

BME I5100: Biomedical Signal Processing (Was Non-linear signal processing in biomedicine)

Introduction

Lucas C. Parra Biomedical Engineering Department City College of New York

Biomedical Signal Processing - Content

We will cover basic principles of signals processing. We will emphasize examples and focus on electrical signals generated by the biological systems (biopotentials).

We will introduce concepts from:

- filter theory
- statistical processes
- pattern recognition
- information theory
- probabilistic modeling
- Neurophysiology
- MATLAB

Prerequisite:

linear algebra, some programing language, complex variables.

Literature

Eugene N. Bruce, Biomedical Signal Processing and Signal Modeling, John Wiley & Sons, 2000

Schedule

Week 1: Introduction

Linear, stationary, normal - the stuff biology is not made of.

Week 1-4: Linear systems (mostly discrete time) Impulse response Moving Average and Auto Regressive filters Convolution Discrete Fourier transform and z-transform

Week 5-7: Random variables and stochastic processes

Random variables Multivariate distributions Statistical independence

Week 9-14: Examples of biomedical signal processing

Probabilistic estimation

- Linear discriminants **detection** of motor activity from MEG
- Harmonic analysis estimation of hart rate in Speech

Auto-regressive model - **estimation** of the spectrum of 'thoughts' in EEG Independent components analysis - **analysis** of MEG signals Klaman Filtering – motion estimation

Schedule

Week 1: Introduction

Linear, stationary, normal - the stuff biology is not made of.

Week 1-4: Linear systems (mostly discrete time) Impulse response Moving Average and Auto Regressive filters Convolution Discrete Fourier transform and z-transform

Week 5-7: Random variables and stochastic processes

Random variables Multivariate distributions Statistical independence

Week 8: Electrophysiology Origin and interpretation of Biopotentials

Week 9-14: Examples of biomedical signal processing Probabilistic estimation

Linear discriminants - detection of motor activity from MEG Harmonic analysis - estimation of hart rate in Speech Auto-regressive model - estimation of the spectrum of 'thoughts' in EEG Independent components analysis - analysis of MEG signals

Biomedical Signal Processing and Signal Modeling

Biomedical Signal Processing -Signal processing and statistical modeling methods useful when analysing biomedical signals, e.g.

- Electro and Magneto Encephalography
- Electro Myograms and Cardiograms
- Circadian rhythm in body temperature
- Spike trains
- Speech
- .

Property of BioMed signals: non linear, non stationary, non Gaussian

Linear transformation y = L[a]:

$$y(t) = L[a x_1(t) + b x_2(t)] = a L[x_1(t)] + b L[x_2(t)]$$

Physics often calls for linear combination of signals:

- Mass, force, energy
- Concentrations in solutions.
- Electrical and magnetic fields.
- Intensity of incoherent electromagnetic radiation (X-ray, visible light, radio-waves)
- Amplitude of acoustic signal.

•

Lets look for example at EEG >> load eeg.mat

City College of New York

Linear, Stationary, Normal - The stuff biology is not.

Example: We record frontal EEG electrode y(t). It will be contaminated with eye muscle activity. Assume eye muscle activity generates electrical source signal, $x_1(t)$, and some other frontal brain activity gives source, $x_2(t)$. Physics tells us that electrical potentials add up linearly:

$$y(t) = [ab] \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

where [*a b*] represent the coupling coefficients for eye muscle and frontal activity respectively.

$$y(t) - a x_1(t) = b x_2(t)$$

Linearity is crucial because given an estimate of $x_1(t)$ and *a* for example from an electro-oculogram (EOG) we can subtract its influence on y(t):

8

City College of New York

Linear, Stationary, Normal - The stuff biology is not.

Note that non-linearity can often be identified even in a 1D signal by it's **harmonic distortions**.

>> psd(sin(x)) >> psd(atan(sin(x))
Or with current matlab:
 periodogram(sin(x),[],fs/5,fs) % use fs=200 9

Linear, Stationary, Normal - The stuff biology is not.

