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ABSTRACT

In this chapter, we provide an overview of existing
algorithms for blind source separation of convolutive
audio mixtures. We provide a taxonomy, wherein
many of the existing algorithms can be organized,
and we present published results from those algo-
rithms that have been applied to real-world audio sep-
aration tasks.

1. INTRODUCTION

During the past decades, much attention has been
given to the separation of mixed sources, in partic-
ular for theblind case where both the sources and
the mixing process are unknown and only recordings
of the mixtures are available. In several situations it
is desirable to recover all sources from the recorded
mixtures, or at least to segregate a particular source.
Furthermore, it may be useful to identify the mixing
process itself to reveal information about the physical
mixing system.

In some simple mixing models each recording
consists of a sum of differently weighted source sig-
nals. However, in many real-world applications, such
as in acoustics, the mixing process is more complex.
In such systems, the mixtures are weighted and de-
layed, and each source contributes to the sum with
multiple delays corresponding to the multiple paths
by which an acoustic signal propagates to a micro-
phone. Such filtered sums of different sources are
called convolutive mixtures. Depending on the situa-
tion, the filters may consist of a few delay elements,
as in radio communications, or up to several thou-

sand delay elements as in acoustics. In these situa-
tions the sources are the desired signals, yet only the
recordings of the mixed sources are available and the
mixing process is unknown.

There are multiple potential applications of con-
volutive blind source separation. In acoustics differ-
ent sound sources are recorded simultaneously with
possibly multiple microphones. These sources may
be speech or music, or underwater signals recorded
in passive sonar [1]. In radio communications, an-
tenna arrays receive mixtures of different communi-
cation signals [2, 3]. Source separation has also been
applied to astronomical data or satellite images [4].
Finally, convolutive models have been used to inter-
pret functional brain imaging data and bio-potentials
[5, 6, 7, 8].

This chapter considers the problem of separat-
ing linear convolutive mixtures focusing in particu-
lar on acoustic mixtures. Thecocktail-party prob-
lem has come to characterize the task of recovering
speech in a room of simultaneous and independent
speakers [9, 10]. Convolutive blind source separa-
tion (BSS) has often been proposed as a possible so-
lution to this problem as it carries the promise to re-
cover the sources exactly. The theory on linear noise-
free systems establishes that a system with multiple
inputs (sources) and multiple output (sensors) can
be inverted under some reasonable assumptions with
appropriately chosen multi-dimensional filters [11].
The challenge lies in finding these convolution filters.

There are already a number of partial reviews
available on this topic [12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22]. The purpose of this chapter is to pro-
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vide a complete survey of convolutive BSS and iden-
tify a taxonomy that can organize the large number
of available algorithms. This may help practitioners
and researchers new to the area of convolutive source
separation obtain a complete overview of the field.
Hopefully those with more experience in the field can
identify useful tools, or find inspiration for new algo-
rithms. Figure 1 provides an overview of the different
topics within convolutive BSS and in which section
they are covered. An overview of published results is
given in Section 8.

2. THE MIXING MODEL

First we introduce the basic model of convolutive
mixtures. At the discrete time indext, a mixture of
N source signalss(t) = (s1(t), . . . , sN (t)) are re-
ceived at an array ofM sensors. The received signals
are denotedx(t) = (x1(t), . . . , xM (t)). In many
real-world applications the sources are said to becon-
volutively(or dynamically) mixed. The convolutive
model introduces the following relation between the
m’th mixed signal, the original source signals, and
some additive sensor noisevm(t):

xm(t) =

N∑

n=1

K−1∑

k=0

amnksn(t− k) + vm(t) (1)

The mixed signal is a linear mixture of filtered ver-
sions of each of the source signals, andamnk repre-
sents the corresponding mixing filter coefficients. In
practice, these coefficients may also change in time,
but for simplicity the mixing model is often assumed
stationary. In theory the filters may be of infinite
length (which may be implemented as IIR systems),
however, again, in practice it is sufficient to assume
K < ∞. In matrix form, the convolutive model can
be written as:

x(t) =

K−1∑

k=0

Aks(t− k) + v(t), (2)

whereAk is anM × N matrix which contains the
k’th filter coefficients.v(t) is theM×1 noise vector.
In the z-domain the convolutive mixture (2) can be
written as:

X(z) = A(z)S(z) + V (z), (3)

whereA(z) is a matrix with FIR polynomials in each
entry [23].

