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Abstract—Our society’s information technology advancements
have resulted in the increasingly problematic issue of information
overload–i.e. we have more access to information than we can
possibly process. This is nowhere more apparent than in the
volume of imagery and video that we can access on a daily
basis–for the general public, availability of YouTube video and
Google Images, or for the image analysis professional tasked
with searching security video or satellite reconnaissance. Which
images to look at and how to ensure we see the images that are of
most interest to us, begs the question of whether there are smart
ways to triage this volume of imagery. Over the past decade,
computer vision research has focused on the issue of ranking
and indexing imagery. However, computer vision is limited in its
ability to identify interesting imagery, particularly as “ interest-
ing" might be defined by an individual. In this paper we describe
our efforts in developing brain computer interfaces (BCIs)which
synergistically integrate computer vision and human vision so as
to construct a system for image triage. Our approach exploits
machine learning for real-time decoding of brain signals which
are recorded non-invasively via electroencephalography (EEG).
The signals we decode are specific for events related to imagery
attracting a user’s attention. We describe two architectures we
have developed for this type of cortically-coupled computer vision
and discuss potential applications and challenges for the future.

Index Terms—brain computer interface, electroencephalogra-
phy, computer vision, image triage, image search

I. I NTRODUCTION

Our visual systems are amazingly complex information
processing machines. We can recognize objects at a glance,
under varying poses, illuminations and scales, and are able
to rapidly learn and recognize new configurations of objects
and exploit relevant context even in highly cluttered scenes.
This visual information processing all happens with individual
components which are extremely slow relative to state-of-the-
art digital electronics–i.e. the frequency of a neuron’s firing
is measured in Hertz whereas modern digital computers have
transistors which switch at Giga Hertz speeds (a factor of108
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difference). Though there is some debate on whether the fun-
damental processing unit in the nervous system is the neuron
or whether ensembles of neurons constitute the fundamental
unit of processing, it is nonetheless widely believed that the
human visual system is bestowed with its robust and general
purpose processing capabilities not from the speed of its
individual processing elements but from its massively parallel
architecture–the brain has1011 neurons and1014 synapses of
which the visual cortex is by far the largest area.

Since the early 1960’s there have been substantial efforts
directed at creating computer vision systems which possess
the same information processing capabilities as the human
visual system. These efforts have yielded some successes,
though mostly for highly constrained problems. By far the
biggest challenge has been to develop a machine capable
of general purpose vision. A key property of the human
visual system is its ability to learn and exploit invariances. As
mentioned above, we can in most cases effortlessly recognize
objects under extreme variations in scale, lighting, pose and
other variations in the object and world. Understanding how
this invariance comes about and relating it to the physics
of objects and projections of scenes onto our retinas (or a
machine system’s imager) is one of the most active areas
of computer vision research. More recently the problem of
invariance has been considered from a statistical perspective,
with the idea that "natural scene statistics" may hold the key to
how our visual systems learn and represent these invariances
[1]. We are, however, many years, if not decades, away from
realizing a computer vision system with general purpose visual
processing capabilities.

A. The image triage problem

Instead of focusing on how to build a computer vision
system to emulate human vision, in this paper we consider how
we might synergistically integrate computer and human vision
systems to perform the task ofimage triage. Assume we start
with a database of imagesD0 which is organized as an ordered
set of N images,D0 = {I1 . . . IN}, whereN is very large.
Also assume the state of the database can be characterized bya
utility function,U which quantifies how "ordered" the database
is with respect to the interest of the person,p, searching the
data at a given time,t; U(D0 | p, t). For now we will assume
that this utility function has large positive values when the
database is ordered such that "interesting" images (givenp and
t) are at the front of the database. Conversely, if “interesting”
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images appear randomly in the database thenU ≈ 0 1.
The image triage problem can then be defined as finding

a transformationT (·) which operates onD0, or more gener-
ally Di where i indexes the database after applying theith
transform, to re-order the images so as to maximizeU and
minimize the cost of computing and applying theT (·);

Di+1 ← T (Di | p, t) : arg max
T (·)

(U(T (Di) | p, t)−λC(T (Di))

(1)
whereλ balances the cost ofT (·) relative to its utility. One
potential cost of computing and applyingT (·) is time–i.e. if
it takes very long to compute and applyT (·), then this will
reduce the rate at which interesting images will be discovered
and therefore reduces the overall utility of the triage.

In this paper we describe a basic set of principles we will
use to construct a re-ordering transform which leverages the
strengths of both computer (CV) and human vision (HV)–i.e.
the transform will be a synergistic combination ofTCV (·) and
THV (·) .

B. Human vision and "gist"

In considering the human vision reordering transform, we
will first take advantage of our ability to get the “gist" of a
scene. That is, for a very brief presentation of an image, we
are able to extract a tremendous amount of information which
enables a general characterization of the image content. For
example, if an image is flashed for 50ms, we might be able
to infer that the image contained a car, but perhaps not what
model car it was. This is exactly the operational mode of the
image triage problem. Given images in our databaseDi, we
are using HV to obtain a general characterization of what is
in the image. "Gist" processing by humans has been an active
area of research [2] leading to several theories of the type of
features we use to infer general scene characteristics. In our
triage system we are less concerned with how we "get the gist",
and more interested in whether a subject gets a particular gist
within the context of a binary discrimination–i.e. if the flashed
image contains a car or not, or more generally whether or not
there is something "interesting" in the scene. The definition of
the binary discrimination can be explicit, such as instructing
the subject to look for a particular class of object or sets
of objects, or implicit, such as a subject being interested in
certain objects or characteristics of images, as one might be
during casual browsing. The binary discrimination can alsobe
dynamic and context dependent–i.e. depend on the previous
images the subject has seen in the sequenceDi.

