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ABSTRACT

In this paper a constrained non-negative matrix factorization (cNMF) algorithm for recovering constituent spectra
is described together with experiments demonstrating the broad utility of the approach. The algorithm is based
on the NMF algorithm of Lee and Seung,1, 2 extending it to include a constraint on the minimum amplitude of
the recovered spectra. This constraint enables the algorithm to deal with observations having negative values by
assuming they arise from the noise distribution. The cNMF algorithm does not explicitly enforce independence
or sparsity, instead only requiring the source and mixing matrices to be non-negative. The algorithm is very fast
compared to other “blind” methods for recovering spectra.3, 4 cNMF can be viewed as a maximum likelihood
approach for finding basis vectors in a bounded subspace. In this case the optimal basis vectors are the ones
that envelope the observed data with a minimum deviation from the boundaries. Results for Raman spectral
data, hyperspectral images, and 31P human brain data are provided to illustrate the algorithm’s performance.

Keywords: Non-negative Matrix Factorization (NMF), Blind Source Separation, Raman Spectroscopy, Hy-
perspectral Imaging (HSI), Chemical Shift Imaging (CSI), Nuclear Magnetic Resonance (NMR) Spectroscopy

1. INTRODUCTION

Spectroscopic imaging makes use of spectral variations resulting from the interaction of energy with a sample
to quantify/characterize the composition of the sample. Spectra, which are the resultant plots of the detected
energy intensity versus wavelength (or mass, momentum, frequency, etc.) provide information about atomic and
molecular energy levels, molecular geometries, chemical bonds, interactions of molecules, and related processes.
Spectra are often used to identify the components of a sample (qualitative analysis) and may also be used
to measure the abundance/concentration in a sample (quantitative analysis). While structural images provide
morphological information, spectroscopy provides complementary information about chemical composition.

There are a variety of spectroscopic imaging methods, which are often characterized by the nature of the
energy sources used to generate the spectra.

Raman Spectroscopy: Raman spectra, which are based on the vibrational motions of molecules, provide a
chemical fingerprint suitable for identification and discrimination of a wide range of materials.5 For example,
Raman spectroscopic techniques utilize laser irradiation to provide specific information about biological tissue,
important for both disease classification and chemical and morphological analysis. The technique is applied
widely in diagnosis, such as in blood analyte measurement, atherosclerosis quantification, and breast cancer
detection.

Hyperspectral Imaging (HSI) : An imaging method often used for remote sensing, hyperspectral imaging
utilizes the reflectance spectrum of ambient light to produce spectra across a large number of wavelengths/bands
(> 30 bands). Typical wavelength ranges are from 0.4 to 2.5 µm with spatial resolutions of 10-30 m. Each
pixel in the resultant image represents a spectral response that is indicative of materials that are exposed on
the Earth’s surface. Absorption features in these spectra are determined by chemical composition and physical
structure of the material. Hyperspectral data have been studied for a wide range of applications including
environmental monitoring, mineral exploration, vegetation mapping, hazardous material remediation, and water
quality control.



Chemical Shift Imaging (CSI): CSI is an imaging modality whereby high resolution nuclear magnetic resonance
(NMR) spectra are acquired across a volume of tissue.6 In vivo CSI allows for the non-invasive characterization
and quantification of molecular markers with clinical utility for improving detection, identification, and treatment
for a variety of diseases, most notably neurological disorders. CSI can be tuned to different biochemical markers
through varying the atomic resonances, thus providing precise characterization of tissue and/or a means for
optimizing the signal-noise-ratio (SNR). Common atomic resonances include 1H (protons)∗, 19F (Fluorine), and
31P (Phosphorus). Together with structural magnetic resonance imaging (MRI), CSI can provide an integrated
biochemical and morphological view of biological tissues and disease processes.

