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and the model predictions for the work variable was significantly better
than for position (paired T-test p < 0:05).

The data used in Fig. 1 came from data set 17. To allow comparison
between the individual animals the data set/animal numbers were as
follows: data sets 1–4, 5–7, 8–9, 10, 11–12, 13–17, 18–20 were from
animals 1–7, respectively. In Fig. 2(b) we have plotted the force field
variable as a binomial variable in time (black line) as well as the model
prediction (gray line). Note that the force level could be predicted with
100% accuracy by using a simple threshold (dotted line).

IV. DISCUSSION

In this paper, we present the first demonstration that a BMI can suc-
cessfully predict a range of movement related variables while a sub-
ject works against at least two dynamical constraints. These conditions
were chosen to reflect those that one would experience in a real world
environment. In order for a brain-controlled neuroprosthetic arm to
function correctly, the user must be able to control the arm while trans-
porting a wide variety of objects, not only including objects of differing
mass, but a great range of natural and human-made objects with unpre-
dictable dynamics. Our current demonstration that neuronal popula-
tions in the rat motor cortex can be used to predict two alternating force
fields represents a first step towards designing BMIs that can handle a
universal set of load dynamics. Thus, a BMI using the same population
of cortical neurons could be used to predict not only the kinematics of
a reaching movement, but also the forces associated with moving the
manipulandum endpoint. In the data presented here, our prediction of
work was significantly better than that of position, and thus using con-
trol variables that incorporate both position and force such as work may
provide better and more natural BMI control.

It should be noted that it is possible to use positional data to control
a robotic arm, but this may not be natural and could lead to difficul-
ties. However, if the BMI user is actually controlling a variable such
as work, they would have the ability to set the strength of their own
movements rather than relying on preset values of a robotic position
controller. In general, previous BMI demonstrations have acted as po-
sition controllers and have not included any force information. We pro-
pose that BMIs that can handle both position and force variables (plus
the composite work variable) provide an approach to developing the
next generation of natural and efficient robotic prostheses.
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Cortically Coupled Computer Vision for
Rapid Image Search

Adam D. Gerson, Lucas C. Parra, and Paul Sajda

Abstract—We describe a real-time electroencephalography (EEG)-based
brain–computer interface system for triaging imagery presented using
rapid serial visual presentation. A target image in a sequence of nontarget
distractor images elicits in the EEG a stereotypical spatiotemporal re-
sponse, which can be detected. A pattern classifier uses this response to
reprioritize the image sequence, placing detected targets in the front of an
image stack. We use single-trial analysis based on linear discrimination
to recover spatial components that reflect differences in EEG activity
evoked by target versus nontarget images. We find an optimal set of spatial
weights for 59 EEG sensors within a sliding 50-ms time window. Using
this simple classifier allows us to process EEG in real time. The detection
accuracy across five subjects is on average 92%, i.e., in a sequence of 2500
images, resorting images based on detector output results in 92% of target
images being moved from a random position in the sequence to one of the
first 250 images (first 10% of the sequence). The approach leverages the
highly robust and invariant object recognition capabilities of the human
visual system, using single-trial EEG analysis to efficiently detect neural
signatures correlated with the recognition event.

Index Terms—Brain–computer interface (BCI), cortically coupled com-
puter vision, electroencephalography (EEG), image triage, rapid serial vi-
sual presentation (RSVP).

I. INTRODUCTION

The human visual system is exquisitely adept at parsing a scene and
recognizing objects at a glance. Such an ability for rapid processing of
visual information is even more impressive in light of the fact that neu-
rons are relatively slow processing elements, compared to digital com-
puters where individual transistors can switch 106 times faster than a
neuron can spike. Rapid recognition is not only critical for our survival
but is also necessary given the architectural constraints of our visual
pathways.

