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 Schedule

Week 1: Introduction
Linear, stationary, normal - the stuff biology is not made of.  

Week 1-4: Linear systems (mostly discrete time)
Impulse response
Moving Average and Auto Regressive filters
Convolution
Discrete Fourier transform and z-transform

Week 5-7: Random variables and stochastic processes
Random variables
Multivariate distributions
Statistical independence

Week 8: Electrophysiology
Origin and interpretation of Biopotentials
 
Week 9-14: Examples of biomedical signal processing
Probabilistic estimation 
Linear discriminants - detection of motor activity from MEG
Harmonic analysis - estimation of hart rate in Speech
Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG
Independent components analysis - analysis of  MEG signals
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A transformation L:  y = L[x] is called linear if:

A linear system is a functional transformation of time functions L: 
y(t)=L[x(t)] such that:
 

Note that in a linear system the current output at time t may be 
influenced by past or future inputs x(t'). 

A linear system is called  time invariant if:

(shift invariant in the discrete time case)

Linear Time Invariant System (LTI)

y=L[a x1+b x 2]=a L[ x1]+b L [ x2]

y (t)=L [ x( t)] ⇒ y (t+τ)=L[ x ( t+τ )]

y (t)=L [a x1(t)+b x2(t)]=a L[ x1(t)]+b L [ x2(t)]
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Linear system example

Linear 
System

Input Output

a x1(t)

b x2(t)

y(t)

Linear 
System

Input Output

y(t)

Linear 
System

=

Consider a room that changes in temperature by y(t) as result of heat 
delivered to the room as a function of time, x(t). This heat could be 
electric heating x

1
(t), or gas heating x

2
(t) or some other form of 

heating. The input-output relationship is a linear system if the 
temperature change is the same under the following two scenarios:

Both heat sources are on 
simultaneously with intensity a 
and b, resulting in temperature 
change y(t). 

Only one heat source is on at a 
time, with each causing a change 
in temperature y

1
(t), or y

2
(t). 

x1(t)

x2(t)

a y1(t)

b y2(t)
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A LTI system is fully characterized by the impulse response h(τ). 
Its output is given by the convolution of the input with the 
impulse response (Proof from Kac Lecture.):

Impulse response 

y t =∫−∞
∞

d  h  x t−

A LTI is represented as:

h(τ) is called impulse response because it is the system 
response to an input impulse:

x t =t 
y t =∫

−∞

∞

d  h  t−=h t 

 h(τ) x(t)  y(t)
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Impulse response h(τ) can be measured using an unit impulse:

Impulse response 

 h(τ) (t)  h(t)

Also by differentiating the output to a step input (step response):

x t =t 
∂

∂ t
y t =∫

−∞

∞

d  h 
∂

∂ t
t−

=∫
−∞

∞

d  h t−=h t 

t =∂/∂ tt  where 

  h(τ) (t)   y(t)
/t

 h(t)
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Often we can not control the input:

Impulse response -discrete, causal, finite  

Easy to estimate h(τ) with the following simplifications:

1. Discrete: Approximate integral with sum at discrete lags τ = kt 
Sample input and output at times t = n t:

2. Assume Causal: Depends only on the past h[k]=0, k < 0:
3. Assume Finite Impulse Response (FIR): h[k]=0, k > P < 

h(τ) x(t)  y(t)  

y [n ]=∑
k=0

P

h [k ] x [n−k ]

∫ d  h x t−=∑ h[ k ] x [ n−k ]
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Impulse response estimation - MA

y [n ]=∑
k=0

Q

b [k ] x [n−k ]

[
y [1]
y [2]
y [3]
...
]=[

x [1] 0 0
x [2] x [1] 0
x [3] x [2] x [1]

...
] [b[0 ]b [1]

b[2 ]]

For a given Q, say Q=2, this can be rewritten as

y=X b

X is the Toeplitz matrix of x and is used to implement convolutions.

Leads to a Moving Average (MA) representation of h[k]:
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Impulse response estimation – MA model

ŷ=X b

For a given y and x one can identify b that minimizes the square error 
as the least squares solution:

b=argmin
b

∣∣y−X b ∣∣2
=X T X −1 X T y

Say y[n] is observed with some added error e[n]. Then we can think 
of the MA as an estimate

b = toeplitz(x,[x(1) zeros(1,Q)])\y;

And to avoid edge artifacts:
b = toeplitz(x(Q+1:end),x(Q+1:-1:1))\y(Q+1:end);

y= ŷ+e

  y[n] 
 

  x[n] 
 +

  e[n]

b[k] 
ŷ [n]
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Impulse response - MA filter model

Example: Stereo recordings of bird song in the wild and the estimated 
impulse response between microphone 1 and 2.                          

