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1 Introduction

Independent component analysis (ICA) aims to �nd statistical independent sig-
nals in an instantaneous linear mix. No knowledge of the original sources is
assumed. It is therefore sometimes also referred to a Blind Source Separation
(BSS). The concept of ICA was �rst introduced and formalized by Comon [8].
In resent years increasing interest in this concept arose in the neural network
and signal processing community. There is wide range of possible applications.
In the neural network community it has been interpreted as a version of the well
know concept of redundancy reduction that has been repeatedly considered as
an underlying principle in sensory formation [6, 19, 4, 10, 22]. For signal process-
ing the interest arises in the context of sensor arrays, source reconstruction and
location, various sonar applications, multidimensional blind channel equalization
in multi-path coding, and more.

In the context of neural networks it can be formulated as �nding a represen-
tation of the data with minimal mutual information among the output nodes of
a network [10]. It can also be formulated as the representation that maximizes
the information transmitted through a properly designed linear network [14, 7].

An explicit way of formulating this new principle is Maximum Likelihood
[28]: assuming statistically independent model sources we try to �nd the model
parameter that best explain the observations.

Maximum likelihood allows one to incorporate prior knowledge into the esti-
mation procedure. Models of the temporal properties of the signals permit a sen-
sible integration of the time coordinate to the statistical independence criteria.
In principle this is easily accomplished by formulating the appropriate probabil-
ity density function of the current model signals conditioned on their past [26].
This permits to incorporate signal models such as auto-regressive (AR) model
into the ML approach, which improves the quality of the separation.

But time can be incorporated into the ML formulation in another very natural
manner: instead of formulating the density function of an individual time sample
we formulated the joint density of the signals within a time window, which allows
the extension of the problem to the convolutive BSS case. In convolutive BSS
the mixture arises as a combination of di�erently convolved independent source
signals due to time delays and a reverberating acoustic environment.

The aim of this chapter is to discuss various optimization principles based
on statistical independence focusing in particular to some aspects of time.

In section 2 we begin by relating the principles of minimum mutual informa-
tion, and maximum transmitted information with statistical independence. In



section 3 we will reformulate the problem of ICA, that is the recovery of source
signals from the linear instantaneous mix, as a Maximum Likelihood problem.
Next, in section 4, we will learn how to incorporate temporal context information
into ML, leading to an improved ICA for instantaneous BSS. Finally we will see
in section 5 how to extend the ML formulation to the case of convolutive BSS,
while modeling the sources as an AR process. We focus there in particular to the
application of separating multiple speakers in an reverberating environment, i.e.
the signals arrive at the microphones with varying time delays and in di�erently
convolved versions.

Note that inherently all these approaches capture higher order statistics of
the signal, without which statistical independence cannot be obtained. However,
in order to not divert the attention from the main focus of modeling temporal
properties, we defer this important issue to an appendix.

2 Generating Independent Components

Assume we are given samples of random variables (x1; :::; xN )
> = x distributed

according to a probability density function p(x). Furthermore consider a process
that generates for a given x variables (y1; :::; yN )

> = y distributed according
to p(yjx;w). The transformation may be implemented by a (stochastic) neural
network, where w is then the parameter vector of the network (see �gure 1).
The resulting output distribution is given by,

p(yjw) =

Z
dxp(yjx;w)p(x) (1)
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w

Fig. 1. Schematic representation of a network parametrized byw that should transform
observations x into statistical independent variables (y1; :::; yN )

> = y

The purpose of this transformation is to obtain a new representation of x such
that the new variables are statistical independent. Mathematically, statistical



independence is expressed by the fact that the joint probability density of the
variables y1; :::; yN factors,

p(y1; :::; yN ) = p(y1)p(y2):::p(yN ) =
NY
i=1

p(yi) (2)

We will consider now di�erent objective functions that measure how well the
generated density (1) factors to produce independent components according to
(2).