Computer vision systems have proven to be less effective, in gen-
eral, than human image analysts. An important problem, in disciplines
ranging from radiology to satellite reconnaissance, is optimizing image
throughput. Often there are a limited number of human analysts avail-
able to exploit the enormous amount of imagery being collected. Given
that the “human visual processor” is the most general purpose and ro-
bust vision system ever “constructed,” how can we optimally utilize the
available human visual processors for searching through the immense
amount of imagery?
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Fig. 1. Example RSVP triage trial. Fixation cross lasting 2 s is followed by sequence of 100 images. Each sequence contains two target images. Targets can appear
at any position within sequence. Following image sequence, 10� 10 matrix is displayed showing sequence of images. Target images are outlined. After pressing
space-bar, this matrix is sorted according to EEG. Ideally, target images move to first two positions after resorting based on EEG. Participants press space-bar again
to bring up summary slide showing position of target images before and after triage. Next trial begins after subject presses space-bar.

In this paper, we describe an electroencephalography (EEG) system
capable of detecting neural signatures of visual recognition events
evoked during rapid serial visual presentation (RSVP). The system
is capable of using these signatures to triage sequences of images,
reordering them so that target images are placed near the beginning
of the sequence. We term our system “cortically coupled computer
vision” since we leverage the robust recognition capabilities of the
human visual system (e.g., invariance to pose, lighting, scale, etc.) and
use a noninvasive cortical interface (e.g., EEG) to intercept signatures
of recognition events; the visual processor performs perception and
recognition and the EEG interface detects the result (e.g., decision) of
that processing.

II. MATERIALS AND METHODS

A. Participants

Five participants (three females, age 21 years) from the Columbia
University community participated. All had normal or corrected-to-
normal vision and reported no history of neurological problems. In-
formed consent was obtained from all participants in accordance with
the guidelines and approval of the Columbia University Institutional
Review Board.

B. Data Acquisition

EEG data was acquired in an electrostatically shielded room (ETS-
Lindgren, Glendale Heights, IL) using a Sensorium EPA-6 Electro-
physiological Amplifier (Charlotte, VT) from 59 Ag/AgCl scalp elec-
trodes mounted in a standard electrode cap (Electro-Cap, Eaton, OH)
at locations based on the International 10–20 system and from three

periocular electrodes placed below the left eye and at the left and right
outer canthi. All channels were referenced to the left mastoid with input
impedance < 15 k
 and chin ground. Data was sampled at 1000 Hz
with an analog pass band of 0.01–300 Hz using 12-dB/octave high
pass and eighth-order Elliptic low-pass filters. Subsequently, a soft-
ware-based 0.5-Hz high-pass filter was used to remove dc drifts and
60- and 120-Hz (harmonic) notch filters were applied to minimize line
noise artifacts. These filters were designed to be linear phase to prevent
delay distortions. Motor response and stimulus events recorded on sep-
arate channels were delayed to match latencies introduced by the digital
filtering of the EEG.

C. Behavioral Paradigm

During the RSVP triage task, participants were presented with a con-
tinuous sequence of natural scenes. Participants completed two blocks
of 50 sequences with a brief rest period lasting no more than five min-
utes between blocks. Each sequence consisted of 100 images and con-
tained two target images with one or more people in a natural scene.
These target images could appear at any position within each 100-
image sequence. The remaining natural scenes without a person are re-
ferred to as distractor images. Each image was presented for 100 ms. As
illustrated in Fig. 1, following the image sequence a series of self-paced
feedback slides were presented indicating the position of target images
within the sequence before and after EEG-based triage. A fixation cross
was displayed for 2 s between trials.

During the second block, participants were instructed to quickly
press the left button of a generic three-button mouse with their right
index finger as soon as they recognized target images. They were
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instructed to press the button twice, as quickly as possible, if one target
image immediately followed the other. Participants did not respond
with a button press during the first block.