2.1. Special cases

There are some special cases of the convolutive mix-
ture which simplify Eq. (2):

Instantaneous Mixing Model: Assuming that all
the signals arrive at the sensors at the same time with-
out being filtered, the convolutive mixture model (2)
simplifies to

x(t) = As(t) + v(t). (4)

This model is known as theinstantaneousor delay-
less (linear) mixture model. Here,A = A0, is an
M × N matrix containing the mixing coefficients.
Many algorithms have been developed to solve the
instantaneous mixture problem, see e.g. [17, 24].

Delayed Sources: Assuming a reverberation-free
environment with propagation delays the mixing
model can be simplified to

xm(t) =
N∑

n=1

amnsn(t− kmn) + vm(t) (5)

wherekmn is the propagation delay between source
n and sensorm.

Noise Free: In the derivation of many algorithms,
the convolutive model (2) is assumed to be noise-free,
i.e.:

x(t) =

K−1∑

k=0

Aks(t− k). (6)

Over and Under-determined Sources: Often it
is assumed that the number of sensors equals (or
exceeds) the number of sources in which case lin-
ear methods may suffice to invert the linear mixing.
However, if the number of sources exceeds the num-
ber of sensors the problem is under-determined, and
even under perfect knowledge of the mixing system
linear methods will not be able to recover the sources.

2.2. Convolutive model in the frequency domain

The convolutive mixing process (2) can be simplified
by transforming the mixtures into the frequency do-
main. The linear convolution in the time domain can
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Figure 1: Overview of important areas within blind separation of convolutive sources.

be written in the frequency domain as separate mul-
tiplications for each frequency:

X(ω) = A(ω)S(ω) + V (ω). (7)

At each frequency,ω = 2πf , A(ω) is a complex
M ×N matrix,X(ω) andV (ω) are complexM ×1
vectors, and similarlyS(ω) is a complexN × 1
vector. The frequency transformation is typically
computed using a discrete Fourier transform (DFT)
within a time frame of sizeT starting at timet:

X(ω, t) = DFT([x(t), · · · , x(t + T − 1)]), (8)

and correspondingly forS(ω, t) andV (ω, t). Often
a windowed discrete Fourier transform is used:

X(ω, t) =

T−1∑

τ=0

w(τ)x(t + τ)e−jωτ/T , (9)

where the window functionw(τ) is chosen to mini-
mize band-overlap due to the limited temporal aper-

ture. By using the fast Fourier transform (FFT) con-
volutions can be implemented efficiently in the dis-
crete Fourier domain, which is important in acoustics
as it often requires long time-domain filters.

2.3. Block-based Model

Instead of modeling individual samples at timet one
can also consider a block consisting ofT samples.
The equations for such a block can be written as fol-
lows:

x(t) = A0s(t) + · · ·+ AK−1s(t−K + 1)

x(t− 1) = A0s(t− 1) + · · ·+ AK−1s(t−K)

x(t− 2) = A0s(t− 2) + · · ·+ AK−1s(t−K − 1)

...
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TheM -dimensional output sequence can be written
as anMT × 1 vector:

x̂(t) =
[
xT (t), xT (t− 1), · · · , xT (t− T + 1)

]T
,

(10)
wherexT (t) = [x1(t), · · · , xN (t)]. Similarly, the
N -dimensional input sequence can be written as an
N(T + K − 1)× 1 vector:

ŝ(t) =
[
sT (t), sT (t− 1), · · · , sT (t− T −K + 2)

]T

(11)
From this the convolutive mixture can be expressed
formally as:

x̂(t) = Âŝ(t) + v̂(t), (12)

whereÂ has the following form:

Â =




A0 · · · AK−1 0 0

0
. . .

. . .
. . . 0

0 0 A0 · · · AK−1


 . (13)

The block-Toeplitz matrixÂ has dimensionsMT ×
N(T + K − 1). On the surface, Eq. (12) has the
same structure as an instantaneous mixture given in
Eq. (4), and the dimensionality has increased by a
factorT . However, the models differ considerably as
the elements within̂A andŝ(t) are now coupled in a
rather specific way.

