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Linear Mixtures
... problem statement ...

X = A S

Q: Given X can you tell what A and S is?

A: Yes! Use prior information on A and S.



Mixing of Independent Sources
... basic physics often leads to linear mixing ...

Think of S as sources s
i
(t),  X as sensor readings  x

j
(t), and  A as a 

physical mixing process with coefficients a
ij
. 

X =       A            *          S

Examples are:
Acoustic array    microphone = room response * sound amplitude
Spectroscopy spectra = concentration * emission spectra
Hyperspectral image = abundance * reflection spectra
EEG elect. potential = elect. coupling  * electrical potential 
MEG              magn. field = magn. coupling * electrical current

In source separation prior knowledge is 
statistical independence 
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Separation Based on Independence
... non−Gaussianity, non−stationarity, non−whiteness ...
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Statistical independence implies for all i≠j,t,τ,n,m:

For M sources and N sensors each  t,τ,n,m gives M(M−1)/2 
conditions for the NM unknowns in A.

Sufficient conditions if we use multiple:

use sources assumed resulting algorithm
n, m non−Gaussian ICA
t non−stationary multiple decorrelation
τ non−white multiple decorrelation



Multiple Decorrelation
... solution given by  generalized eigenvalues ...

R
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Second order independence implies diagonal cross−correlation 
for the sources Λ

s
(τ) = E[s(t) sT(t+τ)]. 

The measured cross−correlation R
x
(τ) = E[x(t) xT(t+τ)] is then

Combing these equations for two time delays  τ=τ
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Quickie BSS
... source separation in two lines ...

  [W,D] = eig(X*X’,R);   % compute unmixing matrix W
  S = W’*X;              % compute sources S

X is NT matrix containing T samples of N sensor readings presumably 
generated by X=A*S, with A=inv(W’). 
[V,D]=eig(A,B) is the generalized eigenvalue procedure such that 
A*V=B*V*D,  i.e.  V jointly diagonalizes A and B. 
  
use sources assumed
R = Cross−correlation at some delay τ

2
non−white

R = Covariance at different time t
2

non−stationary

R
 
= Cumulant of some higher order m non−Gaussian

More robust if one diagonalizes more than two matrices. Details and 
references at quickiebss.html



Source Separation in MEG
... prior knowledge: sources decorrelated and non−white ...

X             =            A             *          S

i=6 

i=50 

i=20 

ith column in A  
visual 

visual 

auditory 

stimulus locked s
i
(t) 

Magnetic fields 
measured in 
SQID sensors

Effective current 
flows in neuronal 
populations

Magnetic coupling 
or attenuation due   
to geometry

Data and results provided by Akaysha Tang and Barak Pearlmutter from UNM. To 
appear in in Neural Computations, 2002



Source Separation in Hyperspectral Imaging
... prior knowledge: innovation process independent ...

X           =           A            *          S
Images at 
multiple 
wavelengths

Reflectance of each 
material for different 
wavelengths

Material 
abundance in 
each pixel



Source Separation in Acoustics
... prior knowledge: source decorrelated and non−stationary...

Microphone 
recordings for 
each frequency 

bin ω

mic. array 

Interference
User

mic 1

mic 2

source 1

source 2

X(ω)         =           A(ω)         *          S(ω)
Convolutive room 
response now a 
matrix of FIR filters

Acoustic 
sources for 
each frequency



Independent Linear Basis of Images
... useful for denoising and compression ...

X           =           A            *          S
Image 
intensities for 
image 
patches

Independent 
linear 
decomposition 
coefficients

Inverse of linear 
transform, similar to 
"mother" function in 
wavelets

Resulting bases produces 
components that are:
� sparse −useful for denoising. 
� Non−redundant − useful for 

encoding. 

Similarity to receptive fields 
supports Barlow’s minimum 
redundancy argument for visual 
processing.



Independent Linear Basis of Speech
... Speech is spanned by non−stationary independent features ...

X           =               A              *             S

Independent 
contributions of  
speech "features".

Recorded power in 
spetro−temporal 
window

Finding: Non−stationary assumption 
(MDA)  and higher order 
independence (ICA) give the same 
components.

Conclusion: Speech can be understood 
as a linear superposition of  non−
stationary independent components. 
Linearity is justified by acoustics. 
However, non−stationary, independent 
"features" are a  property of speech. 

Spectro−temporal 
basis set or "features" 
that constitute speech



ICA as Density Estimation
... Maximum Likelihood ...

Statistical independence implies that:
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Likelihood of observations as function of model, s = W x:

Minimize log−likelihood with stochastic gradient ascent gives for 
the kth i.i.d. sample x(k):

With positive definite projection WTW obtain popular "natural 
gradient" ICA algorithm:
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s
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ICA and Information Theory
...  ICA = PCA for Gaussian sources and orthogonal transform...

Insert into log likelihood gradient,                               ,  sum over 
all samples and set equal zero: 

Using (2) we obtain, i.e. PCA:
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ICA becomes Principal Component Analysis (PCA) if: 

      (1) Sources are Gaussian: 

      (2) Transformation orthogonal:

With (1) we have,



ICA and Information Theory
... Independence and Minimal Mutual Information ...

Mutual Information is defined as the KLD between the joint and 
the product of the individual variables:

KLD p s ,∏i
p s
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Hence, minimizing the Mutual Information is equivalent with 
fitting parameters to make distribution independent, e.g  ICA for 
linear transform s = W x.

Also, if we keep, |W|=1, we find that, H[p(s)]= H[p(x)] = const. 
And we get ICA by minimizing entropy of individual variables.



ICA and Information Theory
... Independence and Maximum Entropy ...

Interestingly, also maximizing entropy, after non−linear transform 
give independent components.



Conclusion
...  ...

Source separation gives physically meaningful sources  whenever 
the physical mixing process is linear and there exist independent 
sources, such as in acoustics, encephalography, and spectroscopy.

ICA may also be useful as linear basis set for density modeling, 
compression, de−noising even if there are no such independent 
sources.

Independent basis sets can explain some statistical properties of 
natural signals and suggest optimal processing.

Blind source separation can exploit non−Gaussianity, non−
stationarity, or non−whiteness of independent signals.

Cross−moment methods are often more robust. However, density 
fitting approaches result sometimes in simpler algorithms.  