D. Stimuli

Images were selected randomly with replacement from a queue of 251
nontarget and 33 target gray scale images. Images were obtained with a
Kodak DCS420 digital camera with a 28-mm camera lens (Rochester,
NY) [1]. Images were deblurred and the size of the images was reduced
from 1536 � 1024 pixels to 640 � 426 pixels to decrease processing
requirements of the stimulus computer and ensure precise timing of
stimulus presentation. The images were nonlinearly transformed via
gamma correction to match their mean luminance. The fixation cross
display had the same mean luminance as the images. A Dell Preci-
sion 530 Workstation (Round Rock, TX) with nVidia Quadro4 900XGL
graphics card (Santa Clara, CA) and E-Prime software (Psychological
Software Tools, Pittsburgh, PA) controlled stimulus display. An LCD
projector (InFocus LP130, Wilsonville, OR) projected stimuli through
an RF shielded window onto a front projection screen. Stimuli subtended
33� � 3� � 25� � 3� of visual field. Target images were visually in-
spected to ensure that target objects did not comprise more than 25% of
the area (fraction of pixels) in the scene.

E. Online Artifact Reduction

Immediately prior to the RSVP task, participants completed an eye
motion calibration experiment during which they were instructed to
blink repeatedly upon the appearance of a white on black fixation cross
and then make several horizontal and vertical eye movements according
to the position of a fixation cross subtending 1��1� of the visual field.
Horizontal eye movements subtended 33�� 3� and vertical eye move-
ments subtended 25��3�. The timing of these visual cues was recorded
simultaneously with EEG. This enabled determination of linear com-
ponents associated with eye blinks and eye movements that were sub-
sequently projected out of EEG recorded during the RSVP triage task.
This procedure is described in detail in [2].

F. Real-Time Spatial Integration for Image Classification

The RSVP task is effectively an oddball task, eliciting a P300 re-
sponse which has been used extensively to develop BCIs for commu-
nication [3]. In order to classify EEG online, we use a Fisher linear
discriminator [4], [5] to estimate a spatial weighting vectorw�;� which
maximally discriminates between sensor array signals for two condi-
tions, c 2 (0; 1), where c = 1 represents a target trial and c = 0 a
nontarget trial. This weighting vector is specific to a training window
starting at a relative onset time � , with a duration of �. The spatial
weighting vector generates a component1

yc(t) = w
T
�;�xc(t) + b�;� (1)

that best separates the EEG signals by making y0(t) < y1(t) for
as many samples in the training window as possible. The result is a
discriminating component specific to target recognition activity while
minimizing activity correlated with both task conditions such as early
visual processing.

Following each trial, the mean ���c and covariance matrix ���c are up-
dated for the condition associated with the trial. The spatial weighting
vector w�;� and bias b�;� are updated as

w�;� =���#

pool���1 ����#

pool���0 (2)

b�;� =
1

2
���0���

#

pool���0 � ���1���
#

pool���1 (3)

1We use the term “component” instead of “source” to make it clear that this
is a projection of all the activity correlated with the underlying source.

where the pooled covariance���pool = ((N0���0+N1���1)=(N0+N1)),
and N0 and N1 are the number of samples acquired for nontarget and
target conditions. We use the pseudoinverse of ���pool, ���

#

pool to ensure
the stability of our online algorithm, particularly at the beginning of
training when only a few samples have been observed and ��� is rank
deficient.

Given our linear model, determination of sensor projections from the
discriminating activity is straightforward, namely

a =
hx(t); y(t)i

hy(t); y(t)i
(4)

where h�; �i denotes an inner product. Equation (4) describes the pro-
jection a of the discriminating component y(t) that explains most of
the activity x(t). A strong projection indicates low attenuation. There-
fore, the intensity of sensor projections a indicates proximity of the
component to the sensors.

During each experimental condition (with and without motor re-
sponse), 5000 images were presented to the subject in sequences of 100
images. EEG evoked by the first 2500 images (50 targets, 2450 nontar-
gets) was used to train the classifier. During the experimental sessions,
a training window 400–500 ms following stimulus onset was used to
extract training data. This training window was selected based on the
timing of the P300 for this task. Weights were updated adaptively with
each trial during the training period. These weights were frozen at the
end of the training period and blindly applied to the subsequent testing
dataset (images 2501–5000).