1.1. Linear Mixture Model for Spectral Data

In the three spectroscopic imaging modalities described above, one often assumes that the observations/measurements
represent a mixture of some underlying constituent materials and, to a first approximation, this is a linear mix-
ture. Given observed spectra X, we can therefore say that,

X = AS+N (1)

where the columns inA represent the concentration/abundance of the constituent materials and the rows in S the
corresponding constituent spectra. N represents additive noise. The abundance matrix A has M columns (one
for each material) and N rows (one for each voxel/pixel). X and S have L columns (one for each frequency/band).
Since we interpret A as concentrations, we can assume the matrix to be non-negative. In addition, since the
constituent spectra, S, represents amplitudes of reflectance/resonances, in theory its smallest value should be
zero, corresponding to the absence of reflectance/resonance at a given frequency. The factorization of Equation
1 is therefore constrained by,

A ≥ 0 and S ≥ 0. (2)

However, due to the presence of additive noise, the observations X may themselves be negative.

One of the primary goals of spectroscopic analysis is to recover the constituent spectra S and estimate the
abundances A. Such techniques for “unmixing” or “source recovery” can be classified as either supervised or
unsupervised.

1.2. Supervised vs. Unsupervised Methods

Supervised spectral unmixing relies on prior knowledge about the reflectance/resonance patterns of candidate
constituent materials (sometimes referred to as endmembers), or domain knowledge and a series of semi-automatic
steps to find the constituent materials in a particular scene. Given knowledge about the endmembers one can
find the abundances simply by solving a constrained least square problem,4 for example imposing a parametric
or explicit model for S = S(θ), and considering one pixel/voxel at a time, xi to invert the linear problem xi =
S(θ)ai.

7 Such supervised techniques require substantial user interaction to recover the endmembers and easily
lead to error, as a pixel can be misinterpreted (e.g. a pixel is taken as one pure endmember while it is actually
a mixture of several endmembers). Another type of supervised unmixing approach obtains endmembers directly
from a database, which also can be problematic. For example, environmental changes, such as atmospheric
absorption, can significantly affect the spectral profile and therefore the endmember extracted from a database
may not be a good model for a variety of environmental contexts.

More recently, unsupervised methods have been used to try to identify endmembers and mixtures directly from
the observed data X. For example, there have been efforts to simultaneously exploit the statistical structure of
multi-pixel/voxel spectra to solve Equation 1 as a blind source separation (BSS) problem. Parra et al.4 developed
a maximum a posteriori (MAP) method for estimating the abundances and spectra in HSI. Their MAP approach
imposes constraints on the positivity of the mixing matrix and the sparsity, in the space of innovations, of the
source matrix. However convergence is slow, with solutions heavily dependent upon meta-parameter choices used
in the optimization.

∗When protons are imaged the imaging modality is often referred to as magnetic resonance spectroscopy imaging
(MRSI).



Nuzillard et al.8 use second order blind identification (SOBI)9 to separate 13C spectra. Problematic with
the approach is the assumption that the constituent spectra are orthogonal, which is required for the SOBI
algorithm. While in many cases the constituent spectra can be highly correlated, an orthogonality assumption
is incorrect. Similar to Parra et al., Ochs et al3 formulate Equation 1 within a Bayesian framework to estimate
A and S for CSI spectra. Their Bayesian Spectral Decomposition (BSD) uses a Markov chain Monte Carlo
(MCMC) procedure to sample the posterior space of p(A,S|X) subject to the likelihood p(X|S,A) (i.e. the
noise distribution) and priors p(A), p(S). These priors include positivity and sparseness on A and S, however
make no assumptions about orthogonality. Their results show good separation for highly correlated constituent
spectra. However the approach is computationally expensive, given the MCMC procedure.

In this paper, a fast algorithm is proposed which exploits only the non-negativity ofA, S for blindly separating
various types of spectroscopic data. The algorithm is based on the NMF algorithm by Lee and Seung.1, 2 We
further develop the NMF approach, within a maximum likelihood framework, to include a function for forcing
low amplitude spectral values in the recovered sources to be zero. The method can be viewed as a subspace
reduction whereby small amplitudes of the constituent sources are forced to zero - i.e. forced to the edges of a
polygonal conic subspace spanned by the constituent spectra. We term this algorithm constrained non-negative
matrix factorization (cNMF). The algorithm bears some resemblance to the non-negative sparse coding (NNSC)
method of Hoyer,10 which also has as its basis the NMF algorithm. However NNSC imposes an explicit sparsity
constraint while cNMF does not. Perhaps more importantly, cNMF is formulated to systematically deal with
observations having negative values, a situation which often comes up in practice, yet other algorithms typically
have difficulty with. In the following sections we describe the cNMF algorithm and present results for Raman
Spectroscopy, Hyperspectral Imaging, and 31P CSI data.

