

Real-Time Estimation of Overt Attention from Dynamic Features of the Face using Deep Learning

Aimar Silvan, Lucas C. Parra, Jens Madsen - Department of Biomedical Engineering, City College of New York -

There is a need for measuring attention objectively

- Challenge: Measuring task engagement is crucial across neuroscience, education, and psychology.
- Current Al Limitations: Existing methods for attention estimation often rely on self-reports, subjective ratings, and distributing face videos, raising privacy concerns.

Brains, hearts, and eyes synchronize when attending to videos, but are hard to measure on a large scale

- Attentively watching videos synchronizes EEG, HR, gaze, and pupil, and this Inter-Subject Correlation (ISC) strongly correlates with their performance when tested on the contents.
- But measuring these synchronized signals typically requires complex sensors that are inaccessible or impractical for large-scale experiments.

Modern Al methods allow real-time, on-device and privacy-preserving face tracking

- Google MediaPipe enables real-time facial landmark and movement extraction from standard webcams.
- The model can run on the user's device, in-browser, on our experiment platform **Elicit**.
- Privacy is preserved by only trasmitting face landmarks and blendshapes, no webcam video.

Elicit https://elicit-experiment.com/

The Data:

Dataset	Subjects	Stimuli		Webcam Data
	N	N	Set	Duration (hours)
Experiment 1	26 (10M 16F)	5	Α	9.18
Experiment 2	29 (10M 19F)			11.14
Experiment 3	28 (8M 20F)	6	В	15.42

Highlights

- Engagement tracking from a standard webcam is feasible.
- Attention can be measured privately and remotely.
- The prediction generalizes to unseen participants and stimuli.

Engagement tracking from the face is comparable to eyetracking

- This is consistent accross participants, experimental conditions, and tested videos.
- But we still need a reference group to compute ISC.

Using facial movements to predict engagement on a single participant

Using time-resolved ISC as an objective index of attention for training Al

Target

ISC of eye movements measured in 10 second windows.

Features

Mediapipe Blendshapes (facial movements) and Head Rotation features as predictors, over the preceeding 10 seconds.

Al engagement predictions translate to unseen participants and videos, and correlate with scores