Assignment 2:  Estimate 
a MA filter for the 
relationship between one 
microphone and the other 
in bird-stereo.wav. 
Show resulting filters, 
input, estimated output 
and residual signals for 
varying Q. Select the 
“best” Q in your 
judgment. Estimate the 
microphone spacing based 
on the MA filter estimate.
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Adaptive Noise Canceling

One can use this model estimation to remove noise from data. Assume 
signal x[t] is a noise reference signal containing only noise, and y(t) is 
the signal of interest contaminated by noise that is distorted by some 
linear system

The goal of noise canceling is to find h[t] so that we can recover the 
signal s[t] by minimizing the power of s(i)
 

y (t)=s( t)+h( t)∗n(t )

s( t)= y ( t)−h(t)∗n (t)

n(t)

y(t) s(t)
∑

-

+

h(t)
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Model order selection

To select the correct 'model order' Q one typically computes model 
error for a training data and separate test data. For different model 
orders. The optimal model order is the one that minimizes the error on 
the test data, i.e. that best generalizes to unsee data.
 

                                                 
Assignment 2 (continued): 
 Reproduce this experiment 
with the data gamma.mat

In this example, local field 
potential data recorded in a 
hippocampal slice is to be 
predicted from a reference 
electrode in the slice bath but 
outside the tissue. This 
electrode only picks up noise. 
Therefore, the residual signal 
is the signal of interest.
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Model order selection

Assignment 2 (model order selection):

● Find the impulse response from one recording to the other.
● Try different lengths Q for the FIR model. 
● For each Q: Compute  the least squares estimate on the training data 

and test performance on test data, using 5 fold cross validation.
● Display train and test set performance as function of model order.
● Determine the model order with the lowest test set error and display 

the corresponding FIR and residual, as well as  predicted an 
estimated output.  
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Temporal Response Function

The response of EEG to sound envelope can be estimated  with the 
same approach as the impulse response, which is often referred to as 
Temporal Response Function.

 

Here it is estimated from 500s of simultaneous audio and EEG recording from one subject, displayed as an image 
for all 64 channels. Noticed that we estimated response prior to time zero, by shifting input relative to output by 
250ms. This data is saved as audio_eeg.mat. The sound envelope can be simply estimated by taking absolute 
value and smoothing. If the EEG is at slower resolution then on can just down sampling to the lower EEG 
sampling rate: 
>> envelope = resample(abs(audio),length(eeg),length(audio));
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Convolution implementation
Assignment: convolution implementation

● Implement an MA with filter, conv, toepliz and explicitly with a for 
loop (example below) generating “valid”  and “full” samples at the 
output, which means the output will have length (L-max(P,Q)+1) or 
L respectively, with L being the length of the input signal and Q,P 
the filter order. 

● Implement the ARMA equations with filter(), and explicitly with a 
for loop generating “same” samples at the output. You can assume 
that the “history” of input and output are zero. 

L=100; Q=3; x = randn(L,1); b = rand(Q+1,1);
 
% example: "same" implementation of MA
y = zeros(size(x));   % initialize sums with zero
for n=1:length(x)     % for all output samples
    for k=1:length(b) % sum over delays
        if n-k+1>0    % handle the starting edge
            y(n) = y(n) + b(k)*x(n-k+1);
        end
    end

end          



16

Lucas Parra, CCNY City College of New York

Impulse response - discrete, causal, infinite

y [n ]= x [n]−∑
k=1

P

a [k ] y [n−k ]

In case of Infinite Impulse Response (IIR) it may be beneficial to 
represent h[l] indirectly with an Auto Regressive (AR) filter:

However, h[t] may not be stable!  Filter h[k] is stable if:

  y[n] 
 

a[k] 

  x[n] 
 

  h[k] 
 

∑
k=−∞

∞

∣h[k ]∣∞
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Impulse response - ARMA filter

y [n ]=−∑
k=1

P

a [k ] y [n−k ]∑
k=0

Q

b[k ] x [ n−k ]

More generally an Infinite Impulse Response (IIR) can be represented 
by an ARMA filter (also called difference equation):

Since ARMA filter is LSI there is a corresponding h[k] that characterizes 
the system impulse response. 

  y[n] 
 

a[k] 

  x[n] 
 

  h[k] 
 

b[k] 
-
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ARMA model: Equation error vs Output error 

Fitting and ARMA filter to input-output data is more complicated than 
for an MA filter. Fitting depends what source of error is assumed:

Equation error → AR with external input (ARX) model 

Output error → OE model

  y[n] 
 

a[k] 

  x[n] 
 b[k] 

  y[n] 
 

a[k] 

  x[n] 
 b[k] 

  e[n]

-

-

+

  e[n]
+
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ARMA model: Equation error vs Output error 

         is observable         
         is a model estimate
 
ARX model – linear in a[k], there is no recursion:  

OE model – non-linear in a[k], there is a feedback recursion:

ŷ [n]=−∑
k=1

P

a [k ] y [n−k ]+∑
k=0

Q

b[k ] x [n−k ]

ŷ [n]=−∑
k=1

P

a [k ] ŷ [n−k ]+∑
k=0

Q

b[k ] x [n−k ]

y [n]= ŷ [n]+e [n]ŷ [n]
y [n]
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ARX model

Error is added inside of the recursion, and preceding y[n] are observable. 
So it can used are part of the regression. Minimizing square error results 
in simple least-square linear regression with input and previous output 
are regressors. 

