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Accessible introductions
Pearl, J., and Mackenzie, D. (2018). The Book of Why: The New Science of Cause 

and Effect (Basic Books).
Angrist, J.D., and Pischke, J.-S. (2014). Mastering ’Metrics: The Path from Cause 

to Effect (Princeton University Press).

Textbooks
Pearl, J. (2009). Causality (Cambridge: Cambridge University Press).
VanderWeele, T. (2015). Explanation in Causal Inference: Methods for Mediation 

and Interaction (Oxford University Press).

Papers on special topics
Pearl, J. (2013). Linear Models: A Useful “Microscope” for Causal Analysis. 

Journal of Causal Inference 1, 155–170.
Cinelli, C., Forney, A., and Pearl, J. (2020). A Crash Course in Good and Bad 

Controls (Rochester, NY: Social Science Research Network)
Angrist, J.D., Imbens, G.W., and Rubin, D.B. (1996). Identification of Causal 

Effects Using Instrumental Variables. Journal of the American Statistical 
Association 91, 444–455.

Recommended reading
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Causal graphs have direction, unlike associative networks*

* Bayes networks are associative. Direction, can be turned around with Bayes rule. 

Causal graphs vs associative graphs

X Y X Y

P (Y , X )P (Y∣do( X ))

Causal: Distribution of Y that 
results if we do fix value of X

Unidirectional because changing   X 
will change Y, but adjusting Y does not 
change X.

Example: When it rains, the grass gets 
wet, but poring water on the grass does 
not make it rain.

Associative: Observed distribution of 
Y and X

Bidirectional because the observed value of Y 
is predictive of observed value of X, and vise 
versa, even if they don’t directly affect each 
other.
Example: The weight of one sibling predicts 
weight of the other (genes, culture, etc), but 
dieting will not affect the weight of the sibling 
(unless they copy each other). 

P (Y∣X )P ( X∣Y )
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Best to think of it in terms of process how the data was generated. 

In code (using ← instead of = to make assignment clear):

These two processes can generate identical data ...

Can not be inferred from data alone

X YX

Example: Direct causal effect 
of X on Y

Example: Association of X with Y 
due to unobserved common cause Z

X YX

Z

X← randn(N)
Y← 3*X+randn(N)

Z ← randn(N)  % unobserved
X ← 1*Z
Y ← 3*Z + randn(N)
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From just observing X and Y, the two models are indistinguishable:

Unless of course you get to see Z
(here color-coded): 

Can not be inferred from data alone

X YX
X Y

Z
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Don’t need to see Z if we intervene to do (X← 1) …

… then the two processes will result in different observed P(Y|do(x))

In conclusion,  P(Y|do(x)) captures how the distribution of Y is causally 
affected by forcing X←x. 

Intervention – do(x)

X ←  1
Y←  3+randn(N)

Z ← randn(N)
X ←  1
Y ←  3*Z + randn(N)
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P(Y|do(X←x)) will depend on what value we pick for x, but only 
when there is a causal link between X and Y:

           => X causes Y       =>  X does not cause Y
 

In contrast, P(Y|X) only captures the association, which may be due 
to cause and effect, or some unobserved common cause.

P(Y|X) can not tell the difference.              

Intervention – do(x)

X YX X YX

Z
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Simpson’s Paradox

Example – Gender bias: Graduate admissions at Berkley in 1973 
shows a bias in favor of males University wide, but a bias in favor of 
women in most individual department. How is that possible? 

AdmissionGender

Department

https://en.wikipedia.org/wiki/Simpson%27s_paradox

Y
Health

X
Meds.

Z
Age

Conclusion: 
●Need to “control” for 
common cause.
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do(x) while controlling for Z :

This motivates the name “Average Causal Effect” (ACE) for P(Y|do(X)). 

Adjustment formula

X YX

Z

P (Y∣do(x ))=∑z
P (Y∣x , z )P (z )

Z=z
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Making causal model relationship explicit in structural equations. For 
example, assume that: 

Parameters β reflect the causal effects we want to estimate. For example, 
 β

yx
 is the size of the effect that a unit increase in X causes on Y.

U
z
 and U

y
 are unobserved source of individual variation, or “omitted 

factors”. If they are normally distributed we can estimate the ACE with 
ordinary least squares from observations X

i
, Y

i
, Z

i
. i=1..N 

Linear models

X affects Y, but both are 
affected by Z:

Structural equations are 
linear:

Y ←βyx X +βyz Z+U y

X ←βxz Z +U x

Z←U z

X YX

Z

βyx

βyzβxz
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Confounding

The effect of X on Y is confounded by the common cause Z. We can  
“control” for Z  by estimating parameters with ordinary least squares (OLS)*:

With OLS we can also estimate a few other associations, e.g.

