training
User reviews and

EEG triage list
( Analyst PC \ (high sensitivity, high specificity) e e
................ locations from
(] :

Vv Task specific : priority lists using
E’ Interface ! application |

A B

~

C3Vision System \

Recording and
classification

Presentation

task specific
software

Fig. 2. (A) Software, hardware and functional componentshefintegrated Computer Vision- EEG triage system. Theigadly coupled computer vision
system (termed C3Vision) runs on three computers and ieslaComputer Vision module, a EEG triage module, and anfacteiwhich enables the user
to visualize the results of the combined triage in a suitalidealization environment. (B) Corresponding workflow.eThser launches the computer vision
processing which performs an analysis of the entire imageei@ting detections for likely locations of targets. Ehdstections are used to divide the large
image into smaller image chips for presentation via RSVPth&t same time the user wears an EEG cap and a separate setgekimmaused to train the
EEG classifier. The classifier learns to decode the EEG smmélgenerates confidence scores indicating the level ddréist' of the image chip—i.e. how
much the particular chip grabbed the user’s attention. Bnagps generated by the computer vision module are passibé taser and EEG is decoded and
scores generated for this "testing" data. The resultingescare used to generate a priority list, which is a rank ofctiie, by EEG score, together with
their corresponding location in the large image. This fsidist is ingested in the visualization software whichy fmage analysts, allows the user to interact
with the imagery in a way they are are most accustomed (pamzamark objects) while also providing a toolbar to jump awuhe image based on the
EEG-based score.

image sequences. maintain its detection performance from one type of imagery

The triage system currently utilizes a 64 electrode EEQ another. Training is a significant stage of the triage gssc
recording system (ActiveTwo, Biosemi, Germany) in a stadt not only is the vehicle to training the EEG classifier, it is
dard 10-20 montage. EEG is recorded at a 2048Hz sampli§0 @ mechanism for providing some practice to the human
rate. While the EEG is being recorded, the RSVP displ&pserver. Therefore, to help the human observer maintain hi
module uses a dedicated interface to display blocks of imad@vel of attention and gauge his training performance, the
at the specified frame rate. Blocks are typically 100 imag&>VP display module also displays feedback screens on the
long with only a few targets per block\{ < 5). The frame training progress at the end of each block.
rate is set between 5 and 10Hz depending on the difficultyOnce the triage module has completed the triage, it gen-
of the target detection task—i.e. each image is shown for 1@@ates a list of chips and their associated classification co
200ms before next image is shown. The interface draws frdiflences, which can be used to prioritize the visualizatibn o
a pool of potential target chips and a pool of "distractorsthe corresponding image locations. The visualizationriate
The role of the distractors is to achieve a desired prevalergermits the visualization of the prioritized locations in a
of target chips, that will maintain the human observer eegagadequate software environment for the task or user at hamd. F
in the presentation: if the prevalence is too low or too higlexample, for image analysts, we have developed an interface
the observer may not keep an adequate focus and may mioreRemoteView (Overwatch Systems, Sterling VA), an im-
easily miss detections. Given that the computer vision utstp agery exploitation software application standardly usethe
include some false positives, the number of distractorsl uséeolntelligence community. The interface provides a taolb
depends in fact on the expected number of true target chiggmparable to a play-back control allowing the analyst to
from the computer vision module. jump from one prioritized location to the next. Meanwhile th

Currently the triage system’s classification module religdalyst still retains access to all of RemoteView's funuaility.
on the hierarchical discriminant component analysis aigor ~ Currently, the corresponding prototype hardware implemen
described in Section 11-B. The triage classification modsle tation uses three laptops, one for the RSVP display, one
used in two different stages: training and actual usage wi®f the EEG recording and classification, and one for image
new imagery. The training typically consists of a preséoiat Processing.
of 25-35 blocks with a set number of known targets in each2) Experiments and resultsTo evaluate the performance
block. The training sequences need not be related to thiethe integrated Computer Vision - RSVP triage system,
test sequences, in terms of their content, as the premisewaf have performed experiments with 5 subjects and using
the approach is that it detects objects of interest, but ts reatellite electro-optical (EO) greyscale imagery. The& tas
sensitive to the signatures of specific objects, and caefiner each subject was to detect surface-to-air missile (SAM)ssit
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Fig. 3. Computer vision results for the surface-to-air ifes€SAM) site detection problem. Detections are sorted bgficence (row-first). SAM site chips
are marked in green.