2.1 Minimal Mutual Information at the Output

An intuitive notion of independent variables is that they carry independent in-
formation. In other words, they carry minimal or no common information. Ac-
cording to Shannon the entropy H [p(y)] of a probability density p(y) captures
how much information can be encoded by the random variable y,

H [p(y)] = �
Z

dyp(y) ln p(y) (3)

The information that is common to the variables yi is measured by their
mutual information,

MI [y1; :::; yN ] =

NX
i

H [p(yi)]�H [p(y)] (4)

The second term represents the joint entropy of the distribution, while the
�rst term is the sum of the single coordinate entropies. Note that this expression
is identical to the Kullback-Leibler distance (KLD) of the joint density (1) and
the factorization (2),

KLD[p(y);
Y
i

p(yi)] =

Z
dyp(y) ln

 
p(y)QN
i p(yi)

!
=

NX
i

H [p(yi)]�H [p(y)] (5)

The KLD is a common distance measure between two distributions and cap-
tures here how well (1) factors. Mutual information will be therefore minimal,
in fact zero, if the variables represent independent components.

Consider now a deterministic and invertible functional relation y = f(x;w).
We have then p(yjx;w) = �(y � f(x;w)) and (1) reduces to,

py(yjw) =

����@x@y
���� px(f�1(y;w)) (6)

Taking the logarithm and the expectation over p(x;y) we obtain,

H [p(yjw)] = H [p(x)] +E

�
ln

����@x@y
����
�

(7)



If in addition the Jacobi determinant of the transformation is unity,
��� @x@y ��� = 1,

i.e. we have a volume conserving transformation, one can see that the informa-
tion content of the input is equal to the information content of the output,
i.e. H [p(yjw)] = H [p(x)]. Since the entropy of the input density does not de-
pend on the parameters w, minimizing the mutual information (4) is in such a
case equivalent to minimizing the entropy of the individual output coordinates.
These considerations not only apply for linear but for any invertible non-linear
transformation.

2.2 Maximum Transmitted Information

Surprisingly we �nd that under di�erent conditions also maximizing the entropy
of the output variables can lead to statistical independence. Consider the in-
formation that is common to the variables x and y, that is, the information
transmitted1 through the mapping x! y,

MI [p(x); p(y)] = H [p(y)]�H [p(xjy)] (8)

The second term measures the randomness of the mapping. It has been ar-
gued [7] that for a deterministic mapping as discussed above, the second term
can be ignored. Maximizing the transmitted information is therefore equivalent
to maximizing the entropy of the output itself. Now, if every coordinate of the
output is bounded by constants the maximum entropy will be given by a uni-
form distribution with, in fact, independent coordinates. In particular consider
a linear transformation W with a bounded non-linearity g(u) applied at each
individual output (see �gure 2),

y = g(Wx) (9)

In [21] it is shown more explicitly that if variables x were obtained from
statistical independent coordinates (s1; :::; sN )> = s, distributed according to
p(si), by a linear invertible transformation A,

x = As ; (10)

then maximizing the transmitted information (8) with respect to W will con-
verge towards W � = PDA�1. The matrices P and D are some appropriate
permutation and diagonal scaling matrix, and do not change the fundamental
result that W � is an inversion of the mixing process A. These results holds, if
the non-linearity was chosen such that it matches the source density accord-

ing to p(y) = @g(y)
@y . Maximum entropy or maximum transmitted information

is under these circumstances therefore equivalent to �nding linear independent
components.

1 This expression is e�ectively the mutual information between input and output,
and di�ers from the mutual information of the output coordinates discussed in the
previous section.
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Fig. 2. Maximizing the information transmitted through this network (top) generates
independent components at the output. At the bottom the distributions of a typical
two dimensional case are depicted. If the non-linearity has been properly chosen, max-
imum transmitted information is equivalent to maximum entropy at the output. Its
maximum in turn is for bounded non-linearities the uniform distribution (bottom, left)
and is in fact statistical independent. It can be reached only if the output of the linear
transformation Wx is independent as well (bottom, center).

3 Finding Independent Components with Maximum

Likelihood

The most explicit way, however, to express the independence assumption and to
derive the optimization equations from such a transformation is the maximum
likelihood (ML) criterion. The general idea of ML is to postulate a probability
density for the observed variables that best describes them, eventually express-
ing how the observations where generated. The density will be parametrized by
unknown properties, here for example the un-mixing coe�cients W or parame-
ters � describing the individual densities p(sij�) of the sources. One then tries
to �nd the parameters that maximize the likelihood of the observations, i.e. the
parameters that make the observation most likely.