To maximize the throughput of the triage and thus minimize
the time it takes to applyT (·), we want a sequence of images
having a presentation rate which is as rapid as possible while
still enabling the subject to get the gist of images in the
sequence. For this we use a presentation methodology termed
"rapid serial visual presentation" or RSVP [3, 4]. RSVP has

1If interesting images are at the end of the database, thenUmay be defined
so as to have large negative values. Note that this ordering is just as good as
an ordering with aU >> 0, however the search must start at the end of the
database and proceed to the front

been well-studied in visual psychophysics and it has been
shown that we can get the "gist" of what is in an image at
RSVP rates of greater than 10Hz [5, 6, 7] . The specifics of
the RSVP paradigm we use will be outlined later in the paper.

Given RSVP presentations and the binary discrimination
problem formulation, how do we detect the subject’s decision–
e.g. whether a given image in the sequence is of interest or not?
One way is to have the subject behaviorally respond, perhaps
by pressing a button or making an eye-movement. However
an explicit response by subjects has several drawbacks. The
first is that there is substantial trial-to-trial response time (RT)
variability and at high RSVP rates this can result in errors in
localizing the image to which the subject responded [8]. In
addition, by dissociating the response from the decision one
can potentially speed up the process and make it less taxing.
Lastly, the subject may over-analyze the image, resulting in a
behavioral decision threshold which is higher than one might
want for the triage task. For all these reasons we monitor the
subject’s EEG during the RSVP and use machine learning to
identify neural "components" reflective of target detection and
attentional orienting events, which in turn can be used to infer
the binary discrimination–i.e. the reordering transformT (·)HV

will be based on EEG;T (·)EEG. Our framework for decoding
EEG using machine learning is described in Section II below.
Several groups, including ours, have investigated image de-
tection/classification based on EEG [9, 8, 10, 11, 12, 13].
In contrast to this previous work, in this paper we focus
on the integration of computer vision and EEG, specifically
describing two architectures for the integration of the two
triage transform systems, presenting results for each.

C. Organization of the paper

The remainder of the paper is organized as follows. Sec-
tion II will describe the neurological basis for the signals
utilized to detect attentional shift and orienting, surrogates
of the "that is interesting" response to a flashed image. We
will also describe the signal processing and machine learning
framework we utilize for decoding these signals and generating
a probability-based "interest" score for each image. Section III
describes two systems we have developed for coupling com-
puter vision and decoding of cortical EEG signals for image
triage. The first uses computer vision as a preprocessor to
provide an initial re-ordering transform and then samples from
this reorderedDi to generate sequences to pass through EEG-
based reordering. This architecture is particularly appropriate
when prior information about target/object class is known and
can be incorporated into a CV model. The second method
begins with the EEG-based reordering and samples fromDi

based on the user browsing these samples. The result of
the EEG-based browsing is used to reorderDi and samples
of the reordered database are used as exemplars in a semi-
supervised CV system for further reordering. This framework
is most appropriate when the object of interest is unknown and
examples can only be generated after the subject browses the
database. We conclude the paper by discussing future technical
development and ethical and human factors issues related to
these types of BCI systems.
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II. D ECODING BRAIN STATE

There has been substantial interest, which has accelerated
over the past decade, for decoding brain state. Efforts have
ranged from decoding motor commands and intentions, to
emotional state and cognitive workload. There has also been
a variety of neural signals which have been targeted for
decoding, ranging from spike trains collected via invasive
recordings to hemodynamic changes measured non-invasively
via fMRI [14, 15]. Our focus is on using EEG as a non-
invasive measure to relate brain state to events correlatedwith
the detection of "interesting" visual objects and images. What
is the neural correlate of an "interesting" image? It is not clear
that there is such a well-defined correlate. However, we do
know from neuroimaging studies that there are neural signals
that can be measured non-invasively which are related to the
detection and recognition of rapidly shown images [7, 5, 8].
A very robust signal measurable from the EEG is the P300. It
reflects a perceptual “orienting response” or shift of attention
which can be driven by the content of the sensory input stream
[16]. Additional signals that may be indicative of a subject’s
attentional state are oscillatory activity often found during
resting state (10Hz oscillations known as “alpha” activity)
as well as transient oscillations sometimes associated with
perceptual processing (30Hz and higher known as “gamma”
activity). However, as of yet, none of these oscillatory signals
have been identified in the RSVP paradigms.

A. Signal detection via spatio-temporal linear projections

The approach we have taken for interpreting brain activity
is to constrain the experimental paradigm such that we have to
distinguish only among two possible brain states: (+) positive
examples in which the subject sees something of interest in
an image, versus (-) negative examples for which the image
contains nothing of particular interest. The goal is not to
deduce from the brain signal what the exact content is, or
what the subject sees in the image. This would indeed be
a difficult task given the limited spatial resolution of EEG.
Instead, we aim to utilize the high temporal resolution of EEG
to detectwhenan individual recognition event occurred. For
individual images we aim to detect the brain signals elicited by
positive examples, and distinguish them from the brain activity
generated by negative example images. The task for the EEG
analysis algorithm is therefore to classify the signal between
two possible alternatives.

In our RSVP paradigm images are presented very rapidly
with 5 to 10 images per second. To classify brain activity
elicited by these images we analyze 1 second of data, recorded
with multiple surface electrodes, following the presentation
of an image. With 64 electrodes and approximately 100 time
samples within this second, this amounts to a data vector of
6,400 elements. In the specific case of image triage, we may
have hundreds or thousands of images that are to be ignored
and a very few, perhaps a dozen or two, which are assumed
to attract the subject’s attention. The goal is to identify a
classification criterion in this large spatio-temporal data space
using only a few known example images.

B. Hierarchical Discriminant Component Analysis

We begin by assuming that the discriminant activity, i.e. the
activity that differs the most between positive and negative
examples, is a deflection of the electrical potential from base-
line (either positive or negative) over a number of electrodes.
By averaging over electrodes with just the right coefficients
(positive or negative with magnitudes corresponding to how
discriminant each electrode is) we obtain a weighted average
of the electrical potentials that will be used to differentiate
positive from negative examples:

yt =
∑

i

wixit . (2)

Herexit represents the electrical potential measured at time
t for electrodei on the scalp surface, whilewi represents
the spatial weights which have to be chosen appropriately.
The goal is to combine voltages linearly such that the sumy
is maximally different between two conditions. This can be
thought of as computing a neuronal current sourceyt that
differs most between times samplest+ following positive
examples and the timest− following negative examples,
yt+ > yt−.2 There are a number of algorithms available
to find some optimal coefficientswi in such a binary linear
classification problem, e.g. Fisher Linear Discriminants (FLD),
penalized Logistic Regression (PLR), or Support Vectors Ma-
chines (SVM) [17].