A 27552 x 16324 image was processed and chipped by #larms—in fact a decrease in false alarms. The time coseof th
Computer Vision module. Based on the Computer Visiomiage is small £ 5min) while the performance improvement
performance (see Figure 3), the top 40 chips were retained $ubstantial.

RSVP. An additional 760 distractor chips were used leading t

8 blocks of 100 chips each, all presented at 5.HZ' This frar%g EEG followed by Computer Vision: Bootstrapping a Com-
rate was chosen based on preparatory experiments. Figur gfer Vision Svstem
shows scatter plots combining the priority scores gendrat@u y

by the CV system alone with those of the integrated CV- 1) System descriptionThe system described above as-
RSVP triage system for these 40 chips. The plots also shéWmes some prior knowledge about the object of interest in
the minimum priority score that should be chosen in ordérder to construct a computer vision model. However, what
to capture all true positives with the integrated systernsthif the system does not yet know what exactly the subject is
distinguishing the false positives that would be obtainéth w /00king for? Also, how could one use computer vision as a
the integrated system for that threshold and those obtairfe@ft-processor to the EEG-based triage?

with the CV alone. The figure shows that the integrated systemVVe have developed a second system to address these scenar-
leads to an overall reduction in the number of false postivéos. The system allows a subject to browse through a limited
of approximately 50% across all subjects. To place this baBkmber of images; it uses the EEG triage to take an initial

in the context of an image analyst's everyday tasks, an ahaﬂ,guess" as to what attracted the observer attention, arglaise
would only need to review 40 locations in order to detect afomputer vision module to pull additional positive exansple
targets using the integrated CV-RSVP triage system condpafto™m a database and correct potentially erroneous labeéngi

to potentially all 27552 x 16324 pixels without assistanc®y EEG classification. The system (see Fig. ll-B1, addion

The productivity savings are are dramatic, as demonstrafégfail can be found in [24]) is similar to the first system

by Fig. 5 and Table I. The CV-RSVP assisted conditiofiescribed, in that it uses the same type of components: com-
results in a detection hit rate which on average is a factBiter vision module, EEG triage, visualization/review ried

of four improvement over baseline, with no increase in falgdowever, here the EEG triage module precedes the computer
vision module. Additionally, the number of examples pradd
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Fig. 4. Comparison of the detection performance of the mategl CV-RSVP triage system with the CV module alone: Thegirgted system’s priority
scores for the top 40 images are plotted against the CV dmteconfidences. The threshold for the priority scores néddecapture all true positives is
plotted in blue, thus showing the reduced number of falsétipes with the integrated system.

Baseline Assisted Ratio of Assisted to Baseline
Hit Rate | False Alarms| Hit Rate | False Alarms| Relative Hit Rate| Relative False Alarmg
Subj 1 0.008 0 0.051 0 6.17 —
Subj 2 0.022 3 0.097 2 4.36 .66
Subj 3 0.032 1 0.129 0 4.05 0
Subj 4 0.081 0 0.116 0 1.43 -
Subj 5 0.019 0 0.090 0 4.64 -
(A I S S S 413 05
TABLE |

COMPARISON OF HIT RATE AND FALSE ALARM FORSAM SITE SEARCH IN27552X 16324SATELLITE IMAGE WITHOUT (BASELINE) AND WITH
(ASSISTED) THE INTEGRATED CV-RSVPTRIAGE SYSTEM. HIT RATE IS EXPRESSED IN FRACTION OF TOTAL TARGETS DETECTED REMINUTE.

by the EEG triage may be insufficient to train conventionélhe distribution of the unlabeled data. The performance of
supervised learning algorithms; and there may be inacmgacsuch methods often suffers from the scarcity of the labeled
in the EEG outputs due to typically lower sensitivity odata, invalid assumptions about classification models s+ di
the triage approach. So we use a computer vision modtibutions, and sensitivity to unreliable label conditsorin-
underpinned by a semi-supervised learning algorithm. Witltead, our graph-based classification scheme, referred to a
this approach, the outputs of the EEG triage is a set of pesitiTransductive Annotation by GraphfAG) system [25, 26],
and negative examples (as determined by a suitable EE@orporates novel graph-based label propagation metods
confidence threshold), that serve as labeled inputs to ehgrajm real or near real-time receive refined labels for all reTimeaj
based classifier to predict the labels of remaining unlabelanlabeled data in the collection. By contrast to other semi-
examples in a database and refine the initial labels produsegbervised approaches, this graph-based label propagatio
by EEG-based classification. paradigm makes few assumptions about the data and the clas-
Most semi-supervised techniques focus on separating $ifier. One central principle of this paradigm is that datareh
beled samples into different classes while taking into anto and propagate their labels with other data in their proximit
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was provided to the automated labeling module and the EEG
scores were used as positive and negative labels according
to a predefined threshold. Figure 7 shows the top twenty
images ranked by the EEG priority list alone, and the top
twenty images ranked by the combination of EEG triage and
automated labeling. Figure 8 shows the error rate in the top
20 returned images as a function of the number of EEG scores
used as labels by the automated labeling algorithms. This
figure highlights that without automated labeling, the EEG
triage error rate is significant, at approximately 65%. The