2. CONSTRAINED NON-NEGATIVE MATRIX FACTORIZATION

We begin by reviewing the NMF algorithm of Lee and Seung,1 formulating it within the context of a noise model.
The basic idea of the algorithm is to construct a gradient descent over an objective function that optimizes A

and S. For example, with N modeled as i.i.d. Gaussian noise (a reasonable assumption, for example, given the
empirical noise distribution of the CSI data shown in Figure 4), one can formulate the problem as maximum
likelihood estimation,

AML,SML = argmax
A,S

p(X|A,S)

= argmax
A,S

N (X−AS,Σ) (3)

where Σ is the covariance of the Gaussian distribution and (AS) the mean.

Maximizing the likelihood is equivalent to minimizing the negative log-likelihood, so Equation 3 can be
written as,

AML,SML = argmin
A,S

(− log p(X|A,S))

= argmin
A,S

‖X−AS‖2

subject to : A ≥ 0, S ≥ 0. (4)

Defining the negative log-likelihood as F = ‖X −AS‖2, the gradients of F with respect to A and S are given
by,

∂F

∂Ai,m

= −2 ∗ ((XST)i,m − (ASST)i,m)

∂F

∂Sm,λ
= −2 ∗ ((ATX)m,λ − (A

TAS)m,λ). (5)



Using the gradients one can construct the additive update rules,

Ai,m ← Ai,m + δi,m[(XST )i,m − (ASST )i,m]

Sm,λ ← Sm,λ + ηm,λ[(A
TX)m,λ − (A

TAS)m,λ]. (6)

Note that there are two free parameters, which are the step sizes of the updates. Lee and Seung show that by
choosing the step sizes as, δi,m =

Ai,m

(ASST )i,m
, ηm,λ =

Sm,λ

(ATAS)m,λ
, the additive update rule can be formulated as

a multiplicative update rule, with X = AS being a fixed point. In addition, they show that this optimization
is equivalent to optimization over an auxiliary function, guaranteed to have the same minimum as Equation 4.2

The multiplicative update rules for A and S therefore become,

Ai,m ← Ai,m

(XST )i,m

(ASST )i,m

Sm,λ ← Sm,λ
(ATX)m,λ
(ATAS)m,λ

. (7)

Alternatively one might wish to assume a Poisson noise model, i.e., Poisson process with mean (AS)i,λ. In
this case one would construct the likelihoods as,

p(Xi,λ|A,S) =
(AS)

Xi,λ

i,λ

(Xi,λ)!
e−(AS)i,λ

p(X|A,S) =
∏

i,λ

p(Xi,λ|A,S)

log p(X|A,S) = log(
∏

i,λ

p(Xi,λ|A,S))

=
∑

i,λ

Xi,λ log (AS)i,λ −
∑

i,λ

(AS)i,λ −
∑

i,λ

logXi,λ! (8)

where (
∑

i,λ logXi,λ!) is a constant. To maximize the likelihood one constructs F as,

F =
∑

i,λ

Xi,λ log (AS)i,λ −
∑

i,λ

(AS)i,λ (9)

and computes the gradients of F with respect to A and S,

∂F

∂Ai,m

=
∑

λ

Sm,λ
Xi,λ

(AS)i,λ
−
∑

λ

Sm,λ

∂F

∂Sm,λ
=
∑

i

Ai,m

Xi,λ

(AS)i,λ
−
∑

i

Ai,m (10)

resulting in the additive updating rule,

Ai,m ← Ai,m + δi,m(
∑

λ

Sm,λ
Xi,λ

(AS)i,λ
−
∑

λ

Sm,λ)

Sm,λ ← Sm,λ + ηm,λ(
∑

i

Ai,m

Xi,λ

(AS)i,λ
−
∑

i

Ai,m). (11)

By choosing δi,m =
Ai,m

∑

λ Sm,λ
, ηm,λ =

Sm,λ
∑

i Ai,m
, one obtains the multiplicative update rule for the case of a Poisson

noise model,



Ai,m ← Ai,m

∑

λ Sm,λ
Xi,λ

(AS)i,λ
∑

λ Sm,λ

Sm,λ ← Sm,λ

∑

i Ai,m
Xi,λ

(AS)i,λ
∑

i Ai,m

. (12)

By formulating the updates as multiplicative rules in Equation 7 and Equation 12 one can ensure non-
negative A and S, given both are initialized non-negative and the observations, X, are non-negative. However
one problem is that, due to noise, the observations can have negative values. Since all observations are used in
updating A and S, a possible solution will be recovered spectra with negative amplitudes, which is undesirable
given our prior knowledge of physically meaningful spectra.