Consider the linear un-mixing of (10),

y =Wx (11)

Note the slightly di�erent de�nition of y here as opposed to (9). We are



trying to explain the observations with a linear combination that has statistically
independent coordinates. These do not correspond exactly to the original sources
s. They will only be the same up to permutation and scaling. Consider the
likelihood of the mixtures x, which depends on the model parametersW and �,

px(xjW;�) =

����@y@x
���� py(y(W )j�) =

����@y@x
����
NY
i

pyi(yij�) = jW j
NY
i

pyi(wixj�) (12)

Here wi are the row vectors of the square matrix W . In order to �nd the
right un-mixing parameters W we take the derivatives of the logarithm of (12),
leading to,

@L(W;�)

@W
=
@ ln p(xjW;�)

@W
=W�> + ux> (13)

with u = (@ ln p(y1)@y1
; :::; @ ln p(y1)@y1

)>. This gradient can be used to optimizeW with
stochastic gradient ascent. The inverse ofW is however a expensive computation,
and instead of taking the actual gradient we take its product with a positive
de�nite matrix W>W . The resulting, so called natural gradient �rst introduced
in [1] has a positive inner product with the original gradient, and points therefore
into the same overall direction. This results now in the following update rules
with a learning constant �,

�W = �
�
W + uy>W

�
(14)

Note that the nonlinearity introduced in section 2.2 in a somewhat ad-hock
manner emerges here in u very naturally. Also note that unlike the maximum
entropy approach, where the densities of the individual sources must be known
a priori, here we can also maximize the logarithmic likelihood with respect to
parameters �, allowing for a exible density function, that will try to match the
individual source distributions.

4 Incorporating time into the ML source model

Before we turn to experimental results on separating multiple sound sources,
we want to discuss how one can incorporate a better model of the temporal
properties of sound into the single channel density p(yj�). We drop temporarily
the index i. Consider conditioning the densities of the model sources by their
past, i.e. p(y(t)jy(t�1); y(t�2); :::; y(t�P ));�). This allows us to model temporal
relations of the signal. This concept has been called contextual ICA [26]. A
standard signal processing model for temporal correlations of the signals is the
linear auto-regressive (AR) model. The AR model makes a linear prediction �y(t)
of y(t) from the past P samples,

e(t) = y(t)� �y(t) = y(t)�
PX
�=1

a(�)y(t� �) (15)



where e(t) is considered to be the error of the prediction, and a(�) the linear
prediction coe�cients (LPC). Recall that for the optimal LPC, i.e. the parame-
ters that minimize the expected error E[e(t)], the error signals are decorrelated
in time [13]. The corresponding density function is then,

p(y(t)jy(t� 1):::y(t� P ); a) = p(a>y(t)) (16)

with a = (1;�a(1); ::;�a(P ))>, and y(t) = (y(t); :::; y(t� P ))>. One can insert
this density for every source into the likelihood function (12), where one may
choose for every model source yi(t) independent AR parameters ai. The simplest
approach for optimizing these parameters is again a stochastic gradient of the
likelihood function L(W; a1; :::; aN ). The resulting update equations are,

�ai(�) = ��ui(t)yi(t� �), with ui(t) =
@ lnp(yi(t))

@yi(t)
(17)

Figure 3 shows the separation results that were obtained for 10 di�erent
music sources, which were digitally mixed giving an instantaneous linear mix.
A stationary AR model of size P = 20 was used, although good results were
obtained also with P = 5. The density function for each channel was chosen as
a zero mean Gaussian with unit variance. Gradient ascent rules (14) and (17)
where used. The remaining cross-talk was hardly audible and corresponds to a
signal-to-noise ration (SNR) between 10 and 100 for the 10 di�erent channels.

linear mix (channel 1 and 2) separation (channel 5 and 6)

Fig. 3. left: Two of the 10 channels of 10 linearly mixed music CD sources. right: two
channels of the output show good separation using contextual ICA. For more details
see [27]



5 Convolutive Blind Source Separation and Modeling

In section 4 we have incorporated temporal models into the likelihood function
in order to better model the individual sources. For instantaneous mixing in
scenarios where the detectors are close, considering the speed of the signal in
the medium, this is a su�cient way of considering time. Electrical signals with
detectors in short distance and no substantial echoes is such a case. Acoustic
sources however arrive at the di�erent microphones in a typical reverberant
environment with multiple echoes and di�erent time delays. In such a case an
instantaneous mix will not be su�cient. Essentially the signals at di�erent time
lags are mixed in di�erent strengths. One has then to consider a convolutive
mixture:

Assume N independent sources (s1(t):::sN (t))
> = s(t) mixed in a unknown

linear medium,

xi(t) =

NX
j=1

1X
�=0

hij(�)sj(t� �) (18)