Avg number of targets detected
N
&

o e unreliability of the EEG scores is reflected in the perforgen
' of the labeling algorithm without self-tuning, which is gnl
G 5 16 15 20 2 @ % 40 4 able to marginally improve upon the EEG triage. However,

Time (minutes)

with self-tuning, the automated labeling is able to infee th
most unreliable EEG scores and significantly lower the error
Fig. 5. Results showing average targets detected acrogscsyh=5) as ;

a function of time. Red curve is CV-RSVP assisted conditiolack curve rate. The numt_)er of EEG Iabel_s “"T"ed needs to be optimally
is baseline search. The relatively short time at the beginmif the search Chf)sen to Obtalh the best det_ectlon mprovement, and_F@Ure
(< 5min) in which the red curve is at zero represents the timekiéseto do  points to the existence of a single optimal number. Being abl

the RSVP triage. After that time, denoted by vertical blug tiee triage list is to automatically determine this number is one of the efforts
loaded into the viewing software and the analysts use thgdnesults to jump

to areas that resulted in a high EEG score and thus caughehiattention W€ are currently focusing on.

during the RSVP. Clear is the substantial improvement igetadetection rate

for the assisted condition relative to baseline once theRS¥P generated

triage listed is used. IV. CONCLUSIONS

In this paper we have described two systems for cortically-
defined in the context of a graph. Data are represented as no ypled computer vision which use comput.er_vllsllon .(CV) and
G to construct triage transforms for prioritizing imager

in a graph and the structure and edges in the graph def
the relation among data. Propagation of labels among databﬁ'fr results forl'(-)cv followed byT(-) ppc show that EEG-

a graph is intuitive, flexible, and effective, without redog ased prioritization is effective for increasing the sfieity of

complex models for the classifier and data distributionss Ththe CV system classification, without Ioss_ln sensitivity, &
graph inference method has also been shown to improve olfe I|s_t|c aerl_al image search task. Comparlsorj of the sy te
existing graph learning approach in terms of the sensjtiit baseline ultimately resu!ts in a}factor of. four improvemignt
weak labels, graph structure and noisy data distributiasg [ the rate of target detection, without an increase in the oéite

The processing pipeline of the TAG module contains ﬂ{aglse alarms. Our preliminary resu_lt_s () poc foI_Iowed
i . y T(-)cv show that computer vision can effectively use
following components:

) ) the EEG-based priority scores as noisy labels for building a
- Input of labeled example provided by the EEG triageifeature based model which can improve the specificity of the
- Image preprocessing components, such as denoisigG triage. Note that this result was for a predefined and
enhancement, and filtering; _ _ well-localized target (e.g. helipads). Our current effoare
. Imgge feature extraction to quantize the visual cont&thyestigating usingl'(-) e followed by T(-)cy system for
- Affinity graph construction; - _ _identifying "targets" in which the user is not cued to id@nti
- Automatic label prediction via graph based inferencing particular target class and/or the target class is lesk wel
and label correction; defined a priori. In addition, we are considering these &iag
One important aspect of this integration of EEG witlsystems for the case in which multiple classes in a database
Computer Vision, is the ability for the Computer Visionmight attract a given user’s interest.
TAG module to deal with uncertainty in the EEG labeling. We have described our first attempts to synergistically
Specifically, we have developed a "self-tuning" approacit thcouple state-of-the-art computer vision with brain-comepu
is able to identify the most reliable EEG inputs and reversé@gerface technology to improve the searching of imagery an
the labels of the most unreliable samples in order to opgmizideo content. The basic framework, namely coupling the
an objective function that captures labeling consistenoy aspeed of computer processing and analysis with the general
smoothness properties. purpose recognition and detection of sensory informatign b
2) Experiments and resultsTo illustrate the combination the human brain, is not limited to imagery. In general, gyste
of EEG triage and automated labeling, we present expersneftdr information triage, regardless of the signal type coloéd
with the detection of helipads in EO satellite imagery. To-peconstructed using a similar framework, with the caveat fpein
form the EEG triage, a 30Kx30K satellite image (DigiGlobethat the system design should maximize the complementarity
Longmont, CO) was chipped int{0 x 500 pixels) tiles; of the two systems (human and computer). For example, if
tiles containing helipads were centered on those helipads ane were to use the same system design for triaging audio
were presented using the RSVP paradigm described aboveetcordings, a rapid playback of the audio to the user would
human observers at a rate of 10Hz. The output priority lifkely result in substantial distortion and result in lowteletion
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Fig. 6. System architecture for using EEG to bootstrap cderptsion model construction. A sample set of images isridkem a database and the subject
processes these images in RSVP mode while EEG is simultsiyemecorded. The EEG is decoded and used to tag images irs tfrhow strong they
grabbed the user’s attention. The images can be seen as@eimgll set of labeled images, some of which might be the imafénterest (e.g. images of
soldiers) and some of which just grabbed the users attehi@mause of novelty (e.g. the fellow with the interestingrdtgie). These small sets of labeled
images are used as training data in a transductive graphitelnichich operates in the features space of the image. Thedwative model uses the limited
training data and manifold structures in the image featpares to propagate the initial labels to the rest of the imageke database The system includes
a self-tuning mechanism which enables removal of taggecheyEEG as being interesting, but that deviate from the miahgtructures. For example, the
image with the blue border can be interpreted as a falseiysind removed based on self-tuning. The computer visiodahis then used to predict the

relevance (priority) scores of the rest of images in thelwega. Note that images of individuals (soldiers et al,) akert from the publicly available image
on the web.

rates via EEG decoding. Clear is that careful attention mt
be paid toward how the particular sensory system (visui - e TAGwih sei g
auditory, etc.) is best presented with the information to . / 3
triaged, specifically so that it is presented to be maximal

— - TAG without self tuning

‘,‘ —— EEG-based results w/o TAG
selective to patterns of interest in the data when the data
presented rapidly.
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The systems we are developing can potentially shed lig
on some basic questions underlying the neuroscientificsba
of rapid decision making. For example, can subjects bedthin
to improve their sensitivity for target and/or "interesfirob-
jects and is such improvement accompanied by characteri . |
changes in the neural activity? Previous work by our grot NS
[27, 28, 29] has shown that there is a cascade of proces: h
detectable via single-trial analysis of EEG, which repnése T T Y E—
the constituent processes of decision making and that séme The number of EEG confidence scores used
these processes are modulated by task difficulty. As subject
perform better for identical stimuli, we expect that the EEGig. 8.

Comparison of the error rate in the top 20 returneg<hising
correlates of these processes could change. By seeing wh

Ii@hEEG triage alone, the automated labeling without selfrg and the
. L. . automated labeling with self-tuning.
signatures are affected by training and which are not, we
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Fig. 7. Top 20 chips returned by: (A) the EEG triage alone (B automated labeling module using the EEG triage priodtyres as inputs.. Chips with
red squares are false positives. 45% of the top 20 chipsneduny EEG are false positives and after passing into TAGesystith self tuning this is reduced
to 15%.

might get better insight into whether changes in the neumainds". When we interact with our personal computer we
signatures precede behavioral changes and perhaps devstmpthe response of the computer following our own actions,
better theories on how training affects rapid decision mgki such as moving a mouse or typing a key. How will we
There is some debate on whether the system can be drigenceive the interaction when the human computer interface
so that we can detect subliminal (or subconscious) evendses not require us to behaviorally interact? These and othe
In our work we have assumed that all detections are comeuroethical and human factors questions ultimately Wil p
sciously processed by the subject—i.e. we have no evidaate &in important role in how BCI systems are integrated into our
the signals represent unconscious or "subliminal” praegss society.
However it is interesting to consider how signals based on ACKNOWLEDGMENT
conscious events might be used to lower a behavioral thigsho
for initiating a decision. For example, in some cases, subje 1he work was funded by DARPA under Contract
might be instructed to look for a given type of target, findNBCHC090029. Satellite imagery provided by DigitalGlobe.
it (resulting in a neural signature of the detection evesutyl
continue to analyze the image in spite of the detection. This
type of "over analyzing" of the imagery can be reduced by
using the decoded neural signature of the recognition eeent

disengage the user from the current search, forcing him”%c%)gnponent analysis (HDCA) algorithm for decoding EEG for

to effectively lower their decision threshold and move te th. image tngge ap_phcaﬂon. Th'? _algorlthm can be ea_5|ly
next image. implemented in real-time and thus it is the algorithm of cleoi