1) Multiple Classifiers: After the experiment, multiple classifiers
with different training window onsets � were used to boost triage per-
formance. The training window onsets ranged from 0 to 900 ms in steps
of 50 ms. The duration of the training windows � was 50 ms. Once these
classifiers were trained, the optimal weighting of these classifier out-
puts was found using logistic regression to discriminate between target
and nontarget images

zc = !!!T   c + � (5)

making z0 < z1 for as many trials as possible.    =
[hy(t)� i hy(t)� i � � � hy(t)� i]T where the sample average

y(t)� =
1

�

� +��1

t=�

y(t) (6)

is taken over corresponding training windows with onsets �1 =
0 ms; �2 = 50 ms; � � � ; �J = 900 ms. Note that while the structure of
our classifier resembles a multilayer perceptron, rather than adapting
the coefficients for all classifiers simultaneously, classifiers were
trained separately to avoid overtraining and improve generalization.
Again, only EEG data evoked by the first 2500 images was used to
train the classifiers and then find the interclassifier weights. These
weights were then applied to the testing data set evoked by the second
set of 2500 images (images 2501–5000).

Similarly as with the sensor projection, a, we can find projections of
the discriminating activity

��� =
h   ; zi

hz; zi
: (7)

The projection ��� describes the relative strength of the temporal dis-
criminating component over time.
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TABLE I
TRIAGE PERFORMANCE AND BEHAVIORAL RESULTS

G. Image Triage

After each image sequence (two targets and 98 nontargets), image
matrices (10 � 10) were presented to the subject to show the position
of each image within the sequence (Fig. 1). Target images were out-
lined in red. The image sequence was then resorted based on the output
of a single classifier with one training window, hy(t)i (� = 400 ms,
� = 100 ms). Ideally, the two target images are triaged to the first two
positions in the resorted image sequence.

Following the experiment, all image sequences were concatenated
to create training and testing sequences that each contain 2500 images
(50 targets and 2450 nontargets). These image sequences are resorted
according to the output of our classifier with multiple training windows
z, for EEG evoked by every image.

1) Button-Based Image Triage: For comparison, sequences were
triaged based on the button response. Images were resorted according
to

p(targetjRT )

=
p(RT jtarget)p(target)

p(RT jtarget)p(target)+p(RT jnontarget)p(nontarget)

(8)

where RT is the onset of a button response that occurs within one
second of image onset. p(targetjRT) = 0 when no response oc-
curred within 1 s of image onset. The priors p(target) = 0:02 and
p(nontarget) = 0:98. p(RT jtarget) is a Gaussian distribution with
a mean and variance determined from the response times from the
training sequences. Since more than one response is likely to follow
a target image if the two target images are presented within 1 s of each
other, for training sequences response times were assigned to target im-
ages based on the position of the target image within the sequence. In
other words, if the target appeared first in the sequence and two button
responses occurred within 1 s of this target’s onset, the first response
was assigned to that target image and the second response was assigned
to the second target image. For testing sequences, if two or more re-
sponses occur within 1 s of the onset of any image, the response with
the greatest p(targetjRT) is assigned to the image. p(RT jnontarget)
is a mixture of 13 Gaussians, each with the same variance as that used
for p(RT jtarget) and with means assigned by shifting the mean from
p(RT jtarget) 600 ms in the past to 700 ms in the future in incre-
ments of 100 ms, excluding the actual mean of p(RT jtarget). This
mixture model contains a sufficient number of Gaussians so that the
mixture is consistent within the 1-s interval following image onset.
p(RT jnontarget) was designed to model responses occurring within
1 s of the onset of a nontarget image that is presented within 1 s prior
to or following a target image.