In [8] we assume that these maximally discriminant current
sources are not constant but change their spatial distribution
within the second that follows the presentation of an image.
Indeed, we assume a stationarity timeT of approximately
100ms. Therefore, we find distinct optimal weight vectors,
wki for each100ms window following the presentation of the
image (indexk labels the time window):

ykt =
∑

i

wkixit , t = T, 2T, ...(k − 1)T, kT (3)

These different current sourcesykt are then combined in an
average over time to provide the optimal discriminant activity
over the entire second of data:

y =
∑

t

∑

k

vkytk; (4)

For an efficient on-line implementation of this method we
use FLD to train coefficientswik within each window of time,
i.e., we seekwik such thatykt+ > ykt−. The coefficients
vk are learned using PLR after the subject has viewed the
entire training set such thaty+ > y−. Because of the two
step process of first combining activity in space, and then
again in time, we have termed this algorithm “Hierarchical
Discriminant Component Analysis”.

Note that the first step does not average over time samples
within each window. Instead, each time sample provides a

2Label ’+’ always indicates that the expression is evaluatedwith a signal
xit recorded following positive examples and ’-’ will indicatethe same for
negative examples.
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separate exemplar that is used when training the FLD3. These
multiple samples within a time window will correspond to a
single exemplar image and are therefore not independent, yet,
they do provide valuable information on the noise-statistic:
variations in the signal within the time window are assumed
to reflect non-discriminant “noise”. In other words, we as-
sume that spatial correlation in the high-frequency activity
(f > 1/T ) is shared by the low-frequency discriminant
activity. In addition, by training the spatial weight separately
for each window we assume that the discriminant activity is
not correlated in time beyond the 100ms time scale. Both these
assumptions contribute crucially to our ability to combine
thousands of dimensions optimally despite the small number
of training images with known class labels [10].

An example of the activity extracted for one subject with
this algorithm is shown in Figure 1. The spatial distributions
show the portion of the electrical potentials measured on
the electrodes that correlates with the discriminant current
sources4. For example, as shown, the activity measured in
frontal areas 801-900ms post-stimulus presentation (shown as
red in the scalp plot) strongly correlates with the classifier out-
put y. Class-conditional histograms, computed via integrating
the 10 component activities, show the distribution ofy+ and
y− computed on unseen test data (5-fold cross-validation). The
receiver-operator characteristic (ROC) curve is computedfrom
these histograms.

The HDCA algorithm is computationally very efficient and
easy to implement in real-time. It is thus the algorithm of
choice for the current implementation of the C3Vision system.
More recently we have developed new learning algorithms to
find optimal linear weights (see Appendix). While these can
yield better classification accuracy their computational cost
makes them problematic for real-time implementations.

III. SYNERGISTIC COMBINATIONS OF COMPUTER AND

EEG-BASED HUMAN V ISION

Given the HDCA algorithm for EEG decoding, we consider
how to integrate the results of EEG-based binary classifications
with computer vision (CV). There are three basic modes for
creating such a cortically-coupled computer vision system:

Computer vision followed by EEG-RSVP, i.e.T (·)CV fol-
lowed byT (·)EEG: Given prior information of a target type
(e.g. examples of the target class or description of the features
and or context associated with the target class) one can
instantiate a CV model, including contextual cues, to operate
onDi so as to eliminate regions of very low target probability
and provide an initial ordering of regions that have high target
probability. In addition, CV should place potential regions
of interest (ROIs) in the center of the test images. This
will improve human detection performance since potential

3For instance, we may have 50 training exemplars and 10 samples per
window resulting in a possible 500 training samples for the classification
algorithm that needs to find 64 spatial weighting coefficients wik for the kth
window.

4This is also called a forward-model and is computed fromwkt and xkt

within the relevant time window (see [17, 10] for more detail).

1−100ms 101−200ms 201−300ms 301−400ms

401−500ms 501−600ms 601−700ms 701−800ms

801−900ms 901−1000ms

A

−80 −60 −40 −20 0 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Classifier output y

P
ro

b
a

b
ili

ty

Class conditional likelihood

 

 

nontarget

target

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC Curve

Az = 0 .91

f c = 0 .85

B C

Fig. 1. Activity extracted by the Hierarchical Discriminant Component
Analysis method. (A) Plotted is the forward model for the discriminating
component at each time window, which can also be seen as the normalized
correlation between the component activity in that window and the data [17].
The colormap for the scalpplot represents the normalized correlations, with
red being positive and blue being negative. The series of 10 spatial maps thus
shows that the spatial distribution of the forward model of the discriminant
activity changes across time. Activity at 300-400ms has a spatial distribution
which is characteristic of a P3f, which has been previously identified by our
group and others [18, 19] during visual oddball and RSVP paradigms. In
addition, the parietal activity from 500-700ms is consistent with the P3b
(or P300) indicative of attentional orienting. Other significant discriminant
signal can be found at earlier and later time and often vary from subject
to subject and the specifics of the experimental paradigm, e.g. presentation
speed. Note that all scalp maps are on the same color scale. (B) The 10
components characterized by the scalp maps above are linearly integrated to
form a single classification score, which can be representedvia the class-
conditional histograms. The performance of the classification is established
via the ROC curve which is computed from these class-conditional histograms.

targets are then foveated when presented to subject.5 The top
M images of the reorderedDi are sampled and presented
to the subject for EEG-RSVP. Thus the CV processing is
tuned to produce high sensitivity and low specificity, with
the EEG-RSVP mode increasing specificity while maintaining
sensitivity;

EEG-RSVP followed by computer vision, i.e.T (·)EEG fol-
lowed byT (·)CV : In the absence of prior knowledge of the

5Our research has shown that, for the RSVP paradigm, the strength of the
EEG signals falls substantially as a function of the eccentricity of the the
target, thus indicating the importance of CV for centering potential targets.
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target type or a model of what an "interesting" image is, the
EEG-RSVP is first run on samples ofDi, the result being a re-
ordering which ranks images based on how they attracted the
subject’s attention. This re-ordering is used to generate labels
for a computer vision based learning system which, given a
partial labeling ofDi, propagates these labels and re-orders the
database. Thus the EEG-RSVP is designed to identify a small
number of "interesting" images which are then used by a semi-
supervised CV system to re-order the entire image database;
.

