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ABSTRACT

We formulate a model for probability distributions on image spaces. We show that any distribution of images can be
factored exactly into conditional distributions of feature vectors at one resolution (pyramid level) conditioned on the
image information at lower resolutions. We would like to factor this over positions in the pyramid levels to make it
tractable, but such factoring may miss long-range dependencies. To �x this, we introduce hidden class labels at each
pixel in the pyramid. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov
model on a tree. The model parameters can be found with maximum likelihood estimation using the EM algorithm.
We have obtained encouraging preliminary results on the problems of detecting masses in mammograms.
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1. INTRODUCTION

Many approaches to object recognition in images estimate Pr(class j image). By contrast, a model of the proba-
bility distribution of images, Pr(image), has many attractive features. We could use this for object recognition
in the usual way by training a distribution for each object class and using Bayes' rule to get Pr(class j image) =
Pr(image j class) Pr(class)=Pr(image). Clearly there are many other bene�ts of having a model of the distribution
of images, since any kind of data analysis task can be approached using knowledge of the distribution of the data.
For classi�cation we could attempt to detect unusual examples and reject them, rather than trusting the classi�er's
output. We could also compress, interpolate, suppress noise, extend resolution, fuse multiple images, etc.

Many image analysis algorithms use probability concepts, but few treat the distribution of images. One of the few
examples of image distribution models was constructed by Zhu, Wu and Mumford.1 They compute the maximum
entropy distribution given a set of statistics for some features, which seems to work well for textures but it is not
clear how well it will model the appearance of more structured objects.

There are several algorithms for modeling the distributions of features extracted from the image, instead of
the image itself. The Markov Random Field (MRF ) models are an example of this line of development; see, e.g.,
References 2,3. However, they tend to be very computationally expensive.

In De Bonet and Viola's exible histogram approach,4,5 features are extracted at multiple image scales, and the
resulting feature vectors are treated as a set of independent samples drawn from a distribution. The distribution of
feature vectors is then modeled using Parzen windows. This has given good results, but the feature vectors from
neighboring pixels are treated as independent when in fact they share exactly the same components from lower-
resolutions. To �x this one might build a model in which the features at one pixel of one pyramid level condition
the features at each of several child pixels at the next higher-resolution pyramid level. The multiscale stochastic
process (MSP) methods do exactly that. Luettgen and Willsky,6 for example, applied a scale-space auto-regression
(AR) model to texture discrimination. They use a quadtree or quadtree-like organization of the pixels in an image
pyramid, and model the features in the pyramid as a stochastic process from coarse-to-�ne levels along the tree. The
variables in the process are hidden, and the observations are sums of these hidden variables plus noise. The Gaussian
distributions are a limitation of MSP models. The result is also a model of the probability of the observations on
the tree, not of the image.

All of these methods seem well-suited for modeling texture, but it is unclear how one might build models to
capture the appearance of more structured objects. We will argue below that the presence of objects in images can
make local conditioning like that of the exible histogram and MSP approaches inappropriate. In the following we
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Figure 1. Pyramids and feature notation.

present a model for probability distributions of images, in which we try to move beyond texture modeling. This
hierarchical image probability (HIP) model is similar to a hidden Markov model on a tree, and can be learned with
the EM algorithm. In preliminary tests of the model on classi�cation tasks the performance was comparable to that
of other algorithms.

2. COARSE-TO-FINE FACTORING OF IMAGE DISTRIBUTIONS

Our goal will be to write the image distribution in a form similar to Pr(I) � Pr(F0 jF1) Pr(F1 jF2) : : : , where Fl is
the set of feature images at pyramid level l. We expect that the short-range dependencies can be captured by the
model's distribution of individual feature vectors, while the long-range dependencies can be captured somehow at
low resolution. The large-scale structures a�ect �ner scales by the conditioning.

In fact we can prove that a coarse-to-�ne factoring like this is correct. From an image I we build a Gaussian
pyramid (repeatedly blur-and-subsample, with a Gaussian �lter). Call the l-th level Il, e.g., the original image is I0
(Figure 1). From each Gaussian level Il we extract some set of feature images Fl. Sub-sample these to get feature
images Gl. Note that the images in Gl have the same dimensions as Il+1. We denote by ~Gl the set of images
containing Il+1 and the images in Gl. We further denote the mapping from Il to ~Gl by ~Gl.