Same approach as in MA filter, but now concatenating Toeplix matrix X 
with a Toepliz matrix Y of y[t-1], y[t-2] … y[t-P]. 

ba = [X Y]\y;                                     … or in matlab: arx.m

  y[n-1]  a[k] 

  x[n] 
 b[k] 

  e[n]
+

-

  y[n] 
 

ŷ [n]=−∑
k=1

P

a [k ] y [n−k ]+∑
k=0

Q

b[k ] x [n−k ]

y [n]= ŷ [n]+e [n]
ŷ [n]
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Output Error model

Error is added after the ARMA structure, and ARMA filter output is not 
observable. Now parameters a[k] contribute non-linearly to a minimum 
error criterion. 

Can be solved with error-back propagation (Shynk 1989) or general 
purpose non-linear optimization (Ljung 1999) … in matlab: oe.m 

  y[n] 
 

a[k] 

  x[n] 
 b[k] 

  e[n]

-

+

John Shynk, 1989, Adaptive IIR filter, IEEE ASSP Magazine 
Lennart Ljung. System Identification: Theory for the User, 2nd edition: Prentice-Hall PTR, 1999.

 

ŷ [n]

ŷ [n]=−∑
k=1

P

a [k ] ŷ [n−k ]+∑
k=0

Q

b[k ] x [n−k ]

https://doi.org/10.1109/53.29644
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Impulse response - ARMA filter

Assignment 3:  
A) Show that an ARMA filter is a linear system. You may assume 
y[n]=0 for n<1, i.e. Zero memory as initial condition.
B) Optional question: Is an ARMA filter shift invariant?

Hint for part A: Use proof by induction. Base the induction by proving 
linearity for n<1. In the induction step assume linearity for n-1, n-2, n-
3, ... and then prove it for n using the definition of the ARMA filter.

Definitions:

Linearity:  With                                         show that  

y1[n ]=L[ x1[n] ]=...
y2[n ]=L[ x2[n ]]=...

x [n ]=c1 x1[n]c2 x2[n ]

y [n ]=L [ x [n] ]=−∑
k=1

P

a [k ] y [n−k ]∑
k=0

Q

b[ k ] x [ n−k ]

y [n ]=c1 y1[n]c2 y 2[n]
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Impulse response -ARMA filter

>> y = filter(b,a,x);

Note the ambiguity in this representation of the impulse response. 
For example one can represent h(k) = ck  as
 

b(k) = ck, Q  and a=0, P = 0 
or as 

b(0) = 1, Q  =  0 and a(1) = -c, P = 1

Advantage of the AR representation: Smaller number of parameters.

Disadvantage: Stability in not guaranteed! Test with  
>> abs(roots(a))<1 

y [n ]=−∑
k=1

P

a [k ] y [n−k ]∑
k=0

Q

b[k ] x [ n−k ]
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Convolution

  x[n] 
 h[n] 

  h[n] 
 x[n] 

  x[n] 
 h[n] + k[n]

 x[n]  h[n] 

k[n] 
+

  x[n] 
 h[n] * k[n]

  x[n] 
 h[n]  k[n] 

Using this definition one can show the following properties:

Commutative:

                                                      =

Distributive:

                                                       =

Associative:

                                                      =

h [n]∗x [ n] =∑
k=−∞

∞

h[ k ] x [n−k ]
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Impulse response - ARMA inverse

∑
k=0

P

a [k ] y [n−k ]=∑
k=0

Q

b[ k ] x [n−k ]

Notice the symmetry of the ARMA filter definition:

where a[0]=1. The inversion of h[n] is given then by 

  b[0]x[n]  

b[k] 

  y[n] 
 

 (h[k])-1  

a[k] 

b [0 ] x [n]=−∑
k=1

Q

b[k ] x [n−k ]∑
k=0

P

a [ k ] y [n−k ]
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Impulse response - FIR inverse

[n ]=∑
k=0

Q

h[k ] g [n−k ]

What is the causal inverse g[k] to a causal FIR h[k]?

Since convolutions is associative:

After rearranging terms:

Therefore, the causal inverse of a causal FIR filter is the impulse 
response to the corresponding AR filter: 

  x[n]    y[n] 
 

 [k]  

h[k]   g[k]   
  x[n]  

g [n]h [0]=[n]−∑
k=1

Q

h [k ] g [n−k ]

  g[n]h[0]  
h[k] 

  [n] 
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