To mitigate the issue of negative values in the observations, it is instructive to view the factorization in
Equation 1 as representing a subspace reduction from a L dimensional space into a constrained M dimensional
space. Except for the positivity constraints, the decomposition is completely arbitrary within thatM -dimensional
space. However, spectra and concentrations are non-negative and so theM -dimensional degrees of freedom within
that subspace are constraints by M(N + L) linear boundary constraints (Equation 2). This is the portion of
the space that corresponds to realistic solutions of the factorization. We wish to further constrain the space of
possible solutions by disallowing small spectral magnitude values or negative values, and instead assume that
they are due to baseline noise. We thus allow non-zero solutions within the linear subspace only when there is
sufficient evidence to explain them above a minimum noise floor. We enforce this by introducing a threshold
constraint on S,

Si,j =

{

Si,j Si,j > θ

ε Si,j ≤ θ
(13)

where θ determines the noise floor which is strictly positive and ε is some very small positive value †. We treat A
symmetrically, using the same threshold constraint as mentioned above. This ensures A remains non-negative,
given the possibility of negative values in X.

We initialize the matrices A and S by constructing a non-negative random A and estimating S using con-
strained least squares,

argmin
A,S

‖X−AS‖2 subject to S ≥ 0. (14)

To summarize, the procedure for updating A and S is,

1. Initialize: Choose dimensions of A and S and initialize with non-negative values (e.g. random A and
constrained least-squares for S).

2. Update A

3. Force small values of A to be approximately zero.

4. Update S

5. Force small values of S to be approximately zero.

6. Iterate (back to 2).

We call this the constrained non-negative matrix factorization (cNMF) algorithm.

An intuitive understanding of cNMF via geometrical considerations can be developed. The manifold of
possible solutions specified by Equation 1 and Equation 2 represent a M dimensional polygonal cone spanned
by the M rows of S. Positivity constraints on the spectra require that the row vectors of S, representing the

†Note that the spectral amplitudes cannot be set to exactly zero given the update rules for A and S
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Figure 1. Results for Raman spectra using cNMF. (top left): Artificial mixture of Epsomite and Demantoid spectra with
Gaussian noise, with only 10 “observations” shown; (top right): Initialization of S with two endmembers; (bottom left):
Empirical convergence of negative log-likelihood in 10 independent runs; (bottom right): Recovered S.

edges of the cone, lie in the positive quadrant of the L dimensional points defined by the rows of the observations
X must fall within that polygonal cone. The additive noise in the probabilistic model allows points to fall outside
this cone with a certain likelihood. The aim of maximum likelihood is to find cone edge vectors that tightly
envelope the observed L-points with the smallest possible deviation from the boundaries. By constraining small
values of the vectors in S to be zero we force some polygon edges onto the boundaries (or edges) of the positive
quadrant. This will possibly increase the noise required to explain points that fall outside theM -polygonal cone.

In theory this heuristic procedure is not guaranteed to converge monotonically because of the application of
the threshold. However the procedure will not result in an unbounded cost since between threshold jumps, the
cost function deceases monotonically. Thus the algorithm can be viewed as a gradient decent with occasional
jumps that place the optimization in a new region of cost function space (i.e. optimization is locally monotonic).
We see that, in practice, our algorithm always converges, with examples of the evolution of the negative log
likelihood shown in Figures 1 and 4(c).

3. EXPERIMENTS

To demonstrate feasibility and performance of the cNMF algorithm we conducted experiments using various
types of spectral data. These include artificial mixtures of Raman spectral data, real mixtures in hyperspectral
aerial images and 31P CSI data of human brain.