Suppose now that ~G0 : I0 7! ~G0 is invertible. Then we can think of ~G0 as a change of variables. If we have
a distribution on a space, its expressions in two di�erent coordinate systems are related by multiplying by the
Jacobian. In this case we get Pr(I0) = j ~G0jPr( ~G0): Since ~G0 = (G0; I1), we can factor Pr( ~G0) to get Pr(I0) =
j ~G0jPr(G0 j I1) Pr(I1): If ~Gl is invertible for all l 2 f0; : : : ; L� 1g then we can simply repeat this change of variable
and factoring procedure to get

Pr(I) =

�L�1Y
l=0

j ~GljPr(Gl j Il+1)

�
Pr(IL) (1)

This is a very general result, valid for all Pr(I), no doubt with some rather mild restrictions to make the change
of variables valid. The restriction that ~Gl be invertible is strong, but many such feature sets are known to exist, e.g.,
most wavelet transforms on images.

3. THE NEED FOR HIDDEN VARIABLES

For the sake of tractability we want to factor Pr(Gl j Il+1) over positions, something like

Pr(I) �
Y
l

Y
x2Il+1

Pr
�
gl(x) j fl+1(x)

�

where gl(x) and fl+1(x) are the feature vectors at position x. The dependence of gl on fl+1 expresses the persistence
of image structures across scale, e.g., an edge is usually detectable as such in several neighboring pyramid levels. The
exible histogram and MSP methods share this structure.



While it may be plausible that fl+1(x) has a strong inuence on gl(x), a model distribution with this factorization
and conditioning cannot capture some properties of real images. Objects in the world cause correlations and non-
local dependencies in images. For example, the presence of a particular object might cause a certain kind of texture
to be visible at level l. Usually local features fl+1 by themselves will not contain enough information to infer the
object's presence, but the entire image Il+1 at that layer might. Thus gl(x) is inuenced by more of Il+1 than the
local feature vector.

Similarly, objects create long-range dependencies. For example, an object class might result in a kind of texture
across a large area of the image. If an object of this class is always present, the distribution may factor, but if such
objects aren't always present and can't be inferred from lower-resolution information, the presence of the texture at
one location a�ects the probability of its presence elsewhere.

We introduce hidden variables to represent the non-local information that is not captured by local features. They
should also constrain the variability of features at the next �ner scale. Denoting them collectively by A, we assume
that conditioning on A allows the distributions over feature vectors to factor. In general, the distribution over images
becomes

Pr(I) /
X
A

� LY
l=0

Y
x2Il+1

Pr
�
gl(x)

�� fl+1(x); A
�
Pr(A j IL+1)

�
Pr(IL+1): (2)

As written this is absolutely general, so we need to be more speci�c. In particular we would like to preserve
the conditioning of higher-resolution information on coarser-resolution information, and the ability to factor over
positions.

As a �rst model we have chosen the following structure for our HIP model:�

Pr(I) /
X

A0;:::;AL

LY
l=0

Y
x2Il+1

h
Pr(gl j fl+1; al; x) Pr(al j al+1; x)

i
(3)

To each position x at each level l we attach a hidden discrete index or label al(x). The resulting label image Al for
level l has the same dimensions as the images in ~Gl.

Since al(x) codes non-local information we can think of the labels Al as a segmentation or classi�cation at the
l-th pyramid level. By conditioning al(x) on al+1(x), we mean that al(x) is conditioned on al+1 at the parent pixel of
x. This parent-child relationship follows from the sub-sampling operation. For example, if we sub-sample by two in
each direction to get Gl from Fl, we condition the variable al at (x; y) in level l on al+1 at location (bx=2c; by=2c) in
level l+1 (Figure 2). This gives the dependency graph of the hidden variables a tree structure. Such a probabilistic
tree of discrete variables is sometimes referred to as a belief network. By conditioning child labels on their parents
information propagates though the layers to other areas of the image while accumulating information along the way.

For the sake of simplicity we've chosen Pr(gl j fl+1; al) to be normal with mean �gl;al +Malfl+1 and covariance
�al , that is,

Pr(g j f ; a) = N (g;Maf + �ga;�a) (4)

4. EM ALGORITHM

Due to the tree structure, the belief network for the hidden variables is relatively easy to train with an EM algorithm.
The expectation step (summing over al's) can be performed directly. If we had chosen a more densely-connected
structure with each child having several parents, we would need either an approximate algorithm or Monte Carlo
techniques. The expectation is weighted by the probability of a label or a parent-child pair of labels given the image.
This can be computed in a �ne-to-coarse-to-�ne procedure, i.e. working from leaves to the root and then back out
to the leaves. The method is based on belief propagation.7

�In principle there is also a factor of Pr(IL+1). In many cases IL+1 will be a single pixel that is approximately the mean
brightness in the image. We ignore this, which is equivalent to assuming that Pr(IL+1) is at over some range. In this case
fL+1 is zero for typical features. In addition, there is no hidden variable aL+1. If we combine these considerations we see that
the l = L factor should be read as

Q
x
Pr(gL j aL; x)Pr(aL; x).
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Figure 2. Tree structure of the conditional dependency between hidden variables in the HIP model. With subsam-
pling by two, this is sometimes called a quadtree structure.

