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ABSTRACT

We compare and contrast two frequency-domain deco-
rrelation criteria for the blind source separation of convolu-
tive mixtures of nonstationary signals. Both criteria operate
on the coherence function matrix measured on the outputs
obtained by filtering and combining the sensor signals. One
criteria involves the Frobenius norm of the coherence func-
tion matrix, which is related to the sums of squared coher-
ence functions between all possible pairs of outputs. The
other criteria is the determinant of the coherence function
matrix, which is related to the volume of state space occu-
pied by the outputs. These criteria are identical for two out-
puts, but differ for three or more outputs. Full gradient
descent of either criteria involves simultaneously decorre-
lating the outputs while maximizing the output energy.
Thus, we will also compare and contrast the resulting algo-
rithms to decorrelation alone. Quantitative comparison will
be done using data recorded in a real acoustic environment.

1. INTRODUCTION

Informally, the problem we seek to solve is the following: a
set of sources are convolutively filtered, mixed, and mea-
sured at an array of sensors, where each sensor measures a
different mixture of the sources. We then seek to filter and
recombine the sensor signals so as to best recover the
sources.

If the sources are statistically independent, then this
can be used as a criteria on the outputs for adapting the fil-
ter weights. Unfortunately, full independence requires an
infinite amount of data and time to measure, and therefore
much of the research in blind source separation involves
relaxing the full criteria of independence by examining the
effect of various priors on the sources. In this paper, we
consider the separation problem when the source signals
are known to be nonstationary. As was suggested by [3],
and shown more rigorously in [6], the independence crite-
ria can then be relaxed to one of decorrelation of the out-
puts.

However, even within these constraints, there are many
ways to measure decorrelation, and even less is known

about how to properly exploit non-stationarity. We hav
previously shown that the coherence function and its pow
independent normalization is an excellent criteria for me
suring decorrelation between a pair of outputs [4]. How
ever, the most common extension of this criteria to mo
outputs, namely the sum of the squared coherence fu
tions between all pairs of outputs, does not perform as w
at separating more than two sources. We therefore see
stronger decorrelation criteria still based on the coheren
function. In this paper, we examine the determinant of th
coherence function matrix as a separation criteria, a
compare it to our previous criteria.

2. PROBLEM STATEMENT

Formally, the problem we seek to solve is the following:N
unknown nonstationary source signals are convolutive
mixed and measured byM sensors

(1)

wheres is an unknown (Nx1) vector of source signals,A is
an unknown (MxN) mixing matrix of channel impulse
responses, andx is a measured (Mx1) vector. The convolu-
tion operator * here implies both matrix multiplication and
convolution. We then seek a matrix of filters operating o
the sensor measurements

(2)

such that the components of the (Nx1) outputy are statisti-
cally independent, whereH is a (NxM) matrix of filter
impulse responses.

In the time domain, independence must be tested n
only at the same instant of time, but for all possible comb
nations of delays of the components ofy. This problem can
be ameliorated by performing the separation in the fr
quency domain. In the frequency domain, convolutio
becomes multiplication and (2) becomes

(3)

where W(ω) is a (NxM) matrix of filter frequency
responses.

x t( ) A * s t( )=

y t( ) H * x t( )=

Y ω( ) W ω( ) X ω( )⋅=
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Equations (2) and (3) describeany linear system. Ulti-
mately, we must implement them in a specific architecture.
In this paper, we use finite impulse response (FIR) filters
because this allows the actual filtering operation to be car-
ried out in the frequency domain.

3. COHERENCE FUNCTION MATRIX

Both criteria we will introduce are based on the matrix of
coherence functions,CYY, between the outputs. This
matrix has components

(4)

where is thecross-power spectral densitybetween

outputsi and j at digital frequencyω. The coherence func-
tion matrix can also be expressed directly in terms of a
matrix of cross-power spectral densities,SYY, as

(5)

where

(6)

is a diagonal matrix of output powers in the frequency
domain.

The coherence function matrix is the frequency
domain analog of the time-domain correlation matrix. The
coherence function matrix at each frequency: (1) is unity
along the diagonal; (2) is Hermitian; (3) is positive semi-
definite; and (4) has a determinant that is bounded by 0 and
1.

3.1 Estimating the cross-power spectral density

In the frequency domain, the cross-power spectral density
matrix between the outputs is formally given by

(7)

In order to efficiently estimate this online and capture non-
stationarity, we use a recursive estimator

(8)

whereγ is a forgetting factor, constrained to for
stability, andT is a block processing time (frame rate) that
represents the time it takes to estimateY. Note that because
the signals areassumednonstationary, we have written
their frequency response as a function of time. The forget-
ting factor and block processing time combine to make the
effective memory of the estimator to beT/(1-γ). Taking the
expected value of both sides of (8) readily shows that it is
anunbiasedestimator forstationarysignals.