The majority of the work in convolutive source
separation assumes a mixing model with a finite im-
pulse response (FIR) as in Eq. (2). A notable excep-
tion is the work by Cichocki which considers also an
auto-regressive (AR) component as part of the mix-
ing model [18]. The ARMA mixing system proposed
there is equivalent to a first-order Kalman filter with
an infinite impulse response (IIR).

3. THE SEPARATION MODEL

The objective of blind source separation is to find
an estimate,y(t), which is a model of the original
source signalss(t). For this, it may not be neces-
sary to identify the mixing filtersAk explicitly. In-
stead, it is often sufficient to estimate separation fil-
tersW l that remove the cross-talk introduced by the
mixing process. These separation filters may have a
feed-back structure with an infinite impulse response
(IIR), or may have a finite impulse response (FIR)
expressed as feed-forward structure.

3.1. Feed-forward Structure

An FIR separation system is given by

yn(t) =

M∑

m=1

L−1∑

l=0

wnmlxm(t− l) (14)

or in matrix form

y(t) =
L−1∑

l=0

W lx(t− l). (15)

As with the mixing process, the separation system
can be expressed in thez-domain as

Y (z) = W (z)X(z), (16)

and it can also be expressed in block Toeplitz form
with the corresponding definitions for̂y(t) andŴ

[25]:
ŷ(t) = Ŵ x̂(t). (17)

Table 1 summarizes the mixing and separation
equations in the different domains.

3.2. Relation between source and separated sig-
nals

The goal in source separation is not necessarily to
recover identical copies of the original sources. In-
stead, the aim is to recover model sources without
interferences from other sources, i.e., each separated
signalyn(t) should contain signals originating from
a single source only (see Figure 3). Therefore, each
model source signal can be a filtered version of the
original source signals, i.e.:

Y (z) = W (z)A(z)S(z) = G(z)S(z). (18)

This is illustrated in Figure 2. The criterion for sepa-
ration, i.e., interference-free signals, is satisfied if the
recovered signals are permuted, and possibly scaled
and filtered versions of the original signals, i.e.:

G(z) = PΛ(z), (19)

whereP is a permutation matrix, andΛ(z) is a diag-
onal matrix with scaling filters on its diagonal. If one
can identifyA(z) exactly, and chooseW (z) to be its
(stable) inverse, thenΛ(z) is an identity matrix, and
one recovers the sources exactly. In source separa-
tion, instead, one is satisfied with convolved versions
of the sources, i.e. arbitrary diagonalΛ(z).
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Table 1: The convolutive mixing equation and its corresponding separation equation are shown for different
domains in which blind source separation algorithms have been derived.

Mixing Process Separation Model

Time xm(t) =

N∑

n=1

K−1∑

k=0

amnksn(t− k) + vm(t) yn(t) =

M∑

m=1

L−1∑

l=0

wnmlxm(t− l)

x(t) =

K−1∑

k=0

Aks(t− k) + v(t) y(t) =

L−1∑

l=0

W lx(t− l)

z-domain X(z) = A(z)S(z) + V (z), Y (z) = W (z)X(z)

Frequency X(ω) = A(ω)S(ω) + V (ω) Y (ω) = W (ω)X(ω)
domain
Block Toe- x̂(t) = Âŝ(t) ŷ(t) = Ŵ x̂(t)
plitz Form

Acoustic wave

Reverberation

Microphone

array

Diffraction

Figure 3: Illustration of a speech source. It is not always clear what the desired acoustic source should be. It
could be the acoustic wave as emitted from the mouth. This corresponds to the signal as it would have been
recorded in an anechoic chamber in the absence of reverberations. It could be the individual source as it is
picked up by a microphone array. Or it could be the speech signal as it is recorded on microphones close
to the two eardrums of a person. Due to reverberations and diffraction, the recorded speech signal is most
likely a filtered version of the signal at the mouth. NOTE TO PUBLISHER: THIS FIGURE IS A PLACE
HOLDER ONLY. IT WILL REQUIRE MODIFICATION BY YOUR PRODUCTION DEPARTMENT. THE
FACES ARE TO BE REPLACED WITH ANY REASONABLE REPRESENTATIONOF A “SOURCE”
AND “RECEIVER” OF A SPEECH SIGNAL.