Once we can compute the expectations, the normal distribution makes the M-step tractable; we simply compute
the updated �gal , �al , Mal , and Pr(al j al+1) as combinations of various expectation values.

In order to apply the EM algorithm, we need to choose a parameterization for the model. The parameterization
of Pr(g j f ; a) is given above in Equation 4. For Pr(al j al+1) we use the parameterization

Pr(al j al+1) =
�al;al+1P
al
�al;al+1

(5)

in order to ensure proper normalization.

Below, we denote the new parameter values computed during the t-th maximization step as �t+1 and the old
values as �t.

4.1. MAXIMIZATION

Maximizing the expectation of the likelihood over the hidden variables with respect to the model parameters gives
the following update formulae:

�t+1
al;al+1

=
X
x

Pr(al; al+1; xjI; �
t); (6)

M t+1
al

=
�

glf

T
l+1

�
t;al

� hglit;al


fTl+1

�
t;al

��

fl+1f

T
l+1

�
t;al

� hfl+1it;al


fTl+1

�
t;al

��1

; (7)

�gt+1
al

= hglit;al �M t+1
al

hfl+1it;al ; (8)

and

�t+1
al

=
D�
gl �M t+1

al
fl+1

� �
gl �M t+1

al
fl+1

�TE
t;al

� �gt+1
al

�gt+1 T
al

: (9)

Here the brackets h:it;al denotes the expectation value

hXit;al =

P
x Pr(al; x j I; �

t)X(x)P
x Pr(al; x j I; �

t)
: (10)

4.2. EXPECTATION

In the E-step we need to compute the probabilities of pairs of labels from neighboring layers Pr(al; al+1; xl j I; �t)
for given image data. But note that in all occurrences of the reestimation equations, i.e. (5,6) and (10), we need
that quantity only up to an overall factor. We can choose that factor to be Pr(I j�t) and can therefore compute
Pr(al; al+1; xl; I j�

t) instead using

Pr(al; al+1; x j I; �
t) Pr(I j �t) = Pr(al; al+1; x; I j �

t) =
X

Anal(x);al+1(x)

Pr(I; Aj�t) (11)



The computation of these quantities can be cast as recursion formulae, de�ned in terms of quantities u and d, which
approximately represent upwards and downwards propagating probabilities. The recursion formulae are

ul(al; x) = Pr(gl j fl+1; al; x)
Y

x02Ch(x)

~ul�1(al; x
0) (12)

~ul(al+1; x) =
X
al

Pr(alj al+1)ul(al; x) (13)

dl(al; x) =
X
al+1

Pr(alj al+1) ~dl(al+1; x) (14)

~dl(al+1; x) =
ul+1(al+1;Par(x))

~ul(al+1; x)
dl+1(al+1;Par(x)) (15)

The upward recursion relations (12{13) are initialized at l = 0 with u0(a0; x) = Pr(g j f1; a0; x) and end at l = L. At
layer L Equation 13 reduces to ~uL(aL+1; x) = ~uL(x).

y Since we do not model any further dependencies beyond layer
L, the pixels at layer L are assumed independent. Considering the de�nition of u, it is evident that the product of
all ~uL(x) coincides with the total image probability,

Pr(I j�t) =
Y
x2IL

~uL(x) = uL+1: (16)

The downward recursion (14 - 15) can be executed, starting with equation (15) at l = L with dL+1(aL+1; x) =
dL+1(x) = 1.y The downwards recursion ends at l = 0 with equation (14).

We can now compute (11) as

Pr(al; al+1; x; I j �
t) = ul(al; x) ~dl(al+1; x) Pr(aljal+1) (17)

Pr(al; x; I j �
t) = ul(al; x)dl(al; x) (18)

Obviously computations (12{18) in the E-step at iteration t need to be completed with �xed parameters �t.

Because of the dependence of gl on fl+1, these u's and d's are not, in general, actual probabilities. In spite of
this it can be shown that these recursion relations are correct.