Well-established property of OLS reveals the bias introduced by Z*:

Association = Direct effect    +    Bias
    X→Y    X→Y  X←Z→Y

Z was  “controlled for” by adding as regressor to the OLS. 

X YX

Z

βyx

βyzβxz

r yx=βyx+βyz r zx

y=β yx x+βyz z+e y

y=r yx x+e y z=r zx x+ez

* A good summary on linear models for causal inference is Pearl, J. (2013).

β
yx 

, β
yz  

are called “partial regression coefficients”, 
because each explains a part of the variance of y. 
They are denoted ryx.z, ryz.x to make explicit their 
dependence on the other variable. 
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Assignment

Derive this relationship 

By correlating the following equations with x
 

And solving for β
yx 

, β
yz
 , r

yx 
, r

yz
 . You can assume that the correlation of x 

with the error terms e are all zero, and that all variables are zero mean.  

r yx=βyx+βyz r zx

y=β yx x+βyz z+e

y=r yx x+e
z=r zx x+e
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Assignment

Look at the two datasets of variables X, Y, Z (on website 
cause_or_confound.mat). Answer the question, does X causally affect 
Y assuming that Z may be a common cause for X and Y, i.e. prior 
knowledge model assumes: X←Z → Y, X→Y )? Use OLS to estimate 
all regression parameters with Z as potential confound. Compute all 
effect sizes (all betas)  
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Confounding – example in code
% emulate some data that fits model assumption exactly:
N=200;
beta_yx = 3;
beta_xz = 1;
beta_yz = 1;

% emulate individual variation
U_z = randn(N,1); % confounder variation
U_y = randn(N,1); % outcome variation
U_x = randn(N,1); % treatment variation

% emulate linear data-generation process 
Z = U_z;
X = beta_xz*Z + U_x; 
Y = beta_yz*Z + beta_yx*X + U_y;

% fit the data with linear model while “adjusting”, “controlling” for Z
m = fitlm([X Z],Y); 
r_yx_z = m.Coefficients.Estimate(2);
r_yz_x = m.Coefficients.Estimate(3);

% fit the naive associations
m = fitlm([X],Y); r_yx = m.Coefficients.Estimate(2);
m = fitlm([X],Z); r_zx = m.Coefficients.Estimate(2); 

% show results: 
r_yx_z       % estimate of true effect of X→Y 
r_yz_x*r_zx  % estimate of bias 
r_yx         % estimate of total association      

X YX

Z

βyx

βyzβxz

Output on one sample run of this code:
2.9987 estimate of βyx =3  
0.5093 estimate of bias
3.5080 total association is exactly the sum  
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Example - Selective dating: Looks and kindness are reasonable selection 
criteria for dating. If you exclude ugly and mean candidates (green), and/or 
if good looking nice candidates are beyond your reach (red), you will find 
in the remaining candidates (blue) that looks and kindness are negatively 
correlated.    

When not to “control”: Berkson's paradox

lookskind
ness

date

collider or selection bias

Conclusion: 
●Controlling for a collider 
introduces spurious correlation.

●Any kind of selection has a risk 
of bias.
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Mediation

y=β yx x+βyz z+e y

y=r yz z+e y

x=β xz z+e x

r yz=β yz+βyxβxz

X YZ

X

βyz

βyxβxz

The diagram for mediation is the same as confounding. In this view X 
mediates indirect effect of Z on Y. Parameters can be found with two 
OLS:

With LS we can also estimate another association

Which reveals the total association (proof: correlate with z):

Total effect = Direct effect +  Indirect effect
    Z→Y    Z→Y    Z→X→Y

The total effect is the “path integral” from cause to outcome – concept pioneered by 
Sewall Wright (PNAS, 1920) The Relative Importance of Heredity and Environment in Determining the 
Piebald Pattern of Guinea-Pigs: “The correlation between two variables can be shown to equal the sum 
of the products of the chains of path coefficients along all of the paths by which they are connected.   
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Example: A salient stimulus is easy to memorize and might elicit stronger 
neural activity. Say we have a measure of salience S, strength of neural 
response N and memory performance M, i.e. correct and incorrect recall. 
The questions is, does stronger neural activity itself cause better memory, 
or is it just the results of salience driving both?