Finally, the potential for applications of brain compute];Or our current C3Vision system. Recently we developed a

. . I set of new algorithms to improve EEG detection performance.
interfaces, outside the area of neurorehabilitation andaie - . .
. o . Currently, their increased computational complexity tithieir
prosthetics, are tremendous. In addition to imagery, oremor : o o .
. . . . Lo use to non-realtime applications. However, it is worth répg

generally information triage, two potentially significamteas . R . . o

) . : : them here given their significant improvement in classifooat
are video gaming and neuromarketing, which are alreaa%curac
receiving substantial attention and interest. As BCI syste Y-
are developed and deployed, two fundamental issues mustgijinear Discriminant Component Analysis
be_ considered. The_ f'rSt. IS eth|cal_, and pertains to issues (,)tl'he HDCA algorithm described in Section 11-B combines
privacy and the ramifications of being able to read someone’s

"thoughts" or intent, even if they do not act on them. The fieI%Ct'VIty linearly. This is motivated by the notion that adar

. : ombination of voltages corresponds to a current source,
of neuroethics [30] has emerged in response to the Com@‘uca%resumably of neuronal origin within the skull [17]. Thusist

and important questions related to such a new form of br%l)n . o .
oo . is onPe of linear analysis is sometimes called source-spaak an
monitoring technology. A second fundamental issue is on€.

related to human factors, and addresses the importanﬁmmesYSlg' The most general form of combining voltages linearly

of how we will interact with a system that can "read our 7“Beam-forming” is a common misnomer for the same.

APPENDIX: OTHER LINEAR METHODS FOREEG
DECODING

In Section II-B we described the hierarchical discriminant
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in space and time would be: A difficulty that arises in this context is the choice of
frequency band. In addition to spatial and temporal coeffits
Y= Z Zwitmit (5) one has to now choose coefficients for different frequencies
t which in practice may increase the degrees of freedom by

one order of magnitude or more. Thus it may be difficult

general form is the full set of dimensions — 6,400 for thf@ find an optimal combination of space-time-frequency fea-
examples we consider — with only a handful of positivéures without a-priori knowledge as to which frequency band
exemplars to choose their values. To limit the degrees Qntains discriminative information. Here we present aehov

freedom one can restrict the matrix, to be of lower rank algorithm that can identify an appropriate combination Htfi
say K. The linear summation can then be written as: ' and second-order featuré$he main idea is to identify feature

invariances by analyzing data collected from multiple suoty

However, the number of free parameters in this most

K on the same experimental paradigm. While the specific coeffi-
Y= Z Z Z Vel Uik Tit (6) cient combining different first and second order featureg ma
k=1 t i vary from subject to subject, we assume that the relevance

K . . of evoked potentials (first order) and induced oscillatiams
wherewi; = >, vecuir, 1S @ low-rank bilinear representa- e ont frequency bands (second order) does not change
tion c_)f th(_a.full parameter space. L significantly across subjects. The features we consideg her
This bilinear _m_odel assumes that d|s_cr|m|nant CurreBte the instantaneous power in different frequency ban@s so
sources are stafic in space with their magnitude (and pssip, capture temporal changes in oscillatory power in addlitio

polarity) changing in time. The model allows fdt" such , fequency and spatial information. We denote here with
components with their spatial distribution capturedgy and Frt(@1,...wr) the kth feature of the time sequence —

their temporal trajectory integrated with weightg.. Again, . = . " eyajyated around time. A bilinear discriminant

the_gogl IS to find coefﬁue_rr_uik, v Such that the blllnear_ model can be formulated for each feature as follows:
projection is larger for positive examples than for negativ

examples, i.e.y; > y_. _ — <, 7
In addition, it is beneficial to assume that these coeffisient Yk zt: z; ok it (%3) 0

are smooth, i.e. they do not differ much from their neigh-

bors, thus implicitly assuming that the discriminant aityiv where the spectrojtemp(_)rgl featurgs are evaluated sefarat

is correlated across neighboring electrodes and neig:)’nt‘l;)orfor e_ach _electrode _prowdmg the time sequence;. _Note

time samples (i.e. the discriminant activity is low freqagn that in this formulation one of the features could simply be

