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Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-5: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing
Harmonic analysis - estimation circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering 

 Schedule
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For a family of random variables X
1
, ..., X

n
, which we denote X 

in short, the joint distribution function is defined as

The joint density function is defined as

We can "integrate out" or "marginalize" any variable with  

Jointly Distributed Random Variables (JDRV)

F X (x1 ,… , xn)=Pr (X 1⩽ x1 ,… , X n⩽xn ,)

F X (x1 ,… ,−∞ ,… , xn)=0, F X (∞ ,… ,∞)=1

p X (x1… , xn)=
∂

n F X (x1 ,… , xn)

∂ x1…∂ xn

p X (x2 ,… , xn)=∫
−∞

∞

dx1 pX (x1 , x2 ,… , xn)

X
1

X
2

X
3
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Conditional distribution is the probability distribution of one 
random variable given that the other has a specific value

X |Y reads "X given Y". Using the definition of conditional 
probability

We obtain the conditional density of X given Y

JDRV - Conditional distribution

F X ∣Y ( x∣y )=lim
ϵ→0

Pr (X⩽ x∣y< Y ⩽ y+ ϵ)

p X ∣Y ( x∣y )=
p X ,Y (x , y )

pY ( y)

Pr (A∣B)Pr (B)=Pr (A∧B)

Y

X
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JDRV - Conditional distribution

Cartoon example: Dependence of age (x) and hight (y)

Height distribution 
of 5 year olds 

Height distribution 
of 18 year olds 

Height 
distribution 
of entire 
population

Age distribution of 
entire population

“Conditional”“Joint”“Marginal”
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How do we obtain the conditional distribution of X|Y from the 
conditional distribution of Y|X?

Which is another form of the Bayes' Theorem:

JDRV  - Bayes' Theorem

p X ∣Y ( x∣y )=
pY∣X ( y∣x ) pX (x )

∫ dx pY∣X ( y∣x ) pX (x )

p X ∣Y ( x∣y )=
p X ,Y (x , y )

pY ( y)
=

pY∣X ( y∣x) p X (x )

∫ dx pX ,Y ( x , y)

X

Y

X

Y

Bayes' Theorem
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Random variables are said to be pairwise independent if 

On equivalently

Random variables are said to be mutually independent if 

Note that mutual independence implies pairwise independence 
but the inverse is NOT true. 

JDRV - Independent Random Variables

p X ,Y ( x , y)= pX ( x) pY ( y )

p X (x1,… , x n)=∏
k=1

n

pX k
( xk )

X

Y

X
1

X
2

X
3

X
1

X
2

X
3

X
1

X
3

X
2

and         and 

p X ∣Y ( x∣y )= pX (x )
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Random variables are said to be conditionally independent if

A sequence is called Markov chain if variables depend only 
on their immediate predecessor  

The future depends on the past only though the present.

JDRV - Conditional Independence

p (x , y∣z )= p( x∣z ) p ( y∣z )

p (x1,… , x n)= p( xn∣xn−1) p( xn−1∣xn−2)⋯ p (x2∣x1) p (x1)

Z

YX

X
1

X
2 X

n1
X

n
X

3
...
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Expectation of jointly distributed RVs is defined as 

Consider the sum of random variables

For any random variables we have 

For independent random variables the PDF of Z is a convolution*

Hence, the sum of independent normal variables remains normal. 
* Proof using Fourier transforms of pdf (characteristic function)

JDRV - Expectation

E [ f (X , Y )]=∫
−∞

∞

∫
−∞

∞

dx dy f (x , y ) pX ,Y ( x , y)

pZ (z )=∫
−∞

∞

dx pZ∣X ( z∣x) p X (x )=∫
−∞

∞

dx pY (z−x ) pX (x )

E [Z ]=E [ X ]+ E [Y ]

Z=X + Y
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The joint moments of order n, m are defined as 

The most important being the correlation

For non-zero mean it is better to consider the covariance

To normalize for scale we define the correlation coefficients

                                                            such that 

JDRV - Joint moments

E [ X nY m
]

E [ X Y ]

cov [ X , Y ]=E [ (X−E [ X ])(Y−E [Y ])]

ρX ,Y=
cov [ X , Y ]

std [ X ] std [Y ]
∣ρX ,Y∣ ⩽1
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Examples

Rvs are called uncorrelated if

Moments of independent RV factor

Independent random variables are uncorrelated. However, 
uncorrelated random variables are not necessarily independent! 