We can not do(n), but we can measure all three variables.

M is binary (correct vs incorrect) so P(M|n,s) could be a logistic model:

i.e. logistic regression, an example of “generalized linear model”.

Adjustment formula with binary outcome

X MN

S

P (M∣do(n))=∑s
P ( M∣n , s) P(s )

P (M∣n , s)=logistic (βn n+βs s+β0)

logistic (x )=e x
/(1+e x

)
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For a binary outcome Y we use a logistic model:

The “log odds” is the log of the odds ratio of the two outcomes Y=1 vs 
Y=0: 

Coefficients β
yx

 and β
yz
 indicate how much the log-odds ratio of Y 

increases with an unit increase of x or z.  
If z depends linearly on x with a corresponding linear model: 

then exp(β
yx

) is the direct effect of an unit increase in x, exp( β
yz
β

zx
) is the 

indirect effect mediated by z, and exp( β
yz
β

zx
+β

yx
) is the total effect on the 

odds ratio of outcome y. Can use fitglm() for both models.  

Binary outcome

X YX

Z

P (Y∣X ,Z )=logist (βyx X +βyz Z +β0)

log(
P (Y )

1−P (Y ))= logit ( P (Y ))=β yx x+βyz z+β0

z=β zx x+e z
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Mediation

X YX

Z

For the general non-linear case, assuming the mediator Z is not 
confounded then the direct and indirect effects from X → Y are in 
terms of expected values E(Y):*, **

And the total effect X → Y is the sum: 

* Pearl, 2009, p. 132
** Treatments X=1 and X=0 can be replaced in these formulas by any two values x and x’.

DE=∑z
[ E (Y∣z , X =1)−E (Y∣z , X =0)] P( z∣X =0)

IE=∑z
E (Y∣z , X =0) [ P( z∣X =1)−P( z∣X =0)]

TE=DE + IE

DE

IE IE
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Quick rules on when to “adjust” or “control”  and when not to adjust*
●Adjust for common causes to remove bias. See Simpson’s paradox. 
●Control for variables that inject variation, even if they do not introduce bias, 
controlling does improve precision.
●On the other hand, if control variable does not explain any variance, then the 
extra parameter reduced statistical power, i.e. fitting noise. So only add 
control variables that are expected to have an effect. 
●Do not control for colliders as this can introduce bias, see Berkson's paradox.
●Note that if there is an effect X→Y, the statistical test can also find an effect 
Y→X. The direction can not be established from the data alone and comes 
insted from prior knowledge!

Comments on regression with binary variables:
●Regression with binary regressors is the same as taking the difference.
●LS still gives correct β if treatment is binary, but not if the output is binary. 
Use generalized linear models, e.g. logistic regression in that case.  
●In case of binary variable, the p-values from regression are the same as a p-
values from 2 sample t-test and effect size β is the same as Cohen’s d-prime.

* Cinelli, C., Forney, A., and Pearl, J. (2020). A Crash Course in Good and Bad Controls.

Comments on adjustment and regression
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In a graph, the do(X← x) operation removes the links to X and instead 
sets the values with some external value x.

Model: do(x) in Model:

The resulting distribution P(Y|do(x)), which is a function of x, reflects the 
causal effect of X on Y, regardless of other effects!

How can we estimate the causal effect P(Y|do(x))?

The simplest is to actually set  X← x for various values of x , i.e. to 
control x in a “controlled trial”. But for some models, that is not needed. 

Intervention – do(x)

Z

X Yx

Z

X Y
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In a RCT variable X is controlled by setting it to a random values. 
Example: Say X, Y, Z are all continuous with Z “confounding” the causal 
effect of X on Y which in this example we set to

Intervention – Randomized Controlled Trial

Z

X Yx

Z

X Y

Z

X Y

Observed confounder 
(easy, use LS)

Unbserved confounder 
(can’t do anything)

RCT to break influence of 
all(!) confounders on X

βyx=−1
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Instrumental variable (natural experiment)

What to do when one can not really fix X.  e.g. when the hypothesis is 
that the intervention causes damage, say smoking. Also, in RCT when 
participants don’t comply with instructions. 

We can use a “instrumental variable” Z

Examples are natural experiments. Imagine Z is assignment to treatment 
or incentive (school lottery). X is treatment (attending school). Y is 
outcome (future salary). Problem is that confounders could affect who 
actually chose/complies with treatment (wealth affects private school 
enrollment and job prospects). 

