BME I5100: Biomedical Signal Processing

Jointly Distributed Random Variables

Lucas C. Parra
Biomedical Engineering Department
City College of New York

https://blackboard-doorway.cuny.edu/
parra@ccny.cuny.edu
Some links from previous course: http://newton.bme.columbia.edu/~lparra/class/
Schedule

Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.

Week 1-5: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling

Week 6-7: Analog signal processing
Operational amplifier
Analog filtering

Week 8-11: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions, Principal Components
Stochastic processes, linear prediction, AR modeling

Week 12-14: Examples of biomedical signal processing
Harmonic analysis - estimation of circadian rhythm and speech
Linear discrimination - detection of evoked responses in EEG/MEG
Hidden Markov Models and Kalman Filter- identification and filtering
Jointly Distributed Random Variables (JDRV)

For a family of random variables \(X_1, \ldots, X_n\), which we denote \(X\) in short, the joint distribution function is defined as

\[
F_X(x_1, \ldots, x_n) = P(X_1 \leq x_1, \ldots, X_n \leq x_n)
\]

\[
F_X(x_1, \ldots, -\infty, \ldots, x_n) = 0, \quad F_X(\infty, \ldots, \infty) = 1
\]

The joint density function is defined as

\[
p_X(x_1, \ldots, x_n) = \frac{\partial^n F_X(x_1, \ldots, x_n)}{\partial x_1 \ldots \partial x_n}
\]

We can "integrate out" or "marginalize" any variable with

\[
p_X(x_2, \ldots, x_n) = \int_{-\infty}^{\infty} dx_1 p_X(x_1, x_2, \ldots, x_n)
\]
Conditional distribution is the probability distribution of one random variable given that the other has a specific value.

\[
F_{X|Y}(x|y) = \lim_{\epsilon \to 0} Pr(X \leq x | y < Y \leq y + \epsilon)
\]

\(X|Y\) reads "\(X\) given \(Y\)". Using the definition of conditional probability,

\[
Pr(A|B) Pr(B) = Pr(A \land B)
\]

We obtain the conditional density of \(X\) given \(Y\)

\[
p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}
\]
How do we obtain the conditional distribution of $X|Y$ from the conditional distribution of $Y|X$?

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{p_{Y|X}(y|x)p_X(x)}{\int dx \ p_{X,Y}(x,y)}$$

Which is another form of the **Bayes' Theorem**:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{\int dx \ p_{Y|X}(y|x)p_X(x)}$$
Random variables are said to be **pairwise independent** if

\[p_{X,Y}(x, y) = p_X(x) p_Y(y) \]

On equivalently \(p_{X|Y}(x|y) = p_X(x) \)

Random variables are said to be **mutually independent** if

\[p_X(x_1, \ldots, x_n) = \prod_{k=1}^{n} p_{X_k}(x_k) \]

Note that mutual independence implies pairwise independence but the inverse is **NOT** true.
JDRV - Conditional Independence

Random variables are said to be **conditionally independent** if

\[p(x, y | z) = p(x | z) p(y | z) \]

A sequence is called **Markov chain** if variables depend only on their immediate predecessor

\[p(x_1, \ldots, x_n) = p(x_n | x_{n-1}) p(x_{n-1} | x_{n-2}) \cdots p(x_2 | x_1) p(x_1) \]

The future depends on the past only though the present.
JDRV - Expectation

Expectation of jointly distributed RVs is defined as

$$E[f(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx \, dy \, f(x,y) \, p_{X,Y}(x,y)$$

Consider the sum of random variables $Z = X + Y$

For any random variables we have

$$E[Z] = E[X] + E[Y]$$

For independent random variables the PDF of Z is a convolution*

$$p_Z(z) = \int_{-\infty}^{\infty} dx \, p_{Z|X}(z|x) \, p_X(x) = \int_{-\infty}^{\infty} dx \, p_Y(z-x) \, p_X(x)$$

Hence, the sum of independent normal variables remains normal.

* Proof using Fourier transforms of pdf (characteristic function)
JDRV - Joint moments

The joint moments of order n, m are defined as

$$E[X^n Y^m]$$

The most important being the correlation

$$E[XY]$$

For non-zero mean it is better to consider the covariance

$$\text{cov}[X, Y] = E[(X - E[X])(Y - E[Y])]$$

To normalize for scale we define the correlation coefficients

$$\rho_{X,Y} = \frac{\text{cov}[X, Y]}{\text{std}[X] \text{std}[Y]}$$

such that $|\rho_{X,Y}| \leq 1$
Rvs are called **uncorrelated** if \(\rho_{X,Y} = 0 \)

Moments of independent RV factor

\[
E[X^n Y^m] = E[X^n] E[Y^m]
\]

Independent random variables are uncorrelated. However, uncorrelated random variables are not necessarily independent!