5. EXPERIMENTS

5.1. CLASSIFICATION OF VEHICLES IN SAR IMAGERY

Though not a medical imaging problem, we �rst present the results of our experiments on synthetic aperture radar
(SAR) imagery, since SAR imagery is noisy and involves detecting an extended textured object, much like a breast
mass and many other medical imaging problems. The problem was to discriminate between three target classes in
the MSTAR public targets data set, to compare with the results of the exible histogram approach of De Bonet, et
al.5 We trained three HIP models, one for each of the target vehicles BMP-2, BTR-70 and T-72 (Figure 3). As
in Reference 5 we trained each model on ten images of its class, one image for each of ten aspect angles, spaced
approximately 36� apart. We trained one model for all ten images of a target, whereas De Bonet et al trained one
model per image.

We �rst tried discriminating between vehicles of one class and other objects by thresholding logPr(I j class), i.e.,
no model of other objects is used. In essence this discriminates simply by judging whether an image looks su�ciently
similar to the training examples. For the tests, the other objects were taken from the test data for the two other
vehicle classes, plus seven other vehicle classes. There were 1,838 image from these seven other classes, 391 BMP2
test images, 196 BTR70 test images, and 386 T72 test images. The resulting ROC curves are shown in Figure 4a.

We then tried discriminating between pairs of target classes using HIP model likelihood ratios, i.e., logPr(I j class1)�
logPr(I j class2). Here we could not use the extra seven vehicle classes. The resulting ROC curves are shown in Fig-
ure 4b. The performance is comparable to that of the exible histogram approach.

yThe (non-existent) label aL+1 can be thought of as a label with a single possible value, which is always set. The conditional
Pr(aLj aL+1) turns then into a prior Pr(aL)



Figure 3. SAR images of three types of vehicles to be detected.
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Figure 4. ROC curves for vehicle detection in SAR imagery. (a) ROC curves by thresholding HIP likelihood of
desired class. (b) ROC curves for inter-class discrimination using ratios of likelihoods as given by HIP models.

5.2. MASS DETECTION

We applied HIP to the problem of detecting masses in ROIs taken from mammograms, as detected by a CAD system
at the University of Chicago. We trained a HIP model of the distribution of positive images on 36 randomly-chosen
ROIs that contained masses, and a second HIP model on 48 randomly-chosen ROIs without masses. The likelihood
ratio was then used as the test criterion, i.e., a threshold on this ratio is used to decide which ROIs will be called
masses. The true and false positive rates as a function of the threshold were measured on a test set with 36 mass
and 49 non-mass ROIs.

A search was performed over the number of hidden labels values at each level. The search criterion was the
negative log-likelihood on the training data plus the minimum-description-length penalty term, d log(N)=2, where d
is the number of model parameters and N is the the number of training examples. The maximum number of labels
in a level was bounded (somewhat arbitrarily) at 17, since doubling the number of components in a level at this point
was observed to decrease the MDL criterion, but very little, and the computation time would approximately double.

The best architecture had 17, 17, 11, 2, and 1 hidden label in levels 0{4, respectively. For this architecture, Az

was 0.73. This detector had a speci�city of 33% at a sensitivity of 95%. The ROC curve is shown in Figure 5.
While this performance is not as good as we might hope, being worse than our own HPNN classi�er,8 for instance, it
demonstrates that the model captures relevant information for classi�cation. We hope that further work, particularly
in model and feature selection, will improve on these results.

6. CONCLUSION

We have developed a class of image probability models we call hierarchical image probability or HIP models. To
justify these, we showed that image distributions can be exactly represented as products over pyramid levels of
distributions of sub-sampled feature images conditioned on coarser-scale image information. We argued that hidden
variables are needed to capture long-range dependencies while allowing us to further factor the distributions over
position. In our current model the hidden variables act as indices of mixture components. The resulting model is
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Figure 5. ROC curve for HIP detector of Mass ROIs generated by U. Chicago CAD.

somewhat like a hidden Markov model on a tree. The HIP model can be used for a wide range of image processing
tasks besides classi�cation, e.g., compression, noise-suppression, up-sampling, error correction, etc.

There is much room for further work on variations of the speci�c HIP model presented here. The tree-structured
discrete hidden variables lend themselves well to exact marginalization, but they fail to capture certain image
properties. For example, contrast level and orientation could be given continuous parameterizations. See, for
example, the work of Simoncelli and Wainwright, who developed a very similar model to capture the statistics
of contrast level (which they refer to as \scale"), though they did not formulate their model as an image probability.9

Furthermore, as is well known, the tree structure of the hidden variable dependencies will tend to arti�cially suppress
the statistical dependence between some neighboring pixels, but not others. Allowing multiple parents would alleviate
this. Unfortunately, either of these modi�cations would make it impractical to marginalize over the hidden variables,
which is the proper probabilistic procedure. There are approximate alternatives to exact marginalization, which
should allow a far wider variety of hidden variable structures.
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