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There is a need for measuring attention objectively

¢ Challenge: Measuring task engagement is crucial across neuroscience,
education, and psychology.

e Current Al Limitations: Existing methods for
attention estimation often rely on self-reports,
subjective ratings, and distributing face videos,
raising privacy concerns.

Crowdsourcing,

\i self-reports...
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Brains, hearts, and eyes synchronize when attending
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e Attentively watching videos synchronizes EEG, HR, gaze, and pupil, and this
Inter-Subject Correlation (ISC) strongly correlates with their performance
when tested on the contents.

e But measuring these synchronized signals typically requires complex sensors
that are inaccessible or impractical for large-scale experiments.

Modern Al methods allow real-time, on-device
and privacy-preserving face tracking

e Google MediaPipe enables real-time facial
landmark and movement extraction from
standard webcams.

e The model can run on the user’s device,
in-browser, on our experiment platform Elicit.

e Privacy is preserved by only trasmitting face
landmarks and blendshapes, no webcam video.
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https://elicit-experiment.com/

The Data:

Subjects Stimuli Webcam Data
Dataset :
N N Set Duration (hours)
Experiment 1 | 26 (10M 16F) c A 9.18
Experiment 2 | 29 (10M 19F) 11.14
Experiment 3 | 28 (8M 20F) | 6 B 15.42
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» The prediction generalizes to unseen participants and stimuli.

Highlights
- Engagement tracking from a standard webcam is feasible.
- Attention can be measured privately and remotely.

Engagement tracking from the face is
comparable to eyetracking

e This is consistent accross participants, experimental conditions,

and tested videos.
e But we still need a reference group to compute ISC.
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Measured modality

Using facial movements to predict
engagement on a single participant

Face tracking
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Using time-resolved ISC as an objective index
of attention for training Al
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64 face features

in 10 second windows.

Features
Mediapipe Blendshapes (facial

movements) and Head Rotation
features as predictors, over the
preceeding 10 seconds.
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Al engagement predictions translate to unseen
participants and videos, and correlate with scores

How many participants are needed to capture
performance-relevant engagement?

Results generalize equally well to unseen
participants and videos
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Check it out!
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