Later, we will also need to make use of the cros
power spectral density between the outputs and theinputs

(9)

3.2 Simultaneous decorrelation and power maximiza-
tion

The big advantage of any criteria we might form based o
the coherence function matrix is that it will be independe
of the power of the sources as measured at the mic
phones.

However, note that since the cross-power terms appe
in the numerator of (4), and the power terms appear in t
denominator of (4), the full derivative of any criteria base
on the coherence matrix will inevitably involve simulta
neously decorrelating the outputs while maximizing the
power. Maximizing the output power is a common opera
tion in geometric beamforming.

From a beamforming perspective [8], using FIR filter
in (3) means that the system can place infinite nulls b
only finite maximums in a given direction. For this reason
separating the outputs through decorrelation alone usua
means that the beamformer associated with each out
places nulls in the directions of all the sourcesexcept one,
with each output ignoring a different source. Our goal ha
been to find a separation algorithm that, in addition to pla
ing nulls, also places maximums in the directions of th
sources. Our hope is that the coherence functions will aid
this by allowing simultaneous decorrelation and pow
maximization.

4. CRITERIA I: FROBENIUS NORM

The first criteria we examine is the Frobenius norm of th
coherence function matrix. This criteria first appeared
[4], but is closely related to the one introduced in [5]-[7]
The Frobenius norm is the sum of the squares of all t
matrix elements, and thus the criteria is proportional to th
sum of the squared coherence functions between all pos
ble pairs of outputs. It can be concisely written as

(10)

This criteria is bounded byN andN2.

4.1 Weight update

To obtain the weight update, we take the derivative of th
criteria (10) with respect to the complex weights an
employ the stochastic gradient approximation by droppin
the summation over time. We have previously shown [
that taking the derivative with respect to the weights on
through the cross terms ofS results in

CYi Yj
ω( )

SYi Yj
ω( )

SYi Yi
ω( ) SYj Yj

ω( )⋅
-------------------------------------------------=

SYi Yj
ω( )

CYY PYY
1 2⁄– SYY PYY

1 2⁄–⋅ ⋅=

PYY diag SYY[ ]=

SYY ω( ) E Y ω( )YH ω( )[ ]=

SYY ω t,( ) γ SYY ω t T–,( ) 1 γ–( ) Y ω t,( ) YH ω t,( )⋅+=

0 γ 1< <

SYX ω t,( ) γ SYX ω t T–,( ) 1 γ–( ) Y ω t,( ) X
H ω t,( )⋅+=

J1 CYY ω t,( ) 2

t

∑ trace CYY
H ω t,( ) CYY ω t,( )⋅[ ]

t

∑= =
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whereη is a learning rate. The full derivative is obtained by
taking the derivative with respect to the weights through
both the crossandpower terms ofS:

(12)

Note that both the cross and full derivatives involve the
recursive cross-power spectral density estimate,SYX,
between the outputs and inputs.

5. CRITERIA II: DETERMINANT

The second criteria we consider is based on the determinant
of the coherence function matrix, which is proportional to
the volume of state space occupied by the normalized out-
put vector. Because the outputs are maximally decorrelated
when this volume is maximal, the criteria we adopt is one
minus the determinant

(13)

This criteria is bounded by 0 and 1. To the best of our
knowledge, this criteria appears here for the first time in the
context of source separation.

5.1 Weight update

Once again, we obtain the weight updateequation by find-
ing the stochastic gradient of the criteria (13). We haven’t
yet isolated the weight update equation obtained through
the cross terms ofS alone:∆Wcross. However, for simula-
tions where the number of inputs and outputs are known
apriori, we obtain the gradient analytically using a sym-
bolic math program.

Nevertheless, we have found the full gradient, where
the derivative is taken through both the cross and power
terms ofS, resulting in:

(14)

6. EXAMPLES

6.1 Two outputs

For the case of two outputs, both criteria I and II are identi-
cal to within a constant:

(15)

(16)

Thus, the weight updates are also identical. Note that t
two criteria are identical independent of the number
inputs.

6.2 Three outputs

For the case of three outputs, criteria I is

(17)

while criteria II is

(18)

Note that the first three terms of criteria II (18), to within a
constant, embody the entire criteria I (17). However, th
fourth term represents interaction between all three outpu
In fact, it is not difficult to show that the second criteria
always includes the first criteria plus extra higher-orde
products between the 2nd-order moments. We would th
expect the criteria based on the determinant to be stron
than the one based on the Frobenius norm. However, it
also more computationally demanding, particularly if th
full derivative is used, due to the presence of the inverse
the cross-power spectral density matrix. Of course, t
inverse can always be computed analytically in advance
a given problem with a known number of outputs.

7. EXPERIMENT

7.1 Data

We now present the results of applying the algorithms
audio data generated by live speakers in a real roo
Because we have previously presented extensive results
the case of two sources [4], for which both criteria are ide
tical, here we concentrate on mixtures of three sources.