We observe the mixtures (x1(t):::xN (t))
> = x(t). To undo the e�ect of this

causal �ltering and mixing we require (eventually in�nite size) non-causal �-
nite impulse response (FIR) �lters. We wish to �nd N statistically independent
signals (y1(t):::yN (t))

> = y(t) with a multidimensional, non-causal FIR �lter
w(�K):::w(K) from the convolutive mixtures, where we limit us to a �nite �lter
size K. Every w(�) here represents a N �N unximing matrix for the time lag
� ,

yi(t) =

NX
j=1

KX
�=�K

wij(�)xj (t� �) (19)

Note that we are not explicitly aiming to recover the original signals s(t)
that lead to the mixtures x(t). We will merely try to model the mixtures by
independent model sources y(t). The true sources s(t) may di�er from these
recovered independent signals y(t) by an arbitrary convolution and permutation
[3]. We will try however to match the statistics of the sources by using linear
prediction or signal subspace modeling techniques.

For the ML approach we require a density function of the observed signals as
a function of the model parameters, which we will for now generically denote �.
We will formulate the density function for a time window of the mixture signals
X(t) = (x(t); :::;x(t + T )). This stands in contrast to previous formulations of
the problem that have considered the likelihood of a single time instance only
[26, 20, 3].

In order to express the density function in the space of the model sources
we will consider the conditional density of the signals within the window con-
dition on the signals outside the window which we will denote by ~X(t) =
x(�1); :::;x(t� 1);x(t+ T + 1); :::;x(1).



p(X(t)j ~X(t);�) =

���� @Y (t)@X(t)

���� p(Y (t)j ~X(t);�) (20)

Here Y (t) = (y(t); :::;y(t+T )) is the corresponding window in the model source

space2. The Jacobian @Y (t)
@X(t) is a NT �NT matrix with coe�cients,

@yi(t)

@xl(r)
=

NX
j=1

KX
�=�K

wij(�)
@xj (t� �)

@xl(r)
= wil(t� r) (21)

where i; l = 0:::N and r = 0::K, and w(�) vanishes for values outside �K � � �
K. It is useful to arrange the entries in X;Y such that the matrix w(0) lies on
the diagonal blocks,

@Y (t)

@X(t)
=

0
BB@
w(0) w(�1) ::: w(�T )
w(1) w(0) ::: w(1� T )
::: ::: ::: :::

w(T ) w(T � 1) ::: w(0)

1
CCA �W (22)

For a causal FIR the upper block triangle vanishes and the determinant in
(20) is given by the determinant of w(0),

���� @Y (t)@X(t)

���� = jw(0)jT if w(�) = 0 for � < 0 (23)

Although some have made this simplifying assumptions [5, 7], we wish to keep
a non-causal �lter, and will instead restrict ourself in section 5.2 to a circulant
W in order to arrive to an e�cient algorithm that can be implemented using the
fast Fourier transform (FFT).

Now we introduce the independence assumption for the model sources by
replacing in (20) the joint density of the model source by the product of the
density of the individual sources,

p(X(t)j ~X(t);�) = jW (t)j
NY
i=1

p(yi(t):::yi(t+ T )j ~X(t);�) (24)

2 For the ML approach one requires the density of the observations X(t) as a function
of X(t) itself and some model parameters �. Therefore, we have to replace Y (t) in
(20) by its de�nition (19). Note that is not possible to write Y (t) as a function of
X(t) only. The model source values in the window at time t will depend by de�nition
(19) on mixture values before and after the current frame. The conditioning of the
probability on ~X(t) is therefore a crucial step in order to make that substitution.
In section 5.2 however, we consider periodic signals and the conditioning becomes
superuous.



5.1 Source Modeling

To our knowledge all current BSS algorithm make at this point for each ith
model source a time independence assumption in (24) for the joint density of
yi(t):::yi(t+T ) [16, 17, 20, 3, 5] This is for any reasonable acoustic signal not an
appropriate model, and leads in their experiments to a whitened signal recovery.

The �eld of signal modeling in particular for speech enhancement o�ers a
variety of ML approaches to single channel modeling. At this point many of these
approaches can be combined to source separation by inserting the corresponding
model probability into (24). We note however that all e�cient algorithms are
based on a linear dependency of the variables (y(t):::y(t + T ))> = y(t) and
mostly a Gaussian density3.