X Y

U

Z
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Instrumental variable – linear case

IV is the case of mediation with no direct effect of Z on Y (“exclusion” 
assumption) and a confounder U.

The linear case is special. It allows estimate of average causal effect X→ 
Y with the same mediation formula (zero direct effect) and is called the 
Instrumental Variable Estimate*:

It is still the correct ACE estimate, P(Y|do(X)),  despite unobserved 
confounder U**
* this is the mediation formula for z→x→y with no direct effect of z→y.  
**Pearl 2009, Causality, Chapter 5. IVE dates back to ~1928 Philip and Sewall Wright (father and son) 

IVE=βyx=
r yz

r xz

X Y

U

Z
βyxβxz
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Instrumental variable (natural experiment)

If not linear, then the story is more complicated. An important nonlinear 
case is that of natural experiment or RCT with incomplete compliance. 
Individuals are assigned (binary Z) to treatment (binary X) and my or may 
not comply with the assignment.   

We could be asking for a few different things:
● ACE = Average causal effect of treatment X on outcome Y: P(Y|do(x)) 
● ETT = Effect of Treatment on the Treated: P(Y|do(x), X=1). This is a 

conterfactual: We need to know what would have happened for X=0 on 
subjects who actually received treatment X=1.

● ITT = Intention To Treat analysis. P(Y|do(z)). Everyone is analyzed even if 
they did not comply with assignment. This captures effect of assignment 
on outcome, rather than effects of treatment. Effect on general population 
will vary with the incentives.*  

● PP = Per Protocol analysis, P(Y|X): PP=E[Y|X=1]-E{Y|X=0], i.e. diffence 
in outcome between those that got treatment and those that did not, 
regardless of assignment.*

* ITT analysis is generally thought to be less susceptible to bias from non-complicance and dropout as 
compared to PP analysis. However, bias can go either way: Say drug makes some participants sick. If these 
drop out, then the PP analysis will make drug look better. If they stay in study, but stop taking the drug as 
prescribed, then the ITT analysis will look better for the drug.
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Instrumental variable (natural experiment)

If both Z and X are binary (X no longer linear with Z), the formula reads

Expression to the right is called local average treatment effect (LATE)**. 
In words:

LATE =  Effect of assignment on outcome (i.e. ITT) 
                 Fraction that followed the assignment  

It is numerically identical to the IVE. The neat thing about using 
regression coefficients formulation is that you can add other observed 
covariates W:

IVE=
r yz

r xz

=
E (Y∣z=1)−E (Y∣z=0)

E ( X =1∣z=1)−E ( X =1∣z=0)

IVE=
r yz .w

r xz . w

** Angrist, J.D., Imbens, G.W., and Rubin, D.B. (1996)
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Partial compliance example

N=200
True Average Causal Effect=3
Intention to Treat analysis=2.0025  (under estimates effect of schooling)
Per Protocol analysis=4.1906 (over estimate effect of schooling)
LATE estimate=3.2825 (closer, but not guaranteed to be exact, even for large N)
ACE Regression estimate=3.2457 (used U as covariate – perfect knowledge)

Example, say X is private school attendance, Y future earnings, Z school 
admissions, U is household income. Simulated data following model in slide 15... 
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Natural experiment theoretical results
 

Theoretical results and a few special cases:

LATE = ETT if no intruders i.e.  P(x=1|z=0) = 0 *

LATE = ITT if no intruders and no dropouts i.e. P(x=1|z=1) = 1

LATE = ACE if no defiers (“monotonicity” assumption), i.e. Defier is a 
person that always does the opposite of assignment.**, + 

ACE can not be estimated, in general, with any more accuracy than rate 
of noncompliance: P(X=1|Z=0)+P(X=0|Z=1)***

Angrist and Imbens received Nobel price in economics 2021 on this topic. 

* Pearl, Causality, 2009, Equation 8.20
** Angrist, J.D., Imbens, G.W., and Rubin, D.B. (1996). 
*** Pearl, Causality, 2009, Equation 8.17
+ Critique from Pearl is that assumption can not be verified based on observations. 
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Noncompliance in controlled experiments

Observed behavior Hypothetical behavior

Type of participants  can not be 
determined from the data. Only if we 
assume there are no defiers, can one 
estimate the fraction of the other three.