3.3. Feedback Structure

The mixing system given by (2) is called a feed-
forward system. Often such FIR filters are inverted

by a feedback structure using IIR filters. The esti-
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A(z) W(z)

G(z)

X(z)

S(z)

S(z) Y(z)

Y(z)

Figure 2: The source signalsY (z) are mixed with
the mixing filterA(z). An estimate of the source sig-
nals is obtained through an unmixing process, where
the received signalsX(z) are unmixed with the fil-
ter W (z). Each estimated source signal is then a
filtered version of the original source, i.e.,G(z) =
W (z)A(z). Note that the mixing and the unmixing
filters do not necessarily have to be of the same order.

U(z)

X(z) Y(z)
+

Figure 4: Recurrent unmixing (feedback) network
given by equation (21). The received signals are sep-
arated by a IIR filter to achieve an estimate of the
source signals.

mated sources are then given by the following equa-
tion, where the number of sources equals the number
of receivers:

yn(t) = xn(t) +
L−1∑

l=0

M∑

m=1

unmlym(t− l), (20)

andunml are the IIR filter coefficients. This can also
be written in matrix form

y(t) = x(t) +

L−1∑

l=0

U(l)y(t− l). (21)

The architecture of such a network is shown in Fig-
ure 4. In thez-domain, (21) can be written as [26]

Y (z) = (I + U(z))−1X(z), (22)

provided(I+U(z))−1 exists and all poles are within
the unit circle. Therefore,

W (z) = (I + U(z))−1. (23)

The feed-forward and the feedback network can be
combined to a so-called hybrid network, where a
feed-forward structure is followed by a feedback net-
work [27, 28].

3.4. Example: The TITO system

A special case, which is often used in source separa-
tion work is the two-input-two-output (TITO) system
[29]. It can be used to illustrate the relationship be-
tween the mixing and unmixing system, feed-forward
and feed-back structures, and the difference between
recovering sources versus generating separated sig-
nals.

Figure 5 shows a diagram of a TITO mixing and
unmixing system. The signals recorded at the two
microphones are described by the following equa-
tions:

x1(z) = s1(z) + a12(z)s2(z) (24)

x2(z) = s2(z) + a21(z)s1(z). (25)

The mixing system is thus given by

A(z) =

[
1 a12(z)

a21(z) 1

]
, (26)

which has the following inverse

[A(z)]−1 =
1

1− a12(z)a21(z)

[
1 −a12(z)

−a21(z) 1

]
.

(27)
If the two mixing filtersa12(z) and a21(z) can be
identified or estimated as̄a12(z) andā21(z), the sep-
aration system can be implemented as

y1(z) = x1(z)− ā12(z)x2(z) (28)

y2(z) = x2(z)− ā21(z)x1(z). (29)

A sufficient FIR separating filter is

W(z) =

[
1 −a12(z)

−a21(z) 1

]
(30)

However, the exact sources are not recovered until
this model sourcesy(t) are filtered with the IIR filter
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Figure 5: The two mixed sourcess1 ands2 are mixed by a FIR mixing system. The system can be inverted by
an alternative system, if the estimatesā12(z) andā21(z) of the mixing filtersa12(z) anda12(z) are known.
Further, if the filter[1 − ā12(z)ā21(z)]−1 is stable, the sources can be perfectly reconstructed as they were
recorded at the microphones.

[1− ā12(z)ā21(z)]−1. Thus, the mixing process is in-
vertible, provided this inverse IIR filter is stable. If a
filtered version of the separated signals is acceptable,
we may disregard the potentially unstable recursive
filter in (27) and limit separation to the FIR inversion
of the mixing system with (30).

4. IDENTIFICATION

Blind identification deals with the problem of esti-
mating the coefficients in the mixing processAk. In
general, this is an ill-posed problem, and no unique
solution exists. In order to determine the conditions
under which the system is blindly identifiable, as-
sumptions about the mixing process and the input
data are necessary. Even though the mixing param-
eters are known, it does not imply that the sources
can be recovered. Blind identification of the sources
refers to the exact recovery of sources. Therefore one
should distinguish between the conditions required to
identify the mixing system and the conditions nec-
essary to identify the sources. The limitations for
the exact recovery of sources when the mixing fil-
ters are known are discussed in [30, 11, 31]. For a
recent review on identification of acoustic systems
see [32]. This review considers single and multi-
ple input-output systems for the case of completely
known sources as well as blind identification, where
both the sources and the mixing channels are un-
known.