For source separation however we require a non-Gaussian model since statisti-
cal independence is not uniquely de�ned for more than one Gaussian component
in the mixture [33].

If one uses linear time correlation as described by a covariance matrix or
linear prediction coe�cients (LPC) the parameters introduced are equivalent to
the parameters of the convolutions of the un-mixing FIR. The hope is however
that the parameters describing the un-mixing and the parameters describing
the source signal have di�erent stationarity time scales. Speech for example will
be stationary only within some 20ms - 40ms time frame, while the un-mixing
coe�cients should remain constant at least on a seconds scale, assuming that
the location of the sources and the environment remains constant over that
time. Single channel algorithms that adapt to varying statistics on a millisecond
rate, as required by any single microphone speech enhancement algorithm, will
extract to a certain extend the rapid varying portion of the linear correlations,
while the slower converging source separation will pick up the slow varying time
correlation due to the linear medium that mixes the source signals.

For short times on the order of 100-200 samples at 8kHz sampling rate the
second order statistics of speech is well described with a multivariate Gaussian
density. The covariance matrix however will change for larger time periods. The
overall density will therefore be an accumulation or mixture of the instantaneous
statistics. The net result of such a mixture is that the overall joint distribution
will have high kurtosis, i.e. a strong mass at low amplitudes due to silence peri-
ods and long tales for high amplitude peeks. In the BSS literature the signal dis-
tribution has been therefore approximated by non-Gaussian distributions. The
strongest approximation ignores time correlations, and assumes a high kurtosis
one time step accumulated density f(y),

p(y(t):::y(t+ T )) �
TY
�=0

f(y(t+ �)) (25)

A generalized Gaussian [17] has been used for f(y) or a mixture of two zero

3 We have ignored here and in the reminder of this section the model source index
i since we are dealing with a individual channel. Bold notation now refers to the
vector of signal values in the time window of size T for a single channel.



mean Gaussian with variances describing the silence and signal amplitudes [20].
A better approximation might result if we avoid the time independence assump-
tion, and capture linear time correlations with a matrix �(t) estimated in some
window around t,

p(y(t):::y(t+ T )) � f(y>(t)�(t)y(t)) (26)

One might use also a multiple Gaussian model that allows for di�erent co-
variance �(t) for the silence, voiced and unvoiced, states up to a full hidden
Markov model that incorporates state transition probabilities of the di�erent
sounds. These are routinely used for speech recognition resulting however in
rather expensive models that require prior training.

We suggest a short term estimation of the linear correlations according the
subspace or linear prediction methods used in speech enhancement [13, 18, 29,
12]. Assuming a correlation time P for which �ij = 0 if i�j > P we can expand
the density of a frame of size T as,

p(y(t):::y(t+T )) = p(y(t):::y(t+P � 1))

t+TY
�=t+P

p(y(�)jy(� � 1):::y(� �P )) (27)

The auto-regressive (AR) discussed in section 4 captures linear temporal cor-
relations with the conditional density (16). Combining this source signal model
for each of the N sources i with the source independence model we obtain the
overall logarithmic likelihood4,

L(W; ai:::aN ) = ln jW j+
NX
i=1

t+TX
�=t+P

ln p(a>i yi(�)j ~X(�);W ) (28)

+
NX
i=1

ln p(yi(t):::yi(t+ P � 1)j ~X(�);W )

We will assume the LPC parameter to be constant within a time frame
but change from frame to frame5. The un-mixing �lters we assume constant
throughout time. For P << T we can neglect the last term here, and initialize
the sum in the second term at � = t.

The extension done in this section compared to previous work is schematically
depicted in �gure 4. The present formulation should avoid the whitening of the
model sources if the order P of the AR model is su�ciently large and the window
size T in which to compute the AR parameters is su�ciently small to capture
the fast variation of speech.

4 The conditioning on ~X(�) means nothing else that we can now substitute all y()
using (19). In the next section however it will be necessary to to assume periodic
signals in order to obtain an e�cient algorithm for updating W . The conditioning
on the previous frame becomes then inconsequential.

5 To be precise we should consider the likelihood of multiple frames by adding frame
index k to a, and setting t=k*T, while adding over all frames
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Fig. 4. Schematic representation of the suggested signal modeling and its relation to
previous convolutive BSS algorithms. Left: The AR model whitens the signal producing
the error signal e(t) which is used in turn for the BSS update. Details can be seen
in the �nal update equation (42). Right: In previous work no modeling of temporal
correlations of the model signal leads to separation and equalization.