Hypothetical behavior requires 
“counterfactual” or “potential 
outcome” reasoning, which is integral 
to causal inference, but we will leave 
out of this lecture.   

Type of participants directly 
observable in the data.

Assigned to 
Treatment

Assigned to 
control

Complier Treated Not treated

Always taker Treated Treated

Never taker Not treated Not treated

Defier Not treated Treated

Assigned to 
treatment

Assigned to 
control

Treated Compliant Intruder

Not treated Dropout Compliant
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Estimate LATE, ITT estimate, PP estimate, and ACE from variables X, Y, Z, U in 
‘LATE_example.mat’ and make figures as in slide 27. Assume the causal graph is as in 
slide 23. This data was generated the same way with the same effect sizes, but will not 
give the exact same values due to random sampling. 

Assignment



31

Lucas Parra, CCNY City College of New York

So far the effect of x on y, was independent of z. Interaction is when 
it depends on the value of z

Single linear model able to identify all (provided enough data)

Interaction

Z=1
Z=0

X X X

Y

X YX

Z

X YX

Z

X *

Z

Y

y=βo+βx x+β z z+βxz x∗z+e y

βz≠0 βx≠0 ,βz≠0 βx≠0 ,βz≠0 ,βxz≠0
If  Z is a mediator (X→Z) it may also interacts with X and one can used 
the same ordinary least squares (See VanderWeele, 2015, section 2.2)
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In the case of a significant interaction, 
non-zero “simple main effect”         
does not mean that z has an effect in 
the actual range that is observed for x. 
The size of the treatment z on the 
average person (with average            ) 
is 

This is sometimes called the “overall 
main effect”.    

 

Interaction interpretation

Z=1
Z=0

X

y=βo+β x x+βz z+β zx x∗z+e y

βz

Y

β0

βx

1

βx+βxz βz

X̄

x= x̄

B z=βz+β zx x̄

B z

If we subtract the mean of x prior to running the model then
And we can interpret p-value for the simple main effect as the 
significance of the effect of  treatment z on the average person.  

B z=βz
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Is there a formal way to figure all of this out? What about non-linear 
relationships. Yes, rules of probability plus rules of do Calculus*

Rule 1 (insertion/deletion of observation)
 

Rule 2 (action/observation exchange)
  

Rule 3 (insertion/deletion of action)
  

        - Graph where arrows into X have been removed
        - Graph where arrows out of X have been removed
                          - Means that Y is independent of Z given X in 
                             graph G, i.e. conditional independence. 

*Pearl, Causality, 2009 page 85

When can we just use observations?

P( y∣do( x) , z ,w)=P ( y∣do(x ),w )if (Y⊥ Z∣X ,W ) ,GX

P( y∣do(x ) , do(z) ,w)=P( y∣do(x ) , z ,w)if (Y ⊥Z∣X ,W ) ,GX Z

P( y∣do(x ) , do(z) ,w)=P( y∣do(x ) ,w)if (Y⊥Z∣X ,W ) ,GXZ

GX
GX

(Y⊥ Z∣X ) ,G
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“Y independent of Z given X in graph G” What does that mean?                

Conditioning is like freezing at Z=z, so Z will no longer  cause a variation 
in X or Y, and they will no longer co-vary, so they become independent 
upon conditioning. True for “forks” and “chains”

However, the opposite will happen for a “collider”:

When we freeze Z=z, what was independent now becomes dependent, 
because any change in X needs to be compensated by a change in Y so 
that Z remains unchanged at Z=z. 

Pearl suggests to think of conditioning as a valve for information flow, 
opening if for colliders and closing it for chains and forks.   

Conditional independence

YX Z=z YX Z=z

YX Z=z
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Same rationale as linear model, but now taking history into account.  The 
causal assumptions are captured by this graph*:

The word “causes” is a misnomer. Granger himself prefers to say X is 
temporally associated Y. Better terminology is X forecasts Y. Because we 
have a history, we can say that X forecasts Y, or Y forecasts X, or both. 
So we can establish a direction of the effect, which we could not do 
without history.

* Granger received Nobel Prize in 2003. 
Thanks to Behtash Babadi for a lot of help with this material on Granger Causality! All errors mine.  

