BME 15100: Biomedical Signal Processing

Random Variables

Lucas C. Parra
Biomedical Engineering Department City College of New York

Schedule

```
Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.
Week 1-4: Linear systems
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform
Sampling
Week 5-8: Random variables and stochastic processes
Random variables
Moments and Cumulants
Multivariate distributions
Statistical independence and stochastic processes
Week 9-14: Examples of biomedical signal processing
Probabilistic estimation
Linear discriminants - detection of motor activity from MEG
Harmonic analysis - estimation of hart rate in ECG
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Matched and Wiener filter - filtering in ultrasound
Independent components analysis - analysis of MEG signals
```


Random Variables

Probabilities are defined for discrete events, e.g. outcome of a coin flip.

A random variable X is a map from an event $e \in S$ to an observed real value $X(e)$.

The event can be thought of as a specific realization of a random system. $X(e)$ is an associate observation, e.g. Patients body the temperature measured ad 6AM.

Random Variables - Probability density

Probability distribution defined a the probability that X

$$
\mathrm{F}(\mathrm{x})=\text { "Probability of findin }
$$

$$
\begin{aligned}
& F_{X}(x)=\operatorname{Pr}(X \leqslant x) \\
& F_{X}(-\infty)=0, \quad F_{X}(\infty)=1
\end{aligned}
$$

Probability density function (PDF)

$$
p_{X}(x)=\frac{\partial}{\partial x} F_{X}(x)
$$

Alternatively, a PDF is a real valued function with

$$
\int_{-\infty}^{\infty} d x p_{X}(x)=1, \quad p_{X}(x) \geqslant 0
$$

Random Variables - Histogram

Estimate of probability density is the histogram

$$
p_{X}(x) \approx \frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x} \propto \operatorname{Pr}(x \leqslant X \leqslant x+\Delta x)
$$

Where we measure the the likelihood $\operatorname{Pr}(x \leqslant X \leqslant x+\Delta x)$ by counting how many samples fall within x and $x+\Delta x$.
>> hist(randn(1000,1))

Another way of assessing the structure of a pdf are moments and cumulants.

Random Variables -Moments

Expected value $E[f(X)]$ or ensemble average is defined as

$$
E[f(X)]=\int_{-\infty}^{\infty} d x p(x) f(x)
$$

Moment m_{n} of order n is the expected value

$$
m_{n}=E\left[X^{n}\right]=\int_{-\infty}^{\infty} d x p(x) x^{n}
$$

First moment is the mean

$$
m_{1}=E[X]=\int_{-\infty}^{\infty} d x p(x) x
$$

Second moment is the power

$$
m_{2}=E\left[X^{2}\right]
$$

Random Variables -Moments and Cumulants

For non-zero mean more interesting is the variance, i.e. The power of the deviation from the mean.

$$
\operatorname{var}[X]=E\left[\left(X-m_{1}\right)^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

A metric for the spread around the mean is the standard deviation

$$
\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}
$$

RV -Moment generating function

Consider the Laplace transform of the PDF (up to sign of t)

$$
E\left[e^{t x}\right]=\int_{-\infty}^{\infty} d x p(x) e^{t x}
$$

Given $E\left[e^{t x}\right]$ the PDF is fully determined by the inverse Laplace transform. Consider now the Taylor expansion

$$
E\left[e^{t x}\right]=\sum_{n=0}^{\infty} \frac{m_{n}}{n!} t^{n}
$$

Note that the expansion coefficients are the moments of the PDF:

$$
m_{n}=\frac{\partial^{n}}{\partial t^{n}} E\left[e^{t x}\right]_{t=0}=E\left[x^{n}\right]
$$

We call $E\left[e^{t x}\right]$ therefore the moment generating function. Given all moments $E\left[e^{t x}\right]$ is fully determined and so is the PDF.

RV -Cumulants

Cumulants c_{n} of order n are defined as the expansion coefficients of the logarithm of the moment generating function:

$$
\ln E\left[e^{t x}\right]=\sum_{n=0}^{\infty} \frac{c_{n}}{n!} t^{n} \quad c_{n}=\frac{\partial^{n}}{\partial t^{n}} \ln E\left[e^{t x}\right]_{t=0}
$$

Cumulants are a convenient way of describing properties of the PDF:
$c_{1}=$ mean

$$
\begin{aligned}
& c_{1}=\mu \\
& c_{2}=\sigma^{2} \\
& c_{3}=E\left[(x-\mu)^{3}\right] / \sigma^{3} \\
& c_{4}=E\left[(x-\mu)^{4}\right] / \sigma^{4}
\end{aligned}
$$

$c_{2}=$ variance, measures spread ${ }^{2}$ around the mean.
$c_{3} \propto$ skew, measures asymmetry around mode ($=0$ for symmetric PDF)
$c_{4} \propto$ kurtosis, measures length of tails $(=0$ for Gaussians)
Assignment 6: Show that mean and variance are first two cumulagts.

Random Variables -Poisson distribution

For a sequence of Bernoulli trials increment $N \rightarrow N+1$ with probability p starting at $N=0$. The probability of $N=k$ after n trials is given by binomial distribution.

$$
P[N=k]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

For large n and small p so that, $\lambda=n p$, is moderate size this can be approximated by the Poisson distribution:

$$
P[N=k]=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Typical examples are photon count in detector, spike counts, histogram values, etc.