Tight coupling of EEG-RSVP and computer vision; i.e.
T (·)CV and T (·)EEG are applied in parallel and results
integrated: Both EEG-RSVP and CV are run in parallel and
coupled either at the feature space level, or at the output
(or confidence measure) level, leading to a single combined
confidence measure that can serve as a priority indicator.
As with the first coupling mode, this mode requires prior
information on the target type.

These modes also potentially include feedback or multiple
iterations within a closed-loop system. Below we describe two
cortically-coupled computer vision systems we have devel-
oped, together with results, which demonstrate the first two
modes of fusion.

A. Computer Vision followed by EEG

1) System description:Figure 2 illustrates the software,
hardware and functional components of our system for the
triage application when objects of interest are well defined
and known, a problem routinely encountered, for example, by
aerial image analysts. This system is comprised of three main
software modules:

• a computer vision preprocessing module that includes a
target detection framework and a chipping engine

• an EEG triage module using the RSVP paradigm to allow
the user to rapidly browse through a selective set of image
locations and to detect those most likely to contain an
object of interest, which we call here a “target”.

• a visualization interface for final confirmation by the user
The computer vision target detection framework is a model-

based framework that relies on two components:
1) a feature dictionary:a set oflow-levelfeature extractors

that — when combined — provide a general platform
for describing and discriminating numerous different
(aerial) object classes.

2) grammar formulation and inference:a formal grammar
for specifying domain knowledge and describing com-
plex objects usingmid-andhigh-levelcompositions, and
an algorithm that performs inference on such grammar.

While the feature dictionary can include generic, and per-
haps complex, shape and feature extraction operators, our
initial implementation has been specifically addressing the
problem of detecting objects in aerial imagery. Thus an
expressive element for identifying an object in aerial images
is its geometric shape, e.g., the shape of its edge contours,
boundaries of different textures, etc. To ensure that our module
remains scalable and adaptable to new objects of interest,
we have employed a hierarchical approach, where shapes are

approximated by a composition of shape parts. In turn, those
parts can correspond to further compositions or geometric
primitives. For instance, airfields in aerial images usually
decompose into a set of straight lines (i.e. airstrips) and
buildings (i.e. terminals), buildings into a set of lines.

In order to obtain a feature dictionary that also can help
pruning regions of no interest to the human observer, we have
included features that are used to assign image regions to one
or more scene categories using a statistical classifier trained
on small (typically≈ 200× 200 meters) image patches. The
categories are defined by a taxonomy of scene contexts, that
discriminate between main scene contexts (i.e., terrain types
such as “Forest” or “Desert”) that occur in aerial scenes on
a coarse level, and specific scene contexts, such as different
building densities in an urban context, on a finer level. The
statistical classifier and features are inspired by well-developed
texture classification techniques that operate in the spaceof
textons, where textons are identified as texture feature clusters
using vector quantization of labeled data, as described by [20].
Descriptors are then constructed from histograms over the
representative textons w.r.t. training images. This histogram
representation serves as input for a statistical classifier, e.g.,
k-nearest-neighbor.6 Note that the dependency on training
data is not problematic since the scene context is typicallynot
task specific, hence, can be pre-computed for a wide problem
domain and re-used for unseen objects.

Our grammar and inference formulation [21, 22] is based
on first order predicate logic. In the present context, predicate
logic allows for (i) the specification of domain knowledge
and (ii) reasoning about propositions of interest. In order
to properly deal with uncertainties in patterns (which are
very typical in computer vision problems), the predicate logic
formulation is augmented with a mathematical structure called
bilattice [26]. Bilattices assume partial orders along thetwo
axes of truth and the amount of evidence, and, by doing so,
provide a formal method of inference with uncertainties. For
more detail, refer to [23, 21, 22].

The target detection framework is applied to a subset of
pixels in large aerial images and assigns detection confidences
to each pixel in this selection. The pixel selection is currently
defined by a uniform grid, whose density can be determined
based on the image type and content. Based on a user specified
threshold for the detection confidence, a list of the most likely
detection candidates is generated and passed to the chipping
engine. The engine then generates image chips centered on
the detection candidates.

The EEG triage module receives the list of image chips
and detection details from the computer vision module, that
includes pixel locations and detection confidence scores, and
uses this input to generate the RSVP image sequences that will
be used for triage. It then performs three main tasks: it acquires
and records the EEG signals, orchestrates the Rapid Serial
Visual Presentation, matches the EEG recordings with the
presented images, trains an underlying triage classifier using
training sequences and uses the classifier with new generated

6We thank Roberto Tron and Rene Vidal for providing an implementation
of their texture classification.
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Fig. 2. (A) Software, hardware and functional components ofthe integrated Computer Vision- EEG triage system. The cortically coupled computer vision
system (termed C3Vision) runs on three computers and includes a Computer Vision module, a EEG triage module, and an interface which enables the user
to visualize the results of the combined triage in a suitablevisualization environment. (B) Corresponding workflow. The user launches the computer vision
processing which performs an analysis of the entire image, generating detections for likely locations of targets. These detections are used to divide the large
image into smaller image chips for presentation via RSVP. Atthe same time the user wears an EEG cap and a separate set of images is used to train the
EEG classifier. The classifier learns to decode the EEG signaland generates confidence scores indicating the level of "interest" of the image chip–i.e. how
much the particular chip grabbed the user’s attention. Image chips generated by the computer vision module are passed tothe user and EEG is decoded and
scores generated for this "testing" data. The resulting scores are used to generate a priority list, which is a rank of thechip, by EEG score, together with
their corresponding location in the large image. This priority list is ingested in the visualization software which, for image analysts, allows the user to interact
with the imagery in a way they are are most accustomed (pan, zoom, mark objects) while also providing a toolbar to jump around the image based on the
EEG-based score.

image sequences.