If the densities can in fact be described in a short time frame of size P by a
(zero mean) Gaussian, N (y; �) = (2�)�d=2j�j�1=2 exp(� 1

2 y
>��1y), we have,

p(y(t):::y(t+ P )) = N (y(t); �) (29)

The conditional density of a time sample y(t) given its past P samples is
then described by a one dimensional normal distribution of the error signal
e(t) = a>y(t) with a prediction accuracy �,

p(y(t)jy(t� 1):::y(t� P ); a; �) = N (a>y(t); �) (30)

where the parameters a, � are explicitly determined by the covariance matrix
�,

a = �+���1
� , and � = �=�� = �+ ��+���1

� ��+ (31)

� =

�
�+ �+�
��+ ��

�
=

0
BB@

�11 �12 ::: �1P
�21
:::
�P1

�22 ::: �2P
::: ::: :::
�P2 ::: �PP

1
CCA (32)

We suggest to compute these coe�cients from the sample autocorrelation
matrix �̂ estimated with the samples in the current window of size T . We may
use the expressions above or more e�ciently use Levinson-Durvin recursion on
the signals y(t) to compute the LPC from �̂ [23]. This recursion gives an analytic
solution for the LPC coe�cients with a minimum least squares criterion, which
is equivalent to the ML using the suggested signal model for a given frame [30].6

6 To be precise the ML estimate of the LPC coe�cients is computed with the so called
covariance method which uses a somewhat di�erent iteration [30].



5.2 Stochastic ML gradient

In other to optimize the logarithmic likelihood (28) also for the un-mixing �lters
W we use gradient descent. The main di�culty in deriving a gradient expression
of (28) is to �nd a feasible expression for the derivative of the Jacobian (22). In
fact, it will be necessary to assume that W is a circulant matrix,

W = (wij (n;m)) �

0
BB@
w(0) w(T ) ::: w(1)
w(1) w(0) ::: w(2)
::: ::: ::: :::

w(T ) w(T � 1) ::: w(0)

1
CCA (33)

The coe�cients n;m denote the block column and row index, while the sub-
script index i; j refer to the index within each block. Columns are indexed there-
fore by i; n and rows by j;m. With this notation we can write now the gradient
as,

@ ln jW j
@wij(n;m)

=

TTX
n0m0

NNX
i0j0

@ ln jW j
@wi0j0(n0;m0)

@wi0j0(n
0;m0)

@wij(n;m)
=

TTX
n0m0

jWij(n
0;m0)j

jW j �n�mn0�m0

(34)

where �zz0 = 1, if modulo(z; (T +1)) = modulo(z0; (T +1)), and 0 otherwise. We

have used the fact that for any invertible, square matrix A, @ ln jAj@aij
=

jAij j
jAj , where

jAij j is the determinant of the matrix obtained after removing the ith row and
jth column in A. Computing these determinants is an expensive operation of
order O(N3T 3). To avoid this we will use the argument commonly used in ICA
algorithms, which was �rst introduced by Amari [1]. We multiply the gradients
with a positive de�nite matrix W>W , to obtain the so called natural gradient.
First consider

�
@ ln jW j
@W

W>
�
iu

(n; l) =

TNX
mj

@ ln jW j
@wij(n;m)

wuj(l;m)

=

TNX
mj

1

jW j
TTX
n0m0

jWij(n
0;m0)j�n�mn0�m0wuj(l;m)

=
1

jW j
NX
j

TTX
n0m0

jWij(n
0;m0)jwuj(l � n+ n0;m0)

=
1

jW j
TX
n0

� jW j if n0 = l � n+ n0 and i = u
0 otherwise

=
T

jW jI (35)



Read above wij(n;m) = wij(modulo(n; (T + 1));modulo(m; (T + 1))) if indexes
n;m exceed their range 0::T . Multiplying this identity matrix I with W �nally
leads to,

@ ln jW j
@W

W>W = TW (36)

Now we need to compute the gradient of the second term in (28).