5. SEPARATION PRINCIPLE

Blind source separation algorithms are based on dif-
ferent assumptions on the sources and the mixing
system. In general, the sources are assumed to be
independentor at least decorrelated. The separation
criteria can be divided into methods based on higher
order statistics (HOS), and methods based on second
order statistics (SOS). In convolutive separation it is
also assumed that sensors receiveN linearly inde-
pendent versions of the sources. This means that the
sources should originate from different locations in
space (or at least emit signals into different orienta-
tions) and that there are at least as many sources as
sensors for separation, i.e.,M ≥ N .

Instead of spatial diversity a series of algorithms
make strong assumptions on the statistics of the
sources. For instance, they may require that sources
do not overlap in the time-frequency domain, utiliz-
ing therefore a form ofsparsenessin the data. Sim-
ilarly, some algorithms for acoustic mixtures exploit
regularity in the sources such as common onset, har-
monic structure, etc. These methods are motivated
by the present understanding on the grouping prin-
ciples of auditory perception commonly referred to
as “Auditory Scene Analysis”. In radio communi-
cations a reasonable assumption on the sources is
cyclo-stationarity (see Section 5.2.3) or the fact that
source signals take on only discrete values. By us-
ing such strong assumptions on the source statistics
it is sometimes possible to relax the conditions on
the number of sensors, e.g.M < N . The different
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Table 2: Assumptions made for separation
N < M N = M N > M

• Subspace methods
[25].

• Asymmetric sources by 2nd and 3rd order cumulants
[33]

• Non-stationary,
column-wise co-
prime sources [34]

• Reduction of prob-
lem to instantaneous
mixture [35, 36, 37,
25, 38, 39, 40]

• Separation criteria based on SOS and HOS for2 × 2
system [41]

• Cross-cumulants
[42, 43]

•Uncorrelated sources with distinct power spectra [44].• Sparseness in time
and frequency [45, 46,
47]

• 2 × 2, temporally colored sources [48]
• Cumulants of order> 2, ML principle [49].
• Known cross filters [41]
• 2 × 2, each with different correlation [50, 51], ex-
tended toM × M in [52]
• Non-linear odd functions [53, 26, 54, 55, 56, 57, 58]
• Non-linearity approximating the cdf see e.g. [59]

criteria for separation are summarized in Table 5.

5.1. Higher Order Statistics

Source separation based on higher order statistics is
based on the assumption that the sources are statis-
tically independent. Many algorithms are based on
minimizing second and fourth order dependence be-
tween the model signals. A way to express inde-
pendence is that all the cross-moments between the
model sources are zero, i.e.:

E[yn(t)α, yn′(t− τ)β ] = 0 ,

n 6= n′, α, β = {1, 2, . . .}, ∀τ,

whereE[·] denotes the statistical expectation. Suc-
cessful separation using higher order moments re-
quires that the underlying sources are non-Gaussian
(with the exception of at most one), since Gaussian
sources have zero higher cumulants [60] and there-
fore equations (31) are trivially satisfied without pro-
viding useful conditions.

5.1.1. 4th-order statistic

It is not necessary to minimize all cross-moments
in order to achieve separation. Many algorithms
are based on minimization of second and fourth or-
der dependence between the model source signals.
This minimization can either be based on second and

fourth order cross-moments or second and fourth or-
der cross-cumulants. Whereas off-diagonal elements
of cross-cumulants vanish for independent signals the
same is not true for all cross-moments [61]. Source
separation based on cumulants has been used by sev-
eral authors. Separation of convolutive mixtures by
means of fourth order cumulants has been addressed
by [62, 63, 41, 64, 65, 66, 67, 68, 61, 69, 70, 71]. In
[72, 73, 74], the JADE algorithm for complex-valued
signals [75] was applied in the frequency domain in
order to separate convolved source signals. Other
cumulant-based algorithms in the frequency domain
are given in [76, 77]. Second and third order cu-
mulants have been used by Ye et al. (2003) [33] for
separation of asymmetric signals. Other algorithms
based on higher order cumulants can be found in
[78, 79]. For separation of more sources than sen-
sors, cumulant-based approaches have been proposed
in [80, 70]. Another popular 4th-order measure of
non-Gaussianity iskurtosis. Separation of convolu-
tive sources based on kurtosis has been addressed in
[81, 82, 83].