The triage system currently utilizes a 64 electrode EEG
recording system (ActiveTwo, Biosemi, Germany) in a stan-
dard 10-20 montage. EEG is recorded at a 2048Hz sampling
rate. While the EEG is being recorded, the RSVP display
module uses a dedicated interface to display blocks of images
at the specified frame rate. Blocks are typically 100 images
long with only a few targets per block (N < 5). The frame
rate is set between 5 and 10Hz depending on the difficulty
of the target detection task–i.e. each image is shown for 100-
200ms before next image is shown. The interface draws from
a pool of potential target chips and a pool of "distractors".
The role of the distractors is to achieve a desired prevalence
of target chips, that will maintain the human observer engaged
in the presentation: if the prevalence is too low or too high,
the observer may not keep an adequate focus and may more
easily miss detections. Given that the computer vision outputs
include some false positives, the number of distractors used
depends in fact on the expected number of true target chips
from the computer vision module.

Currently the triage system’s classification module relies
on the hierarchical discriminant component analysis algorithm
described in Section II-B. The triage classification moduleis
used in two different stages: training and actual usage with
new imagery. The training typically consists of a presentation
of 25-35 blocks with a set number of known targets in each
block. The training sequences need not be related to the
test sequences, in terms of their content, as the premise of
the approach is that it detects objects of interest, but is not
sensitive to the signatures of specific objects, and can therefore

maintain its detection performance from one type of imagery
to another. Training is a significant stage of the triage process.
It not only is the vehicle to training the EEG classifier, it is
also a mechanism for providing some practice to the human
observer. Therefore, to help the human observer maintain his
level of attention and gauge his training performance, the
RSVP display module also displays feedback screens on the
training progress at the end of each block.

Once the triage module has completed the triage, it gen-
erates a list of chips and their associated classification con-
fidences, which can be used to prioritize the visualization of
the corresponding image locations. The visualization interface
permits the visualization of the prioritized locations in an
adequate software environment for the task or user at hand. For
example, for image analysts, we have developed an interface
to RemoteView (Overwatch Systems, Sterling VA), an im-
agery exploitation software application standardly used in the
GeoIntelligence community. The interface provides a toolbar
comparable to a play-back control allowing the analyst to
jump from one prioritized location to the next. Meanwhile the
analyst still retains access to all of RemoteView’s functionality.

Currently, the corresponding prototype hardware implemen-
tation uses three laptops, one for the RSVP display, one
for the EEG recording and classification, and one for image
processing.

2) Experiments and results:To evaluate the performance
of the integrated Computer Vision - RSVP triage system,
we have performed experiments with 5 subjects and using
satellite electro-optical (EO) greyscale imagery. The task of
each subject was to detect surface-to-air missile (SAM) sites.
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Fig. 3. Computer vision results for the surface-to-air missile (SAM) site detection problem. Detections are sorted by confidence (row-first). SAM site chips
are marked in green.

A 27552 x 16324 image was processed and chipped by the
Computer Vision module. Based on the Computer Vision
performance (see Figure 3), the top 40 chips were retained for
RSVP. An additional 760 distractor chips were used leading to
8 blocks of 100 chips each, all presented at 5Hz. This frame
rate was chosen based on preparatory experiments. Figure 4
shows scatter plots combining the priority scores generated
by the CV system alone with those of the integrated CV-
RSVP triage system for these 40 chips. The plots also show
the minimum priority score that should be chosen in order
to capture all true positives with the integrated system, thus
distinguishing the false positives that would be obtained with
the integrated system for that threshold and those obtained
with the CV alone. The figure shows that the integrated system
leads to an overall reduction in the number of false positives
of approximately 50% across all subjects. To place this back
in the context of an image analyst’s everyday tasks, an analyst
would only need to review 40 locations in order to detect all
targets using the integrated CV-RSVP triage system compared
to potentially all 27552 x 16324 pixels without assistance.
The productivity savings are are dramatic, as demonstrated
by Fig. 5 and Table I. The CV-RSVP assisted condition
results in a detection hit rate which on average is a factor
of four improvement over baseline, with no increase in false

alarms–in fact a decrease in false alarms. The time cost of the
triage is small (< 5min) while the performance improvement
substantial.

B. EEG followed by Computer Vision: Bootstrapping a Com-
puter Vision System

1) System description:The system described above as-
sumes some prior knowledge about the object of interest in
order to construct a computer vision model. However, what
if the system does not yet know what exactly the subject is
looking for? Also, how could one use computer vision as a
post-processor to the EEG-based triage?

We have developed a second system to address these scenar-
ios. The system allows a subject to browse through a limited
number of images; it uses the EEG triage to take an initial
"guess" as to what attracted the observer attention, and uses a
computer vision module to pull additional positive examples
from a database and correct potentially erroneous labels given
by EEG classification. The system (see Fig. III-B1, additional
detail can be found in [24]) is similar to the first system
described, in that it uses the same type of components: com-
puter vision module, EEG triage, visualization/review module.
However, here the EEG triage module precedes the computer
vision module. Additionally, the number of examples provided
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Fig. 4. Comparison of the detection performance of the integrated CV-RSVP triage system with the CV module alone: The integrated system’s priority
scores for the top 40 images are plotted against the CV detection confidences. The threshold for the priority scores needed to capture all true positives is
plotted in blue, thus showing the reduced number of false positives with the integrated system.