Variances of uncorrelated RVs add:  

JDRV - Independence and correlation

E [ X nY m
]=E [ X n

]E [Y m
]

ρX ,Y=0

var [X + Y ]=var [ X ]+ var [Y ]
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JDRV - Covariance matrix

Rx x=E [(x−E [ x ])( x−E [ x ])T ]

Rx x=E [ x xT
]

R̂x x=
1
N
∑
k=1

N

xk x k
T
=

1
N

X X T

For a set of RVs, x = [x
1
, ..., x

n
]T, we use the covariance matrix*

which reduces for zero mean RVs to 

Often the covariance matrix is estimate from a set of N data samples 
X=[x

1
, ..., x

N
] using the sample averages. For zero-mean variables it 

is simply: 

* Comments on notation: In statistics upper case is used for RV and lower case for a specific value of a RV. Bold 
face is used to vectors in both cases. In linear algebra bold upper case is used for matrixes and bold lower case for 
vectors. In signal processing upper case is often reserved for the transform of a time series. When dealing with 
matrixes I will use the linear algebra convention and the transform domain should be apparent from its argument. 
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JDRV - Linear regression

y=A x

Â=R y x Rx x
−1

n= y− Â x

Assume the zero-mean RVs  x and y are linearly related  

After multiplying with xT and taking the expectation their linear 
regression coefficients can be found as 

with the equivalent definition for  R
yx

 and assuming R
xx 

is invertible. 

We can then subtract the influence of x on y with

The new variable n is said to be orthogonal to x

cov [n , x ]=0
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JDRV - Linear regression

Example: Remove eye blink direction in EEG 
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The PDF of normal distributed RVs,  x = [x
1
, ..., x

n
]T, is given by

Its parameters are the mean,                ,  and covariance,

Example:

  >> contour(); 
>> mesh() >> hold on;plot()

JDRV - Multivariate Normal Distribution

p(x)=
1

√(2π)n ∣Σ∣
exp [−1

2
(x−μ)T Σ−1

(x−μ)]

Σ=[ 1 0.5
0.5 0.4]

μ=[00 ]

E[ x]=μ
E[( x−μ)( x−μ)T ]=Σ
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The marginal PDF of a multivariate normal is also Gaussian. 
e.g. Marginalizing over x

1
 gives a Gaussian over

with

The conditional of  a Gaussian, p(x|y) = p(x,y) / p(y), is also 
Gaussian with the conditional mean computed with linear 
regression and the covariance given by the Shur complement.

JDRV - Multivariate Normal Distribution

p ( x)=∫
−∞

∞

dxi N (x−μ ,Σ)=N ( x̃−μ̃ , Σ̃)

Σ̃=[
r 22 r23 ⋯ r 2n

r 32 r33 ⋯ r 3n

⋮ ⋮ ⋱ ⋮

r n2 rn3 ⋯ r nn
]

x̃=[ x2,… , xn]
T

μ̃=[
μ2

μ3

⋮

μn
]
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How do we generate samples with given R
xx

? 

Generate N samples for n independent variables with zero-mean, 
unit variance: z =randn(n,N)

We need transformation,  x = W z,  such that 

One solution for W is given by the eigenvalue decomposition of 
R

xx 
 with rotation matrix, U -1=U T, and diagonal scaling matrix D 

The diagonal elements in D are the eigenvalues of R
xx 

, and the 

columns in U are the principal axes.

JDRV - Principal Components

R z z=I n

Rx x=W Rz z W T
=W W T

Rx x U=U D W=U D1 /2
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Even if the data is not Gaussian it is sometimes useful to 
consider the transformation 

  

derived from  the eigenvalue decomposition of an observed 
covariance matrix R

xx
 . 

Assignment 8: Generate figures in slides 14, 15 and 18.

JDRV - Principal Components

z=W −1 x=D−1/ 2U T x

 u
1  

 u
2  

Columns u
k
 are called the principal 

components (PC) of samples x, and 
diagonal elements in D are the 
variance of  projections u

k

T x. 

Warning: PC not always the right 
thing to do, e.g. Linear mix of 
uniform distributed variables.
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JDRV - Principal Components Applications

Capture Signal Variance: 
● In recordings of data in 

many dimensions no one 
single dimension may be 
very informative. 

● Perhaps a combination of 
directions captures more 
of the variance in the 
data.

● Common approach is to 
looks at projections in the 
main two principal 
component directions 

z= [u1 u2 ]
T

x

Example: 6D Local Field Potentials
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JDRV - Principal Components Applications

Remove Noise Variance
● In some recordings noise 

is additive to the data.
● Linear combination of 

electrodes can estimate 
the noise subspace.

● PCA can be used to find 
this subspace, say one-
dimensional in  u

1
,

● The noise can then be 
filtered spatially by 
subspace projection
 

P=I−u1 u1
T

x̂=P x

Example: 6D Local Field Potentials

P=I−V (V T V )−1V T

To remove subspace V that is not orthonormal: 
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