5.1.2. Non-linear cross-moments

Some algorithms apply higher order statistics for sep-
aration of convolutive sources indirectly using non-
linear functions by requiring:

E[f(yn(t)), g(yn′(t− τ))] = 0. (31)
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Heref(·) andg(·) are odd non-linear functions. The
Taylor expansion of these functions captures higher
order moments and this is found sufficient for sep-
aration of convolutive mixtures. This approach was
among of the first for separation of convolutive mix-
tures [53] extending an instantaneous blind separa-
tion algorithm by Herault and Jutten (H-J) [84]. In
Back and Tsoi (1994) [85], the H-J algorithm was ap-
plied in the frequency domain, and this approach was
further developed in [86]. In the time domain, the
approach of using non-linear odd functions has been
used by Nguyen Thi and Jutten (1995) [26]. They
present a group of TITO (2× 2) algorithms based on
4th order cumulants, non-linear odd functions, and
second and fourth order cross-moments. This algo-
rithm has been further examined by Serviere (1996)
[54], and it has also been used by Ypma et al. (2002)
[55]. In Cruces and Castedo (1998) [87] a separation
algorithm can be found, which can be regarded as a
generalization of previous results from [26, 88]. In
Li and Sejnowski (1995) [89], the H-J algorithm has
been used to determine the delays in a beamformer.
The H-J algorithm has been investigated further by
Charkani and Deville (1997,1999) [90, 57, 58]. They
extended the algorithm further to colored sources
[56, 91]. Depending on the distribution of the source
signals, also optimal choices of non-linear functions
were found. For these algorithms, the mixing pro-
cess is assumed to be minimum-phase, since the H-J
algorithm is implemented as a feedback network. A
natural gradient algorithm based on the H-J network
has been applied in Choi et al. (2002) [92]. A discus-
sion of the H-J algorithm for convolutive mixtures
can be found in Berthommier and Choi (2003) [93].
For separation of two speech signals with two micro-
phones, the H-J model fails if the two speakers are
located on the same side, as the appropriate separat-
ing filters can not be implemented without delaying
one of the sources and the FIR filters are constrained
to be causal. HOS independence obtained by apply-
ing antisymmetric non-linear functions has also been
used in [94, 95].

5.1.3. Information Theoretic

Statistical independence between the source signals
can also be expressed in terms of the probability den-
sity functions (PDF). If the model sourcesy are in-
dependent, the joint probability density function can

be written as

p(y) =
∏

n

p(yn). (32)

This is equivalent to stating that model sourcesyn

do not carry mutual information. Information the-
oretic methods for source separation are based on
maximizing the entropy in each variable. Maximum
entropy is obtained when the sum of the entropy of
each variableyn equals the total joint-entropy iny.
In this limit variables do not carry any mutual in-
formation and are hence mutually independent [96].
A well-known algorithm based on this idea is the
Infomax algorithm by Bell and Sejnowski (1995)
[97] which was significantly improved in conver-
gence speed by the natural gradient method of Amari
[98]. The Infomax algorithm can also be derived
directly from model equation (32) using Maximum
Likelihood [99], or equivalently, using the Kullback-
Leibler divergence between the empirical distribution
and the independence model [100].

In all instances it is necessary to assume or model
the probability density functionps(sn) of the under-
lying sourcessn. In doing so, one captures higher
order statistics of the data. In fact, most informa-
tion theoretic algorithms contain expressions rather
similar to the non-linear cross-statistics in (31) with
f(yn) = ∂ ln ps(yn)/∂yn, andg(yn) = yn. The
PDF is either assumed to have a specific form or it is
estimated directly from the recorded data, leading to
parametricandnon-parametricmethods respectively
[16]. In non-parametric methods the PDF is captured
implicitly through the available data. Such methods
have been addressed in [101, 102, 103]. However, the
vast majority of convolutive algorithms have been de-
rived based on explicit parametric representations of
the PDF.