Baseline Assisted Ratio of Assisted to Baseline
Hit Rate False Alarms Hit Rate False Alarms Relative Hit Rate Relative False Alarms

Subj 1 0.008 0 0.051 0 6.17 –
Subj 2 0.022 3 0.097 2 4.36 .66
Subj 3 0.032 1 0.129 0 4.05 0
Subj 4 0.081 0 0.116 0 1.43 –
Subj 5 0.019 0 0.090 0 4.64 –
Avg 4.13 0.5

TABLE I
COMPARISON OF HIT RATE AND FALSE ALARM FORSAM SITE SEARCH IN27552X 16324SATELLITE IMAGE WITHOUT (BASELINE) AND WITH

(ASSISTED) THE INTEGRATEDCV-RSVPTRIAGE SYSTEM. HIT RATE IS EXPRESSED IN FRACTION OF TOTAL TARGETS DETECTED PER MINUTE.

by the EEG triage may be insufficient to train conventional
supervised learning algorithms; and there may be inaccuracies
in the EEG outputs due to typically lower sensitivity of
the triage approach. So we use a computer vision module
underpinned by a semi-supervised learning algorithm. With
this approach, the outputs of the EEG triage is a set of positive
and negative examples (as determined by a suitable EEG
confidence threshold), that serve as labeled inputs to a graph-
based classifier to predict the labels of remaining unlabeled
examples in a database and refine the initial labels produced
by EEG-based classification.

Most semi-supervised techniques focus on separating la-
beled samples into different classes while taking into account

the distribution of the unlabeled data. The performance of
such methods often suffers from the scarcity of the labeled
data, invalid assumptions about classification models or dis-
tributions, and sensitivity to unreliable label conditions. In-
stead, our graph-based classification scheme, referred to as
Transductive Annotation by Graph (TAG) system [25, 26],
incorporates novel graph-based label propagation methodsand
in real or near real-time receive refined labels for all remaining
unlabeled data in the collection. By contrast to other semi-
supervised approaches, this graph-based label propagation
paradigm makes few assumptions about the data and the clas-
sifier. One central principle of this paradigm is that data share
and propagate their labels with other data in their proximity,
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Fig. 5. Results showing average targets detected across subject (N=5) as
a function of time. Red curve is CV-RSVP assisted condition,black curve
is baseline search. The relatively short time at the beginning of the search
(< 5min) in which the red curve is at zero represents the time it takes to do
the RSVP triage. After that time, denoted by vertical blue bar, the triage list is
loaded into the viewing software and the analysts use the triage results to jump
to areas that resulted in a high EEG score and thus caught his/her attention
during the RSVP. Clear is the substantial improvement in target detection rate
for the assisted condition relative to baseline once the CV-RSVP generated
triage listed is used.

defined in the context of a graph. Data are represented as nodes
in a graph and the structure and edges in the graph define
the relation among data. Propagation of labels among data in
a graph is intuitive, flexible, and effective, without requiring
complex models for the classifier and data distributions. This
graph inference method has also been shown to improve over
existing graph learning approach in terms of the sensitivity to
weak labels, graph structure and noisy data distributions [26].

The processing pipeline of the TAG module contains the
following components:

. Input of labeled example provided by the EEG triage;

. Image preprocessing components, such as denoising,
enhancement, and filtering;

. Image feature extraction to quantize the visual context;

. Affinity graph construction;

. Automatic label prediction via graph based inferencing
and label correction;

One important aspect of this integration of EEG with
Computer Vision, is the ability for the Computer Vision
TAG module to deal with uncertainty in the EEG labeling.
Specifically, we have developed a "self-tuning" approach that
is able to identify the most reliable EEG inputs and reverses
the labels of the most unreliable samples in order to optimize
an objective function that captures labeling consistency and
smoothness properties.

2) Experiments and results:To illustrate the combination
of EEG triage and automated labeling, we present experiments
with the detection of helipads in EO satellite imagery. To per-
form the EEG triage, a 30Kx30K satellite image (DigiGlobe,
Longmont, CO) was chipped into (500 × 500 pixels) tiles;
tiles containing helipads were centered on those helipads and
were presented using the RSVP paradigm described above to
human observers at a rate of 10Hz. The output priority list

was provided to the automated labeling module and the EEG
scores were used as positive and negative labels according
to a predefined threshold. Figure 7 shows the top twenty
images ranked by the EEG priority list alone, and the top
twenty images ranked by the combination of EEG triage and
automated labeling. Figure 8 shows the error rate in the top
20 returned images as a function of the number of EEG scores
used as labels by the automated labeling algorithms. This
figure highlights that without automated labeling, the EEG
triage error rate is significant, at approximately 65%. The
unreliability of the EEG scores is reflected in the performance
of the labeling algorithm without self-tuning, which is only
able to marginally improve upon the EEG triage. However,
with self-tuning, the automated labeling is able to infer the
most unreliable EEG scores and significantly lower the error
rate. The number of EEG labels used needs to be optimally
chosen to obtain the best detection improvement, and Figure8
points to the existence of a single optimal number. Being able
to automatically determine this number is one of the efforts
we are currently focusing on.

IV. CONCLUSIONS

In this paper we have described two systems for cortically-
coupled computer vision which use computer vision (CV) and
EEG to construct triage transforms for prioritizing imagery.
Our results forT (·)CV followed byT (·)EEG show that EEG-
based prioritization is effective for increasing the specificity of
the CV system classification, without loss in sensitivity, for a
realistic aerial image search task. Comparison of the system to
baseline ultimately results in a factor of four improvementin
the rate of target detection, without an increase in the rateof
false alarms. Our preliminary results forT (·)EEG followed
by T (·)CV show that computer vision can effectively use
the EEG-based priority scores as noisy labels for building a
feature based model which can improve the specificity of the
EEG triage. Note that this result was for a predefined and
well-localized target (e.g. helipads). Our current efforts are
investigating usingT (·)EEG followed by T (·)CV system for
identifying "targets" in which the user is not cued to identify
a particular target class and/or the target class is less well-
defined a priori. In addition, we are considering these triage
systems for the case in which multiple classes in a database
might attract a given user’s interest.