@
P

k� ln p(a
>
k yk(�))

@wij(z)
=

@

@wij(z)

NX
k=1

t+TX
�=t

ln p(
PX

� 0=0

ak(�
0)yk(� � � 0)) (37)

=
t+TX
�=t

g(a>i yi(�))
PX

� 0=0

ai(�
0)

@

@wij(z)
yi(� � � 0) (38)

=

t+TX
�=t

g(a>i y
>
i (�))

PX
� 0=0

ai(�
0)xj(� � � 0 � z) (39)

where g(e) = @ ln p(e)=@e. These coe�cients for z = 0::T represent the �rst col-
umn of the corresponding circulant matrix @=@W arranged analogous to (33).
In order to simplify the following multiplication with W>W one has to assume
periodic signals x(t), i.e. x(t) = x(t + T + 1). The model signals y(t) will then
be periodic with period T + 1 as well. This assumption not only simpli�es the
expressions but allows us to implement the convolutions with a discrete Fourier
transform using a FFT. After some manipulations we obtain, again for the ele-
ments of the �rst column of a circulant matrix,

�
@
P

k� ln p(:::)

@W
W>W

�
ij

(z) =

t+TX
�=t

NX
u=1

t+TX
� 0=t

g(a>i yi(�))a
>
i yu(� + � 0 � z)wuj(�

0)

(40)
These convolutions now can best be performed in the frequency domain.

Transforming the natural gradient of (28), as expressed by the sum of (36) and
(40), into the frequency domain involves applying the orthonormal coordinate
transformation expressed by a matrix F with elements F�� =

1p
T+1

exp(�i��2�T+1 ),

i =
p�1, which results for a circulant matrix like W into7,

FWF�1 = diag(W(0); :::;W(T )) (41)

That is, the Fourier coe�cients W = Fw of the �lter w = (w(0); :::; w(T ))>

represent the diagonal elements of a diagonal matrix. According to the convolu-
tion theorem the convolutions in (40) are performed by multiplying the Fourier
coe�cients independently. The overall gradients separate therefore in the fre-
quency domain. Combining (36) and (40) and transforming the result into the

7 Here we are writing for simplicity only the one-dimensional case. The multi-
dimensional case is a trivial extension.



frequency domain we obtain the total natural gradient @W(�) in each frequency
�.

@Wij(�) =Wij(�) +G [Ai(�)Yi(�)]
NX
u=1

A�i (�)Y�u(�)Wuj (�) (42)

where G[] is an operator that applies the function g() in the temporal do-
main, G[Y ] = Fg

�
F�1Y

�
, and the Fourier coe�cients are given by, Ai =

F (ai(0); ai(1); :::; ai(P ); 0; 0; :::; 0)
> and Yi = Fyi.

This result represents the extension of contextual ICA [26] to the convolutive
case. It also represents a generalization of the equations suggested in [16, 17],
which one obtains for P = 1, i.e. a time independence assumption. Note also
that very recently [3] gave a explicit derivation of a natural gradient algorithm
with in�nite size FIR for the un-mixing leading to equations similar again to
the ones proposed in [16, 17]. They do however not report results on real room
recordings. In �gure 5 we see the results obtain for two speakers in a noisy
o�ce environment. The separation improves the signal to background ration.
It does however not separate the signal completely. The results depend on the
type of signal and the choice of the density p(). This is a current subject of
experimentation and study in the context of higher order statistics.

real microphone recordings convolutive BSS with AR model

Fig. 5. Separation of real recordings with two microphones in a reverberant environ-
ment (o�ce room) with algorithm (42) with T = 512, which corresponds at 8kHz
to 64ms. The AR parameter were computed in each frame with the Levinson-Durvin
recursion with P = 20.

At last one should mention that alternative convolutive BSS algorithms have
been presented. In [31, 32] higher order statistics of the signals are explicitly
measured in order to �nd separation �lters. The issue of higher order statistics
will be shortly outline in the appendix, section 7.



6 Summary

There are various ways to obtain separation of signals including minimal mutual
information, maximum entropy, and maximum likelihood. Maximum likelihood
in particular allows to incorporate time through additional signal models. It
allows a rigorous extension of ICA to the convolutive case. Under the assump-
tion of periodic signals one obtains then e�cient update rules in the frequency
domain.

Combining BSS with traditional single channel modeling techniques may al-
low for simultaneous BSS and signal enhancement leading to SNR improvements
of the separated signals.