3.1. Raman Spectra: Artificial Mixtures

Raman spectral data were taken from a dataset provided by the Division of Geological and Planetary Sciences
at CalTech. ‡ The spectra of Epsomite and Demantoid with bandwidth of 201 to 1200 Raman shift (cm−1)
are artificially mixed by a [256, 2] strictly positive random mixing matrix. To this mixture we add Gaussian
noise so that 10% of the observation values are negatitve. X therefore consists of 256 observations across 1000
bands. Since we have Gaussian noise, the multiplicative updating rule in Equation 7 is chosen and the updating
procedure described previously is followed. Figure 1, shows the artificial mixture. An initial S , consisting of
two non-negative spectra, is also shown. Note the strong overlap of the initialized spectra, and the recovered
constituent spectra after approximately 60 iterations of the updating rule. Figure 1 also shows the negative

‡http://minerals.gps.caltech.edu/FILES/raman/Caltech data/



log-likelihood for 10 independent initializations. Note in all cases there is monotonic convergence. We note that
in some cases (not shown) convergence is not observed to be strictly monotonic, with the thresholding resulting
in “jumps” in likelihood space. However in those cases we do see local convergence and we never observe the
negative log-likelihood increasing unbounded.

A closer look at the recovered spectra in Figure 2(b) shows that they are nearly identical to the true spectra
used in the artificial mixture (Figure 2(a)). The recovered mixing matrix A is also compared to the “true”
abundance matrix used to construct the artificial mixture. Note that each [256,1] vector in the mixing matrix is
reshaped into a [16,16] matrix in column sequence for display convenience.

We compare our results to those obtained using NNSC10 (Figure 2(c)). Since NNSC requires all values in
X to be non-negative, we modified the algorithm to including thresholding of negative observations. In NNSC,
both A and S are randomly initialized to be strictly positive. We note that the recovered spectra include “flips”
with some bands not as well-separated as cNMF. Though both algorithms are very fast, the cNMF algorithm
converges to a more correct solution, while at the same time including no specific assumptions on the sparsity
of the constituent spectra.

3.2. Hyperspectral Aerial Images

In this experiment, ground truthed USGS hyperspectral data representing real mixtures are used. We select
10×10 blocks of pixels from three different regions§ in the AVIRIS data of the Cuprite, Nevada mining district.
We separate these 300 mixed spectra assuming 2 endmembers and Poisson noise, with the endmembers shown
in Figure 3. After 4000 iterations, the algorithm converges, and recovered spectra are plot vs. sample spectra
from the USGS data base library in Figure 3. Abundance maps for Kaolinite and Muscovite in these 3 regions
are also shown in the figure. Regions 1 and 2 contain similar abundances for Kaolinite and Muscovite, while
region 3 contains more Muscovite. These results are similar to those by Parra et al.4

Since hyperspectral data are smooth and not sparse in the original signal space, a sparsity assumption in
the original signal space is not appropriate. Parra et al.’s4 MAP algorithm imposes a sparsity constraint in the
subspace of an auto-regressive innovation process, however our results indicate that this is not necessary. Only
non-negativity is required. In addition, the cNMF algorithm is several orders of magnitude faster than the MAP
approach.

3.3. Chemical Shift Images of Human Brain

In this experiment, 512 31P spectra (8-by-8-by-8 voxels) of human brain data from Ochs et al.3 were used, each
spectra represented as a 369 point vector. Using the same preprocessing as in Ochs et al., we use principal
component analysis (PCA) and visual inspection of the data to determine that 256 of the 512 voxels contain
signal and that there are primarily two constituent sources. Thus we have M=2, N=256, L=369. Figure 4(a)
shows an axial slice of the CSI data. Here we clearly see that spectra near the edges are almost exclusively
noise. An empirical noise estimate, shown in Figure 4(b), indicates that a Gaussian noise model is reasonable.
The recovered spectra are shown in Figure 5(a). It is clear that the recovered spectra are highly correlated and
therefore any orthogonality assumption is inappropriate and would not lead to correct results. The results are
consistent with the underlying biochemical characteristics of the tissue, with the top spectra being indicative of
muscle tissue and the bottom of brain tissue. Figure 5(b) shows the 5th axial slice of the mixing matrix A, which
can be viewed as the relative concentration of the recovered spectra. In this case, we see the muscle spectra
concentrated near the skull border while brain spectra largely internal to the muscle spectra. The recovered
spectra are nearly identical to the BSD approach results in,3 but the cNMF algorithm only takes 0.48 seconds
to converge (2.3 GHz Intel Processor) while BSD takes 12,000 seconds (1.2 GHz Intel Processor).