III. RESULTS

A. Task Performance

In the RSVP task, five participants correctly responded to 92 � 5%
and 90 � 10% of targets during training and testing sequences, respec-
tively. Response times for correctly identified target across five subjects

had a mean of 421� 91 ms and 426� 71 ms for training and testing se-
quences, respectively. Behavioral statistics for five subjects are shown
in Table I. Mean and standard deviation of response times for training
and testing sequences are listed with the corresponding percent of cor-
rectly identified targets. The response bias [6], [7], c is also listed for
testing sequences

c =
��1(H) + ��1(F )

2
(9)

where H and F are the hit rate and the false alarm rate, respectively,
and ��1 is the inverse of the normal cumulative distribution function
used to convert probabilities into z scores. Negative values of c indicate
a bias toward not responding to images.

B. Discriminating Components

Following the experiment, 19 classifiers were trained using training
windows with onsets ranging from 0 to 900 ms in increments of 50 ms.
The duration of each training window was 50 ms. Fig. 2 shows the mean
scalp projections for discriminating components from these classifiers
across five participants. Scalp projections a of discriminating compo-
nents were normalized prior to averaging across subjects. Components
are shown for both the motor and nonmotor tasks.

Bilateral occipital activity seen about 150 ms following stimulus
onset is followed by strong negatively correlated activity over frontal
electrodes. This frontal activity occurs slightly later for the motor con-
dition (250 versus 200 ms) and is followed by positively correlated ac-
tivity over parietal electrodes about 350 ms after stimulus onset. This
parietal activity spreads over central electrodes until about 500 ms for
both motor and nonmotor tasks. This frontal-parietal progression of
activity is consistent with models of the P3 complex indicating that
anterior cingulate, inferior-temporal lobe, and hippocampus are pri-
marily responsible for generation of observed potentials [2], [8]–[11].
The scalp maps diverge for motor and nonmotor tasks from 550 through
700 ms. The motor condition shows sustained positively correlated ac-
tivity over frontal and central electrodes during this period, while the
nonmotor condition elicits only negatively correlated activity bilater-
ally over occipital electrodes. Subsequent components show positively
correlated activity over frontal electrodes for both motor and nonmotor
conditions. Curiously, activity specific to the motor conditions occurs
after the response. While it is possible that this activity may be associ-
ated with a somatosensory response, given the symmetry of this bilat-
eral response this seems unlikely. Fig. 2 also shows the time course of
the multiple classifier system���. A strong temporal projection indicates
there is strong correlation in time. This time course is stronger for the
earlier components of the nonmotor condition versus motor condition.

C. Triage Performance

Triage results for one subject (subject 2) are shown in Fig. 3. Fig. 3(a)
shows number of targets as a function of the number of distractor im-
ages both before and after triage based on button press and EEG. The
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Fig. 2. Group results over five subjects. Scalp maps on left show sensor projections a of discriminating activity y(t) averaged over all subjects for nonmotor (left
columns) and motor (right columns) experimental tasks. Numbers to left of each scalp map pair correspond to onset, relative to stimulus presentation, of temporal
window selected to train each classifier, in milliseconds. Duration of each classifier is 50 ms. Note that scalp maps for motor and nonmotor conditions begin to
diverge about 550 ms following stimulus onset. Plot on right shows projected time course ��� of discriminating activity for nonmotor (dashed–dotted curve) and
motor (dotted curve) tasks.

Fig. 3. Triage performance for subject 2 using multiple classifiers. (a) Number of target images presented as function of number of distractor images presented.
Ideal triage system will place 50 (100%) of target images before all 2450 distractor images. Curve marked by triangles shows original sequence. Button-based
triage is shown by dashed curve. Dashed–dotted curve shows EEG-based triage during experiment without motor response. Dotted curve shows EEG-based triage
during experiment with motor response and thick black curve shows triage based on EEG (motor) and button response. (b)–(f) Rasters showing position of nontarget
(white areas) and target (black squares) within (b) original image sequence, (c) EEG (no motor)-based triage sequence, (d) EEG (motor)-based triage sequence,
(e) button-based triage sequence, and (f) combined EEG (motor) and button-based triage sequence. First and last images in each sequence are shown by squares
in upper left and lower right of each raster, respectively.

area under the curve generated by plotting fraction of targets as a func-
tion of the fraction of distractor images presented is used to quan-
tify triage performance. Triage performance of the multiple classifier

system for five subjects is listed in Table I. This area is 0.50 for all un-
sorted image sequences since target images are randomly distributed
throughout the sequences. Ideal triage performance results in an area of
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1.00. There is no significant difference in performance between button-
based and EEG-based triage (0:93�0:06; 0:92�0:03; p = 0:69; N =
5). Interestingly, there is no significant difference in performance be-
tween EEG-based triage for the motor and no motor response condi-
tions (0:92� 0:03; 0:91� 0:02; p = 0:81;N = 5).