7 Appendix: ICA, PCA and Cumulants - Notes on higher

order statistics

Statistical independence is inherently linked to the issue of higher order statis-
tics. We have so far hardly mentioned higher orders statistics since we were
including them in a implicit way. Either we used non-linear transformations
that capture automatically more than second order of the signal as in section
2.2, or we have used with ML explicitly non-Gaussian distributions to model the
signals capturing thus more than the second order. There is however a series of
approaches and algorithms that explicitly include in their cost functions higher
order statistics like moments, single coordinate cumulants, and cross-cumulants
for multiple dimensions, which shall be discussed now briey.

Interestingly principal component analysis (PCA) can be understood as a
special case of statistical independence. In PCA one �nds the rotation that min-
imizes the variance of the new coordinates y. In fact, a rotation is a linear, vol-
ume conserving, and therefore entropy conserving transformation. As explained
in section 2.1 minimal mutual information in y is in such a case equivalent to
�nding statistical independence. If we assume the variables x to be Gaussian
distributed, then y will be Gaussian and minimizing mutual information at the
output is equivalent to minimizing the variances of the output and is therefore
equivalent to PCA [10, 25]. By making the Gaussian assumption we limit ourself
to second order statistics. For a general input distribution however, second or-
der statistic will not be su�cient to measure the entropies and obtain statistical
independence [8, 33]. PCA will therefore not give statistical independence.

One approach that includes higher order statistics is to formulate a non-
parametric model of the densities p(yi) of the individual outputs. Mostly it has
been suggested to take expansions of the densities, like the Gram-Charlier, or
Cramer-Edgeworth expansions [15]. The coe�cients of these expansions are re-
lated to the higher order moments, or cumulants respectively. By doing so, one
obtains expressions for single variable densities and the entropies as analytic
functions of the higher order moments. By replacing the moments with their
empirical estimates the entropy becomes essentially a function of the observa-
tions y and therefore a function of the parameters of the map. One can then use



those expressions in a cost function base on any of the suggested cost-functions
of section (2), and use gradient descent techniques to optimize the parameters
of the input-output map [8, 24, 2].

An alternative approach of using higher order statistics is to formulate the
conditions that cross-cumulants satisfy for statistical independent coordinates.
The cross-cumulants are polynomial expressions of the cross-moments. Cross-
moments of order q are de�ned by the expected values of all the possible com-
binations of powers (q1; :::; qN ) = q with q =

PN
i qi.

M [y;q] =

Z
dyp(y)yq11 yq22 :::y

qN
N (43)

Cumulants are essentially de�ned as the coe�cients of the Taylor expansion
of the logarithm of the Fourier transform of the density function about the zero
frequency,

C[y;q] =
@q

iq@q1�1:::@qN �N
ln

Z
dyei�

>yp(y)

����
�=0

(44)

Cumulants C[y;q] can be expressed entirely as speci�c polynomial combina-
tions of the moments of the same or smaller order that use the same variables
as selected by the particular q [9]. Cross-cumulants are important here since
they can be shown to satisfy certain equations in the case of statistical indepen-
dent variables [10]. Indeed, most cross-cumulants have to be zero. For example
the elements of a covariance matrix represent the second order cross-cumulants.
The o�-diagonal terms vanish for statistical independent coordinates, expressing
the fact that decorrelation is a necessary condition for statistical independence.
While the third order cross-cumulants have to vanish as well, the fourth order
cross-cumulants do not have to be all zero to guarantee independence [10]. One
can combine those conditions in a single cost function. Again by replacing the
cumulants with their sample estimates one obtains a cost that is a function of the
parameters of the map. Minimizing that cost function with a gradient descent
leads to independent components [10, 32].

Note the di�erence of the methods outlined above. While the second formu-
lates conditions for the cross-cumulants the �rst approach tries to formulate a
cost function in terms of single variable cumulants, i.e. diagonal terms of (44),
and (43) with q1 = q, or q2 = q, ..., or qN = q.

The criteria based on diagonal terms of cumulants have been used in instanta-
neous linear ICA [2] as well as in non-linear ICA [24, 25]. Cross-cumulants have
been used in unsupervised learning of non-linear temporal recursion relations
[11], as well as in convolutive ICA [31, 32] where cross-cumulants of coordinates
at di�erent time delays were considered.

While explicit consideration of higher order statistics tends to generate com-
plicated and computationally expensive objective functions, they may converge
faster and more reliably. The algorithms that include higher orders implicitly
tend to simpler algorithms that are easier to implement e�ciently. Their con-
vergence properties may however be less favorable. The issue of which approach



leads to the faster and more e�cient algorithms may be settled as new and
improved algorithms are developed.
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