We have described our first attempts to synergistically
couple state-of-the-art computer vision with brain-computer
interface technology to improve the searching of imagery and
video content. The basic framework, namely coupling the
speed of computer processing and analysis with the general
purpose recognition and detection of sensory information by
the human brain, is not limited to imagery. In general, systems
for information triage, regardless of the signal type couldbe
constructed using a similar framework, with the caveat being
that the system design should maximize the complementarity
of the two systems (human and computer). For example, if
one were to use the same system design for triaging audio
recordings, a rapid playback of the audio to the user would
likely result in substantial distortion and result in low detection
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Fig. 6. System architecture for using EEG to bootstrap computer vision model construction. A sample set of images is taken from a database and the subject
processes these images in RSVP mode while EEG is simultaneously recorded. The EEG is decoded and used to tag images in terms of how strong they
grabbed the user’s attention. The images can be seen as beinga small set of labeled images, some of which might be the images of interest (e.g. images of
soldiers) and some of which just grabbed the users attentionbecause of novelty (e.g. the fellow with the interesting hairstyle). These small sets of labeled
images are used as training data in a transductive graphic model which operates in the features space of the image. The transductive model uses the limited
training data and manifold structures in the image feature space to propagate the initial labels to the rest of the imagesin the database The system includes
a self-tuning mechanism which enables removal of tagged by the EEG as being interesting, but that deviate from the manifold structures. For example, the
image with the blue border can be interpreted as a false positive and removed based on self-tuning. The computer vision model is then used to predict the
relevance (priority) scores of the rest of images in the database. Note that images of individuals (soldiers et al,) are taken from the publicly available image
on the web.

rates via EEG decoding. Clear is that careful attention must
be paid toward how the particular sensory system (visual,
auditory, etc.) is best presented with the information to be
triaged, specifically so that it is presented to be maximally
selective to patterns of interest in the data when the data is
presented rapidly.

The systems we are developing can potentially shed light
on some basic questions underlying the neuroscientific basis
of rapid decision making. For example, can subjects be trained
to improve their sensitivity for target and/or "interesting" ob-
jects and is such improvement accompanied by characteristic
changes in the neural activity? Previous work by our group
[27, 28, 29] has shown that there is a cascade of processes,
detectable via single-trial analysis of EEG, which represent
the constituent processes of decision making and that some of
these processes are modulated by task difficulty. As subjects
perform better for identical stimuli, we expect that the EEG
correlates of these processes could change. By seeing which
signatures are affected by training and which are not, we

Fig. 8. Comparison of the error rate in the top 20 returned chips using
the EEG triage alone, the automated labeling without self-tuning and the
automated labeling with self-tuning.
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A B

Fig. 7. Top 20 chips returned by: (A) the EEG triage alone (B) the automated labeling module using the EEG triage priority scores as inputs.. Chips with
red squares are false positives. 45% of the top 20 chips returned by EEG are false positives and after passing into TAG system with self tuning this is reduced
to 15%.

might get better insight into whether changes in the neural
signatures precede behavioral changes and perhaps develop
better theories on how training affects rapid decision making.

There is some debate on whether the system can be driven
so that we can detect subliminal (or subconscious) events.
In our work we have assumed that all detections are con-
sciously processed by the subject–i.e. we have no evidence that
the signals represent unconscious or "subliminal" processing.
However it is interesting to consider how signals based on
conscious events might be used to lower a behavioral threshold
for initiating a decision. For example, in some cases, subjects
might be instructed to look for a given type of target, find
it (resulting in a neural signature of the detection event),and
continue to analyze the image in spite of the detection. This
type of "over analyzing" of the imagery can be reduced by
using the decoded neural signature of the recognition eventto
disengage the user from the current search, forcing him/her
to effectively lower their decision threshold and move to the
next image.

Finally, the potential for applications of brain computer
interfaces, outside the area of neurorehabilitation and neuro-
prosthetics, are tremendous. In addition to imagery, or more
generally information triage, two potentially significantareas
are video gaming and neuromarketing, which are already
receiving substantial attention and interest. As BCI systems
are developed and deployed, two fundamental issues must
be considered. The first is ethical, and pertains to issues of
privacy and the ramifications of being able to read someone’s
"thoughts" or intent, even if they do not act on them. The field
of neuroethics [30] has emerged in response to the complicated
and important questions related to such a new form of brain
monitoring technology. A second fundamental issue is one
related to human factors, and addresses the important question
of how we will interact with a system that can "read our

minds". When we interact with our personal computer we
see the response of the computer following our own actions,
such as moving a mouse or typing a key. How will we
perceive the interaction when the human computer interface
does not require us to behaviorally interact? These and other
neuroethical and human factors questions ultimately will play
an important role in how BCI systems are integrated into our
society.
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APPENDIX: OTHER L INEAR METHODS FOREEG
DECODING

In Section II-B we described the hierarchical discriminant
component analysis (HDCA) algorithm for decoding EEG for
the image triage application. This algorithm can be easily
implemented in real-time and thus it is the algorithm of choice
for our current C3Vision system. Recently we developed a
set of new algorithms to improve EEG detection performance.
Currently, their increased computational complexity limit their
use to non-realtime applications. However, it is worth reporting
them here given their significant improvement in classification
accuracy.

A. Bilinear Discriminant Component Analysis

The HDCA algorithm described in Section II-B combines
activity linearly. This is motivated by the notion that a linear
combination of voltages corresponds to a current source,
presumably of neuronal origin within the skull [17]. Thus, this
type of linear analysis is sometimes called source-space anal-
ysis7. The most general form of combining voltages linearly

7“Beam-forming” is a common misnomer for the same.
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in space and time would be:

y =
∑

t

∑

i

witxit (5)

However, the number of free parameterswit in this most
general form is the full set of dimensions – 6,400 for the
examples we consider – with only a handful of positive
exemplars to choose their values. To limit the degrees of
freedom one can restrict the matrixwit to be of lower rank,
sayK. The linear summation can then be written as:

y =

K∑

k=1

∑

t

∑

i

vtkuikxit , (6)

wherewit =
∑K

k=1 vtkuik is a low-rank bilinear representa-
tion of the full parameter space.