Three live male speakers were recorded in a real roo
of dimensions 3 m x 3.6 m x 2.3 m using 7 unidirectiona
microphones, 20 cm apart and 2 m from the speakers. T

three speakers were located in line with the 1st, 4th, and 7th

microphones in the array in order to ensure that at lea
some of the room transfer functions from the speakers
the microphones were minimum phase. The audio w
sampled at 44.1 kHz and downsampled to 11.025 kHz f
input to the algorithms.

The training data is a ~12 second recording where
speakers are continuously and simultaneously talking. T
test data consists of another ~6 second recording where
three speakers alternately say the digits such that only o

Wcross∆ ηPYY
1– SYY PYY–( ) PYY

1–⋅ ⋅ SYX⋅–=

W full∆ ηPYY
1 2⁄– CYY diag CYY

H CYY⋅[ ]–( ) PYY
1 2⁄–⋅ ⋅ SYX⋅–=

J2 1 CYY ω t,( )–{ }
t

∑ 1
SYY ω t,( )
PYY ω t,( )
---------------------------–

 
 
 

t

∑= =

W full∆ η– CYY SYY
1– PYY

1–
–( ) SYX⋅ ⋅ ⋅=

J1 2 2
SY1Y2

2

SY1Y1
SY2Y2

-------------------------

t

∑+=

J2

SY1Y2

2

SY1Y1
SY2Y2

-------------------------

t
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J1 3 2
SY1Y2

2

SY1Y1
SY2Y2

-------------------------
SY1Y3

2

SY1Y1
SY3Y3

-------------------------
SY2Y3

2
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SY3Y3

-------------------------+ +
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speaker is active at a time. The training and testing data sets
were recorded consecutively to ensure that the speakers
maintained their position and thus that the room responses
would not change.

7.2 Results

The four algorithms analyzed were the Frobenius norm
with cross terms only, the Frobenius norm with full deriva-
tive, the determinant with cross terms only, and the deter-
minant with full derivative.

With 7 inputs and 3 outputs, each algorithm used a 3x7
matrix of FIR filters, each of length 128 taps. They were all
run with two different initial conditions on the weights. The
first condition was on the filters associated with the direct
path microphone-output combinations of 1-1, 4-2, and 7-3.
These direct path filters were set to a unity delay of 64 sam-
ples. The other filters were set to zeros. The second initial
condition was that a delay-sum beamformer associated
with each output waspointed at one of the sources.

The filters weights were also updated using two differ-
ent procedures. The first one didn’t adapt the direct path fil-
ters, while the second one renormalized all the filter
weights (as a single large vector) to have unity norm.

Each algorithm variation was trained for 20 passes
through the training data using the same learning rate. For
the test data, the active periods of each speaker were hand
segmented in order to obtain an accurate measurement of
signal separation. To obtain a performance measure after
training, the training weights were used to filter the entire
test data. The resulting output was then analyzed using the
aforementioned segmentation such that whenever a speaker
was talking, the power in both the enhanced and rejection
channels were measured and accumulated. Thesignal to
interference ratio(SIR) was then calculated as

(19)

For comparison purposes, the SIR of the microphones
alone was measured to be -4.6 dB. Likewise, the SIR of the
delay-sum beams pointed at the sources was 0.2 dB.

The best results for all algorithms, initializations, and
update variations, was obtained using the Frobenius norm
cross power rule using the beamforming initialization and
the renormalization update. It achieved an SIR of 9.8 dB,
for a total SIR improvement of 14.4 dB. However, an exam-
ination of the resulting filter weights interpreted as beam-
formers showed that this was accomplished by eliminating
the low frequencies where resolution is poor, as was con-
firmed by the “tinny” sound of the resulting output wave-
forms.

For the direct path delta function weight initialization,
the full derivative of ther determinant criteria was the best,
but only resulted in an SIR of -2.1, or an SIR improvement

of only 2.5 dB. However, unlike the Frobeius norm cros
power update, the output suffered no discernable spee
distortion.

8. CONCLUSIONS

We have shown and contrasted two criteria that can
formed from the coherence function matrix: namely, th
Frobenius norm and the determinant. The two criteria a
identical for the case of two outputs, but differ for three o
more outputs. We also showed that the full gradient of an
criteria based on the coherence functioninevitably leads to
simultaneously decorrelating the outputs while maximizing
their output power.

Experimental results showed that decorrelation alo
is superior for signal to interference ratio (SIR) improve
ment, but only if the filter weights are initialized to beam
that point in the direction of the sources.

Adding power maximization to decorrelation achieve
an SIR similar to that of designed delay-sum beams b
without requiring any special initial conditions on the
weights. However, the SIR improvement was minimal.

Nevertheless, the results show some promise that
algorithm can be found that simultaneously nulls interfe
ers while enhancing sources.
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