In [31] we present an algorithm to find these coefﬁcienltge original evoked response signgl, = Ity 1.8 the linear
simultaneously for alli. 8 features as before. The total model combines differentifeat

N . Y=k (8)
B. Bilinear Feature Based Discriminants %

The algorithms presented so far will only capture a typgith the goal of including only a small subset of non-zero
of activity that is called event related potentials (ERPhIST values forw;,. While v .u;, will be chosen differently for
term, ERP, refers to activity that is evoked in a fixed tempordifferent subjects, the goal is to piak, with the same set of
relationship to an external event, that is, positive andatieg non-zero values for different subjects, i.e. the same featare
deflections occur at always the same time relative to theteveelected for different subjects. For the sake of computatio
— in our case, the time of image presentation. In addition #fficiency we assume that the information provided by each
this type of evoked response activity the EEG shows variatiofeature is independent from another feature. Thus, thedaik
in the strength of oscillatory activity. Observable evemy coefficientvy,, uy; may be selected separately for each subject
change the magnitude of ongoing oscillatory activity or magnd each feature. Once selected,gll, u;,; remain constant,
induce oscillations in the EEG. A linear summation will noand only w;, has to be found with a subset of non-zero
be able to capture oscillatory activity, since for oscitlas coefficient such that consistently good performance is doun
the phase and therefore the polarity of the signal may changgoss all subjects. This is a potentially large combinakor
from trial to trial. To capture the strength of an oscillatio search problem which can be solved in limited time only
irrespective of polarity, it is common to measure the “pdwerusing greedy methods. Various heuristic strategies foeadyr
or the square of the signal, typically after it has been &iler feature search can be envisioned. Here we begin by selexting
in a specific frequency band. Instead of a linear combinatigingle feature that performs for the largest number of subje
to capture power, one has to allow for a quadratic combinatiamong the topV/ features. Then we test this feature as a pair
of the electrical potentials. (K = 2) in combination with each one of the other features

and select again the one that (together with the first) peréolr
8More recently we have found it beneficial to estimate the matars for 5st often among the top/ features. This process can be
one component, then subtract the activity spanned by tiveehil subspace of . .
that component, and then estimate the activity for an amiditi component repeated several times to increase the the number of sttlecte

on the remaining subspace — a process that may be repeat¥d| déves to
estimate additional components (executable code impléngethis idea can 9For full detail see [33]. An earlier algorithm that combinksear and
be found at [32]). quadratic features in source-space was presented in [34].
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Fig. 9. Performance comparison for 14 datasets collectes  subjects

on various types of images on the RSVP task. The Az performdoicthe
three algorithms is (meatt std.): 0.76: 0.07, 0.83:0.08 and 0.9% 0.07.

Statistical significance *** indicates hege< 0.001 and was computed using

a Wilcoxon signed rank test.

features. We restrict ourselves here to a sekof 3 features.

There is nothing particular about this specific version ekegly

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

search; any other features selection strategy that is l:xaxseduo]

invariance across subjects is expected to perform equallly w

C. Comparing results for the three algorithms

Discrimination results for the three algorithms we have

discussed are shown in Figure 9. The data are from 14 datasets

obtained during a set of RSVP experiments on 5 subje¢ts]]
(3 datasets per subject with one dataset excluded as it was
used to optimize regularization parameters). Due to memory
limitations we only used 250 example images out of a total
of 2500 (50 positives and 200 negatives). For this result the
data was down-sampled to 256Hz from 2048Hz. The BDCA
used a single component her& & 1). Test-set performance[12]

reported here is the result of five-fold cross validationeTh

feature selection procedure had no access to the test data.

The algorithm was given quadratic features that capturespow
in various frequency bands in addition to the linear feaure

that were used also by the other two algorithms. Specifical[y 3]
we used a time-resolved estimate of power obtained with a

sliding multi-tapered windows of 150ms duration. The two

most important features extracted by the algorithm are the
conventional linear features and an estimate of power ihdrig [14]

frequencies (20-40Hz). The resulting bilinear coefficgent

vk, Ugi, indicate that images of interest elicited increased
power in this frequency band following image presentation 5]

with a non-uniform spatial distribution.
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