This bilinear model assumes that discriminant current
sources are static in space with their magnitude (and possibly
polarity) changing in time. The model allows forK such
components with their spatial distribution captured byuik and
their temporal trajectory integrated with weightsvtk. Again,
the goal is to find coefficientuik, vtk such that the bilinear
projection is larger for positive examples than for negative
examples, i.e.,y+ > y−.

In addition, it is beneficial to assume that these coefficients
are smooth, i.e. they do not differ much from their neigh-
bors, thus implicitly assuming that the discriminant activity
is correlated across neighboring electrodes and neighboring
time samples (i.e. the discriminant activity is low frequency).
In [31] we present an algorithm to find these coefficients
simultaneously for allK. 8

B. Bilinear Feature Based Discriminants

The algorithms presented so far will only capture a type
of activity that is called event related potentials (ERP). This
term, ERP, refers to activity that is evoked in a fixed temporal
relationship to an external event, that is, positive and negative
deflections occur at always the same time relative to the event
– in our case, the time of image presentation. In addition to
this type of evoked response activity the EEG shows variations
in the strength of oscillatory activity. Observable eventsmay
change the magnitude of ongoing oscillatory activity or may
induce oscillations in the EEG. A linear summation will not
be able to capture oscillatory activity, since for oscillations
the phase and therefore the polarity of the signal may change
from trial to trial. To capture the strength of an oscillation,
irrespective of polarity, it is common to measure the “power”,
or the square of the signal, typically after it has been filtered
in a specific frequency band. Instead of a linear combination
to capture power, one has to allow for a quadratic combination
of the electrical potentials.

8More recently we have found it beneficial to estimate the parameters for
one component, then subtract the activity spanned by the bilinear subspace of
that component, and then estimate the activity for an additional component
on the remaining subspace – a process that may be repeated several times to
estimate additional components (executable code implementing this idea can
be found at [32]).

A difficulty that arises in this context is the choice of
frequency band. In addition to spatial and temporal coefficients
one has to now choose coefficients for different frequencies,
which in practice may increase the degrees of freedom by
one order of magnitude or more. Thus it may be difficult
to find an optimal combination of space-time-frequency fea-
tures without a-priori knowledge as to which frequency band
contains discriminative information. Here we present a novel
algorithm that can identify an appropriate combination of first
and second-order features.9 The main idea is to identify feature
invariances by analyzing data collected from multiple subjects
on the same experimental paradigm. While the specific coeffi-
cient combining different first and second order features may
vary from subject to subject, we assume that the relevance
of evoked potentials (first order) and induced oscillationsin
different frequency bands (second order) does not change
significantly across subjects. The features we consider here
are the instantaneous power in different frequency bands soas
to capture temporal changes in oscillatory power in addition
to frequency and spatial information. We denote here with
fkt(x1, ..., xT ) the kth feature of the time sequencex =
x1, ..., xT evaluated around timet. A bilinear discriminant
model can be formulated for each feature as follows:

yk =
∑

t

∑

i

vtkuikfkt(xi) , (7)

where the spectro-temporal features are evaluated separately
for each electrodei providing the time sequencexi. Note
that in this formulation one of the features could simply be
the original evoked response signal,f1t = xt, i.e. the linear
features as before. The total model combines different features

y =
∑

k

wkyk (8)

with the goal of including only a small subset of non-zero
values forwk. While vtkuik will be chosen differently for
different subjects, the goal is to pickwk with the same set of
non-zero values for different subjects, i.e. the same features are
selected for different subjects. For the sake of computational
efficiency we assume that the information provided by each
feature is independent from another feature. Thus, the bilinear
coefficientvkt, uki may be selected separately for each subject
and each feature. Once selected, allvkt, uki remain constant,
and only wk has to be found with a subset of non-zero
coefficient such that consistently good performance is found
across all subjects. This is a potentially large combinatorial
search problem which can be solved in limited time only
using greedy methods. Various heuristic strategies for a greedy
feature search can be envisioned. Here we begin by selectinga
single feature that performs for the largest number of subjects
among the topM features. Then we test this feature as a pair
(K = 2) in combination with each one of the other features
and select again the one that (together with the first) performed
most often among the topM features. This process can be
repeated several times to increase the the number of selected

9For full detail see [33]. An earlier algorithm that combineslinear and
quadratic features in source-space was presented in [34].
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Fig. 9. Performance comparison for 14 datasets collected from 5 subjects
on various types of images on the RSVP task. The Az performance for the
three algorithms is (mean± std.): 0.76± 0.07, 0.83±0.08 and 0.91± 0.07.
Statistical significance *** indicates herep < 0.001 and was computed using
a Wilcoxon signed rank test.

features. We restrict ourselves here to a set ofK = 3 features.
There is nothing particular about this specific version of greedy
search; any other features selection strategy that is basedon
invariance across subjects is expected to perform equally well.

C. Comparing results for the three algorithms

Discrimination results for the three algorithms we have
discussed are shown in Figure 9. The data are from 14 datasets
obtained during a set of RSVP experiments on 5 subjects
(3 datasets per subject with one dataset excluded as it was
used to optimize regularization parameters). Due to memory
limitations we only used 250 example images out of a total
of 2500 (50 positives and 200 negatives). For this result the
data was down-sampled to 256Hz from 2048Hz. The BDCA
used a single component here (K = 1). Test-set performance
reported here is the result of five-fold cross validation. The
feature selection procedure had no access to the test data.
The algorithm was given quadratic features that capture power
in various frequency bands in addition to the linear features
that were used also by the other two algorithms. Specifically,
we used a time-resolved estimate of power obtained with a
sliding multi-tapered windows of 150ms duration. The two
most important features extracted by the algorithm are the
conventional linear features and an estimate of power in higher
frequencies (20-40Hz). The resulting bilinear coefficients,
vkt, uki, indicate that images of interest elicited increased
power in this frequency band following image presentation
with a non-uniform spatial distribution.
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