Variances of uncorrelated RVs add:

\[
var[X + Y] = var[X] + var[Y]
\]
JDRV - Covariance matrix

For a set of RVs, \(x = [x_1, \ldots, x_n]^T \), we use the covariance matrix

\[
R_{xx} = E \left[(x - E[x]) (x - E[x])^T \right]
\]

which reduces for zero mean RVs to

\[
R_{xx} = E \left[x \ x^T \right]
\]

Often the covariance matrix is estimate from a set of \(N \) data samples \(X = [x_1, \ldots, x_N] \) using the sample averages. For zero-mean variables it is simply:

\[
\hat{R}_{xx} = \frac{1}{N} \sum_{k=1}^{N} x_k x_k^T = \frac{1}{N} \ X \ X^T
\]

* Comments on notation: In statistics upper case is used for RV and lower case for a specific value of a RV. Bold face is used to vectors in both cases. In linear algebra bold upper case is used for matrixes and bold lower case for vectors. In signal processing upper case is often reserved for the transform of a time series. When dealing with matrixes I will use the linear algebra convention and the transform domain should be apparent from its argument.
JDRV - Linear regression

Assume the zero-mean RVs x and y are linearly related

$$y = Ax$$

After multiplying with x^T and taking the expectation their linear regression coefficients can be found as

$$\hat{A} = R_{yx} R_{xx}^{-1}$$

with the equivalent definition for R_{yx} and assuming R_{xx} is invertible.

We can then subtract the influence of x on y with

$$n = y - \hat{A} x$$

The new variable n is said to be orthogonal to x

$$\text{cov}[n, x] = 0$$
JDRV - Linear regression

Example: Remove eye blink direction in EEG
JDRV - Multivariate Normal Distribution

The PDF of normal distributed RVs, \(x = [x_1, \ldots, x_n]^T \), is given by

\[
p(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left[-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right]
\]

Its parameters are the mean, \(E[x] = \mu \), and covariance, \(R_{xx} = \Sigma \)

Example:

\[
\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 0.4 \end{bmatrix}
\]

\[
>> \text{mesh()}
\]

\[
>> \text{contour();}
\]

\[
>> \text{hold on;plot()}
\]
The marginal PDF of a multivariate normal is also Gaussian. e.g. Marginalizing over x_1 gives a Gaussian over $\tilde{x} = [x_2, \ldots, x_n]^T$

$$p(x) = \int_{-\infty}^{\infty} dx_1 N(x - \mu, \Sigma) = N(\tilde{x} - \tilde{\mu}, \tilde{\Sigma})$$

with

$$\tilde{\Sigma} = \begin{bmatrix} r_{22} & r_{23} & \cdots & r_{2n} \\ r_{32} & r_{33} & \cdots & r_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n2} & r_{n3} & \cdots & r_{nn} \end{bmatrix} \quad \tilde{\mu} = \begin{bmatrix} \mu_2 \\ \mu_3 \\ \vdots \\ \mu_n \end{bmatrix}$$

The conditional of a Gaussian, $p(x|y) = p(x,y) / p(y)$, is also Gaussian with the conditional mean computed with linear regression and the covariance given by the Shur complement.
How do we generate samples with given R_x?

Generate N samples for n independent variables with zero-mean, unit variance: $z = \text{randn}(n,N)$

$$R_{zz} = I_n$$

We need transformation, $x = Wz$, such that

$$R_{xx} = W R_{zz} W^T = W W^T$$

One solution for W is given by the eigenvalue decomposition of R_x with rotation matrix, $U^{-1} = U^T$, and diagonal scaling matrix D

$$R_{xx} U = U D$$

$$W = U D^{1/2}$$

The diagonal elements in D are the eigenvalues of R_x, and the
JDRV - Principal Components

Even if the data is not Gaussian it is sometimes useful to consider the transformation

\[z = W^{-1} x = D^{-1/2} U^T x \]

derived from the eigenvalue decomposition of an observed covariance matrix \(R_x \).

Columns \(u_k \) are called the principal components (PC) of samples \(x \), and diagonal elements in \(D \) are the variance of projections \(u_k^T x \).

Warning: PC not always the right thing to do, e.g. Linear mix of uniform distributed variables.

Assignment 8: Generate figures in slides 13, and 14.
Capture Signal Variance:
- In recordings of data in many dimensions no one single dimension may be very informative.
- Perhaps a combination of directions captures more of the variance in the data.
- Common approach is to looks at projections in the main two principal component directions

\[z = [u_1 \ u_2]^T \ x \]
Remove Noise Variance
• In some recordings noise is additive to the data.
• Linear combination of electrodes can estimate the noise subspace.
• PCA can be used to find this subspace, say one-dimensional in \mathbf{u}_1,
• The noise can then be filtered spatially by subspace projection

$$P = I - \mathbf{u}_1 \mathbf{u}_1^T$$

$$\hat{x} = P x$$

Example: 6D Local Field Potentials