Random Variables -Poisson distribution

The following moments are easy to compute using normalization

$$
\sum_{k=0}^{\infty} P[k]=\sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=1
$$

Mean:

$$
E[k]=\lambda
$$

Second moment:

$$
E\left[k^{2}\right]=\lambda^{2}+\lambda
$$

Variance:

$$
\begin{aligned}
& \operatorname{var}[k]=E\left[k^{2}\right]-E[k]^{2}=\lambda \\
& F=\operatorname{var}[k] / E[k]=1
\end{aligned}
$$

Fano-factor is a easy metric to assert that a count is not Poisson. $\mathrm{F} \neq 1$ often used to establish that spike counts are more "interesting" than Poisson.

Random Variables -Exponential distribution

Exponential random variable has a pdf:

$$
p(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x \geq 0 \\
0, & x<0
\end{array}\right\}
$$

Mean: $\quad E[x]=\lambda^{-1}$
Variance: $\operatorname{var}[x]=\lambda^{-2}$
Spike train with constant firing rate λ (number of spikes per unit time) for which the occurrence of a spike is independent of previous spikes has exponentially distributed inter spike intervals (ISI).

Assignment 7:
Generate Poisson distributed samples and measure F.
Could the counts in the two spike trains in spike. mat be Poisson?

Sampling from a continuous distribution

Goal: Generate random numbers y following a desired $\operatorname{pdf} p(y)$.
Approach: Draw x from an uniform distribution $p(x)=$ const and apply a nonlinearity $y=f(x)$.

$$
\begin{gathered}
p(x)=\left|\frac{d y}{d x}\right| p(y)=\text { const } . \\
x=\int_{0}^{x} d x^{\prime} p\left(x^{\prime}\right)=\int_{-\infty}^{y} p\left(y^{\prime}\right) d y^{\prime} \equiv F_{Y}(y)
\end{gathered}
$$

Result: The desired non-linear transformation is the inverse cumulative density, or inverse of the distribution function:

$$
y=f(x)=F_{Y}^{-1}(y)
$$

Example: Draw N samples from exponential distribution with mean m :

```
dy=m/1000; y=0:dy:10*m;
    p = exp (-y/m)/m;
    F = cumsum(p)*dy;
    yrand = interp1(F,y,rand(N,1));
```

Note: This simple technique may not do a good job with the tails.

Random Variables -Normal distribution

Perhaps the most important distribution is the normal distribution with Gaussian PDF:

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Often written in short as $N\left(\mu, \sigma^{2}\right)$.

This defines a density because it is positive and normalized

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)=1 \\
& \text { show using } \quad \int_{-\infty}^{\infty} d x e^{-x^{2}}=\sqrt{\pi}
\end{aligned}
$$

Which is easy to show using

Random Variables -Normal distribution

The moments can be computed using the moment generating function

$$
\begin{aligned}
E\left[e^{t x}\right] & =\int_{-\infty}^{\infty} d x e^{t x} p(x)=(\sigma \sqrt{2 \pi})^{-1} \int_{-\infty}^{\infty} d x e^{t x} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& =e^{\mu t+\sigma^{2} t^{2} / 2}
\end{aligned}
$$

Mean:
$\left(\frac{d E\left[e^{t x}\right]}{d t}\right)_{t=0}=\mu$

Second moment:
$\left(\frac{d^{2} E\left[e^{t x}\right]}{d t^{2}}\right)_{t=0}=\sigma^{2}+\mu^{2}$

Variance:
$\operatorname{var}[x]=\sigma^{2}$

To estimate best fitting Gaussian simply measure mean and variance!
Note that all higher cumulants are zero:

$$
\ln E\left[e^{t x}\right]=\mu t+\sigma^{2} t^{2} / 2
$$

Random Variables -Normal distribution

Product of Gaussians is a Gaussian

$$
e^{-\frac{x^{2}}{2 \sigma_{1}^{2}}} e^{-\frac{x^{2}}{2 \sigma_{2}^{2}}}=e^{-\frac{x^{2}}{\sigma_{3}^{2}}}
$$

$$
\sigma_{3}=\frac{\sigma_{1} \sigma_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
$$

Convolution of Gaussians is a Gaussian

$$
\int_{-\infty}^{\infty} d x e^{-\frac{x^{2}}{2 \sigma_{1}^{2}}} e^{-\frac{(y-x)^{2}}{2 \sigma_{2}^{2}}} \propto e^{-\frac{y^{2}}{2 \sigma_{3}^{2}}}
$$

$$
\sigma_{3}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

Random Variables -Sample average

Let X_{1}, X_{2}, \ldots be independently an identically drawn samples from an arbitrary distribution with mean μ and variance σ^{2}.

Consider the sample average:

$$
W_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

The Law of Large Numbers states that sample average converges to the ensemble average

$$
\lim _{n \rightarrow \infty} W_{n}=E\left[X_{k}\right]
$$

The Central Limit Theorem states that sample average is normal

$$
\lim _{n \rightarrow \infty} p\left(W_{n}\right)=N\left(\mu, \sigma^{2} / n\right)
$$