To demonstrate the importance of the noise model assumption¶, we also generate results for the same set
of CSI data except using the Poisson noise model formulation for the updates. Figures 6(a) and 6(b) are the

§Regions: (I) coordinate (265, 710) coordinate (275, 697) with Kaolinite and Muscovite 2, (III) coordinate (143, 661)
with only Muscovite 2 (ftp://speclab.cr.usgs.gov/pub/cuprite/gregg.thesis.images/plate2.cuprite95.alpha.2um.image.wlocals.gif).

¶Note that Lee and Seung1 remark that the choice of the cost function is not important. However our results indicate
otherwise, especially when considering negative values in the observations. We believe this is clear if one formulates the
cost function with respect to an underlying noise model.



(a)

(b)

(c)

Figure 2. (a) Target Raman spectra of Epsomite (1) and Demantoid (2), and corresponding target abundance distribution.
(b) Recovered spectra of endmembers 1 and 2. In comparison, we see the recovered spectra are almost identical to the
targets. Corresponding recovered material abundance maps are very close to the “true” abundance matrices. (c) Recovered
Raman spectra by NNSC (arrows point to flipped peaks) and recovered abundance distribution of endmembers 1 and 2.
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Figure 3. (Top left): Spectra of computed endmember (solid line) vs Muscovite sample spectra from the USGS data
base library. Note that only part of the spectra is shown since the discriminating features are located between band 172
and 220; (top right): computed endmember (solid line) vs Kaolinite sample spectra from the USGS data base library;
(bottom): Abundance of Kaolinite and Muscovite for three regions (lighter pixels represent higher abundance). Region 1
and 2 have similar abundances for Kaolinite and Muscovite, while region 3 contains more Muscovite.
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Figure 4. Example 31P CSI data from Ochs et al.3 (a) 8-by-8 voxel axial slice of spectra taken of the brain of a healthy
subject. Spectra near the edges are almost exclusively noise. The complete dataset consists of 512 voxels (8-by-8-by-8)
with spectra having 369 points (chemical shifts in parts-per-million (ppm)). (b) Empirical noise estimate from 31P CSI
data. The noise distribution was computed using the 256 voxels that were determined, via PCA and visual inspection,
to contain no signal. (c) Evolution of the negative log likelihood of cNMF, for 10 random initializations of A and S. The
figure is an empirical demonstration of algorithm convergence.

results. After 50 iterations, the algorithm converges, however the two spectra are not physically meaningful, as
can also be seen in the corresponding abundance maps shown in Figure 6(b).

4. CONCLUSION

In this paper we have described an algorithm for recovering constituent (source) spectra in spectroscopic data,
including Raman spectra, aerial hyperspectral imagery and CSI data. The algorithm, which we term cNMF, is



(a) (b)

Figure 5. Spectral separation results using cNMF. (a) cNMF recovered spectra, (top-source 1) muscle spectra and
(bottom-source 2) brain spectra. (b) 5th axial slice of mixing matrix showing relative concentrations of muscle and brain
spectra.

(a) (b)

Figure 6. Results using a Poisson noise model. (a) Recovered spectra. (b) 5th axial slice of mixing matrix.



based on an extension of the Lee and Seung NMF algorithm and can be viewed as a maximum likelihood approach
for finding basis vectors in a subspace. The basis vectors are found such that they envelope the observed L-
points with the smallest possible deviation from the boundaries. In cNMF only non-negativity constraints are
imposed. In contrast to other algorithms, cNMF is formulated to deal with negative observations, which often
occur with an underlying Gaussian noise model. We apply this algorithm to various types of spectroscopic data,
which include both smooth and sparse signals, and report results which show that cNMF rapidly converges to
correct and physically meaningful results. Such rapid convergence can be extremely useful, particularly if one is
interested in real-time analysis during data acquisition.
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