Harmonic distortion explained ...

For example distortion of quadratic nonlinearity leads to frequency doubling:

Cubic leads triple frequencies:

 $x(t) = \sin(\omega t)$ $y(t) = x^{2}(t) = \sin^{2}(\omega t) = \frac{1}{2} - \frac{1}{2}\cos(2\omega t)$ $y(t) = \sin^{3}(\omega t) = \frac{3}{4}\sin(\omega t) - \frac{1}{4}\sin(3\omega t)$

General non-linearity contains all orders according to Taylor expansion:

$$y = f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\partial^n f(x)}{\partial x^n} \right]_{x=0} x^n$$

Often '**normal**' distributions are assumed, i.e. Samples are **Gaussian distributed**.

Important because of many nice properties of the Gaussian probability density function (pdf):

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

- Convolution of Gaussian remains Gaussian
- Product of Gaussian remains Gaussian
- Parameter σ easy to estimate.
- Leads to least squares optimization criteria
- Sums of many random variables converges to Gaussian, e.g. Brownian motion

City College of New York

Unfortunately many natural signals are NOT Gaussian.

On the left is an example of Tongue electro-myogram (EMG):

The property of *heteroscedastisity* is often used in the context of financial time series. e.g. NY stock exchange index. It states that the signal is short term Gaussian with **time varying** standard deviation.

City College of New York

There are **many non-stationary signals** that can be explained in first approximation as heteroscedastic. In multiple dimensions these signals are also known as *spherical invariant random processes*.

City College of New York

Linear, Stationary, Normal - The stuff biology is not.

- Many natural signals are **not stationary**, and **not normal**, and many systems are **not linear**.
- Analysis and signal processing is **OFTEN EASIER** if one can assume stationary, normal signals and linear systems.
- It is important to identify the nature of the signals and possibly apply preprocessing to make the assumptions simpler.
- Non-linearity may be identified simply by looking at scatter plots, or harmonic distortions if a strong oscillation is present (often 60Hz).
- Non-Gaussian properties can be identified by looking at histogram. We will use cummulants to asses 'normality' quantitatively.

All signal analysis starts by **LOOKING AT THE DATA**!

Grading

Assignment 1: Reproduce the four figures on slides 8, 9, 11, 12 from the raw data. Use the files eeg.mat and tongemg.mat.

For help on MATLAB run	Useful functions
>>`demo	>> lookfor
>> help	>> whos

In particular, if you are new to matlab, please make substantial time available to run the demo programs which are a very good introduction to matlab: basic matrix operations, line plotting, matrix manipulations, 2-D plots, matlab language introduction, axis properties, graphs and matrices, and maybe some of the desktop environment demos as you see fit.

Grading

Good News - No final nor midterm exam!

Bad News - Assignments:

- 1. MATLAB programing
 - Turn in next week my email
 - Needs to run correctly 75% of the time for passing.
 - Needs to run perfectly 100% for the time for A+.
 - May have pop quizzes to test "undisclosed collaborations".
- 2. Proofs
 - Turn in next week
 - Easy, just to exercise the notation
- 3. Reading
 - Understand the subject and cover gaps
- 4. May have pop quizzes on reading and programming assignments.

Programming Assignments

- If you copy code you will fail the course.
- Assignments due in one weeks time. Submit per email **before class**.
- Submit **single executable file** called: first_last_number.m, all lower case e.g. john_smith_3.m for John's 3rd assignment. No figures, no text files, nothing except executable code.
- Your program must load all required data. Assume that data files are in current directory. All required data will be posted on the web.
- Include 'clear all, close all' at the beginning of all programs.
- **Do not use upper case** letters for commands, e.g. Use axis() instead of 'AXIS()'. They may work for you but they don't work for me!
- If you had help during your work, you MUST name your partner.
 "Similar" submission are easy to spot. Undisclosed collaborations receive 0 credit.
- The criteria for full credit should be clear. If not, please ask in class. Do not take chances by assuming that your work is "sort of correct".