Figs. 3(b)–3(f) are rasters showing the position of the target images
(black squares) and nontarget images (white areas) in the concatenated
image sequence. Based on these rasters and the EEG and button-based
triage performance for five subjects listed in Table I, it is clear that both
EEG and button-based triage systems are capable of a high level of
performance. The button-based triage performance begins to fail, how-
ever, when subjects do not consistently respond to target stimuli and
response times exceed 1 s. Subject 2, for instance, correctly responded
to only 74% of targets during the testing session and had a stronger bias
than other subjects not to respond to images as reflected by the response
bias measure c listed in Table I. In fact, this subject did not respond to
12 of 50 target images and the response time for one target image ex-
ceeded 1 s. Excessively late responses cannot effectively be classified
using our Bayesian methods since it is not clear whether these button
presses were in response to the target image or a subsequent nontarget
image. The EEG response evoked by images with either no response
or a late response is, however, still consistent with EEG evoked by the
target images with predictable response times. The EEG-based triage
system is therefore capable of detecting the recognition of these target
images and subsequently resorting these target images appropriately.
For this reason, we exploit the information provided by both EEG and
button press using another perceptron to boost triage performance. This
approach is effective for increasing triage performance for subjects that
either did not respond or had a delayed motor response to a significant
number of target images (e.g., subjects 1 and 2).

IV. CONCLUSION

We have demonstrated a real-time system for triaging sequences
of images based on EEG signatures extracted using linear classifiers.
While there were no significant differences in triage performance based
on EEG or button press, button-based triage performance was superior
for subjects that correctly responded to a high percentage of target im-
ages. However, for two subjects that responded to fewer images cor-
rectly (subjects 1 and 2), the EEG-based triage system offered better
performance. We find that integrating information from EEG and be-
havioral response offers the best strategy. Using this method, we can
capture images that lack an overt behavioral response and would have
otherwise been missed by a button-based triage system.

Our on-line image triage system was initially designed to classify
EEG based on a single training window (� = 400 ms; � = 100 ms).
We realized once the experiments were completed that the performance
of our EEG-based triage system is vastly improved using the multiple
classifier system, and we plan to use these methods for future BCI
experiments. We do not present results from the single classifier but
rather note the improvement in performance using the multiple clas-
sifier system. It is clear from the performance improvement that the
evoked response contains information that supplements the P3 for clas-
sification. Data was presented sequentially to the multiple classifier
system in order to simulate online training conditions. This classifier
was implemented for use online.

Following each image sequence, feedback was presented showing
the position of target images before and after triage. The influence
of feedback on behavioral performance and evoked EEG is unknown
since we did not conduct a control experiment without feedback. This
certainly warrants further study. It would be of interest, for instance, to
determine whether feedback evokes activity in reward centers such as
the anterior cingulate.

It is not clear why some subjects consistently respond to more target
images correctly. With this in mind, we are investigating the impact of
target salience within the scene (e.g. clutter, camouflage, and noise),
image presentation rate, and user expertise (e.g., novice versus expert)
on both behavioral and neural responses. We expect that the density
of target images within each sequence will have a significant impact
on evoked EEG activity due to attentional blink effects [12], [13] and
the strong dependence of the P300 response on target probability and
target-to-target interval (TTI) [14]. Since the strength of this response
is also modulated by the level of surprise, we also expect contextual
cues to affect EEG evoked by target images. For this reason, we are
also exploring the effects of spatio-temporal correlation between con-
secutive video frames.
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