Granger “Causality” – temporal precedence 

y(t)Y(t-1) Y(t-1)

X “Granger causes” Y Y “Granger causes” X 

X(t-1) x(t)X(t-1)

X(t-1) here can stand for 
longer history with Q delays: 
x(t-1), x(t-2) … x(t-Q).
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The test measures if the red arrow is non-zero, by fitting a two linear 
model, e.g. for X→ Y fit the “full” a “reduced” models 

In system identification these are called ARX and AR model, respectively (here with 
filter length Q=1). Parameters a,b can be found with ordinary least squares. Various 
significance test exists, eg. Wald Test or log-likelihood ratio (LR) test. For e(t) normally 
distributed this is the log of the sum of squares of the residual (sum over T samples), or 
Deviance (defined as 2*LR):

For large T, this D follows a Chi-square distribution with Q degrees of freedom (here 
the length of filter b). So the p-value for significance is: 

This test assumes that innovation e(t) is normal i.i.d.  Independence is why Y(t-1) is 
included in the model. Identical implies that it is stationary. In total, it requires that 
signals are normal and WSS. For small T this is not a good test.      

Granger “Causality” – test for significance

y (t)=a Y (t −1)+b X (t−1)+e f

y (t)=a Y (t −1)+er

D=T log (∑t
er

2
(t) /∑t

e f
2
( t))

p=1−chi 2cdf (D , Q)
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In case of a common-cause confounder Z(t-1) …

… one can simply add it to the regression as before.

The statistical test remains the same.  

Granger “Causality” – confounders

y(t)Y(t-1)

X(t-1) Z(t-1)

y (t)=a Y (t −1)+cZ ( t−1)+b X ( t−1)+ef

y (t)=a Y (t −1)+cZ ( t−1)+er
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Granger “Causality” – let’s get real

function pval = granger_test(x,y,Q,z,control)
% Tests if time series Y can be linearly predicted from Q preceding 
% values in time series X while controlling for Z.
% (c) Lucas Parra, May 9, 2022. Use at your own risk. 

X = toeplitz(x(Q:end-1),x(Q:-1:1));
Y = toeplitz(y(Q:end-1),y(Q:-1:1));
switch control
    case 'instant'
        Z = toeplitz(z(Q+1:end),z(Q+1:-1:2));
    case 'delayed'
        Z = toeplitz(z(Q:end-1),z(Q:-1:1));
    case 'none'
        Z = [];
end
bf = [X Y Z]\y(Q+1:end); % full model
br = [  Y Z]\y(Q+1:end); % reduced model
SSf = sum((y(Q+1:end)-[X Y Z]*bf).^2);
SSr = sum((y(Q+1:end)-[  Y Z]*br).^2);
[T,P] = size(X); % making sure numbers are correct for stats
D = T*log(SSr/SSf); % Deviance (2*log-likelihood ratio)
pval = 1-chi2cdf(D,P);
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Granger – risk/benefit of controlling for z 

Effects of different ways of “adjusting” for variable Z(t) (none, instant, delay). 
“instant” includes the current sample Z(t) as regressor, “delay” only includes the 
history Z(t-1).  In the data generation process (equation error model) the variable Z 
had one of 3 roles:
              collider      independent common cause  

y(t)x(t) z(t)y(t)x(t) z(t) y(t)x(t) z(t)
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If there is an instant effect, the direction of GC can not be established. Both directions will show 
up in the result. 

In case that there is a collider, conditioning on it with instant delay can introduce strong collider 
bias, i.e. find GC where there is none. Conditioning on the history of the collider is safe.

Flip side, if there is an instant common cause as confound, conditioning on it improves power to 
detect true GC. So, in general, use instant de-confounding only if you are very sure about cause 
and effect of the de-confounding variable.

For smaller T, rate of false discovery of GC goes up i.e. the test finds a GC link where there is 
none.  Can partially fix this by using T’=T-P in Deviance definition. Trust GC only for large T.

Don’t trust the test if the data generating model does not match the ARX model, e.g. when the 
dynamic variables are not directly observed, as in the output-error model.      

The difference of GC modeling over conventional linear modeling (fitlm() in matlab) is that the 
likelihood ratio test of GC does a single test for the entire history, whereas linear modeling tests 
each delay. Thus, GC test provides higher statistical power.

All bets are off if the effect is non-linear or the error is not normally distributed, or signals are not 
wide sense stationary, e.g. heteroscedastic, as in the stock market. 

Granger “Causality” – comments and caveats
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Determine which causal (forecast) graphs are consistent with the data in 
‘granger_example.mat’. Variables there are a, b, c. Compare with the truth information 
reflecting how the data was generated. Are the Granger estimates consistent, are there 
false discoveries, are there missing links?   

Assignment
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