Infomax, the most common parametric method,
was extended to the case of convolutive mixtures
by Torkkola (1996) [59] and later by Xi and Reilly
(1997,1999) [104, 105]. Both feed-forward and feed-
back networks were shown. In the frequency domain
it is necessary to define the PDF for complex vari-
ables. The resulting analytic non-linear functions can
be derived with [106, 107]

f(Y ) = −
∂ ln p(|Y |)

∂|Y |
ej arg(Y ), (33)
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wherep(Y ) is the probability density of the model
sourceY ∈ C. Some algorithms assume circular
sources in the complex domain, while other algo-
rithms have been proposed that specifically assume
non-circular sources [108, 109].

The performance of the algorithm depends to
a certain degree on the selected PDF. It is impor-
tant to determine if the data has super-Gaussian or
sub-Gaussian distributions. For speech commonly a
Laplace distribution is used. The non-linearity is also
known as the Bussgang non-linearity [110]. A con-
nection between the Bussgang blind equalization al-
gorithms and the Infomax algorithm is given in Lam-
bert and Bell (1997) [111]. Multichannel blind de-
convolution algorithms derived from the Bussgang
approach can be found in [112, 23, 111]. These learn-
ing rules are similar to those derived in Lee et al.
(1997) [113].

Choi et al. (1999) [114] have proposed anon-
holonomicconstraint for multichannel blind decon-
volution. Non-holonomic means that there are some
restrictions related to the direction of the update. The
non-holonomic constraint has been applied for both
a feed-forward and a feedback network. The non-
holonomic constraint was applied to allow the natu-
ral gradient algorithm by Amari et al. (1997) [98]
to cope with over-determined mixtures. The non-
holonomic constraint has also been used in [115, 116,
117, 118, 119, 120, 121, 122]. Some drawbacks in
terms of stability and convergence in particular when
there are large power fluctuations within each signal
(e.g. for speech) have been addressed in [115].

Many algorithms have been derived from (32)
directly using Maximum Likelihood (ML) [123].
The ML approach has been applied in [124, 125,
126, 127, 128, 129, 99, 130, 131, 132]. A method
closely related to the ML is the Maximum a Poste-
riori (MAP) methods. In MAP methods, prior infor-
mation about the parameters of the model are taken
into account. MAP has been used in [23, 133, 134,
135, 136, 137, 138, 139, 140, 141].

The convolutive blind source separation problem
has also been expressed in a Bayesian formulation
[142]. The advantage of a Bayesian formulation is
that one can derive an optimal, possibly non-linear
estimator of the sources enabling the estimation of
more sources than the number of available sensors.
The Bayesian framework has also been applied in

[143, 144, 145, 135, 137].
A strong prior on the signal can also be realized

via Hidden Markov Models (HMMs). HMMs can
incorporate state transition probabilities of different
sounds [136]. A disadvantage of HMMs is that they
require prior training and they carry a high compu-
tational cost [146]. HMMs have also been used in
[147, 148].

5.2. Second Order Statistics

In some cases, separation can be based on second or-
der statistics (SOS) by requiring only non-correlated
sources rather then the stronger condition of inde-
pendence. Instead of assumptions on higher order
statistics these methods make alternate assumptions
such as the non-stationarity of the sources [149], or
a minimum phase mixing system [50]. By itself,
however, second order conditions are not sufficient
for separation. Sufficient conditions for separation
are given in [150, 15]. The main advantage of SOS
is that they are less sensitive to noise and outliers
[13], and hence require less data for their estimation
[50, 150, 151, 34, 152]. The resulting algorithms are
often also easier to implement and computationally
efficient.

5.2.1. Minimum-phase mixing

Early work by Gerven and Compernolle [88] had
shown that two source signals can be separated
by decorrelation if the mixing system is minimum
phase. The FIR coupling filters have to be strictly
causal and their inverses stable. The condition for
stability is given as|a12(z)a21(z)| < 1, where
a12(z) anda21(z) are the two coupling filters (see
Figure 5). These conditions are not met if the mixing
process is non-minimum phase [153]. Algorithms
based on second order statistic assuming minimum-
phase mixing can be found in [154, 38, 39, 51, 50,
155, 156, 52, 157, 158].

5.2.2. Non-stationarity

The fact that many signals are non-stationary
has been successfully used for source separation.
Speech signals in particular can be considered non-
stationary on time scales beyond 10 ms [159, 160]).
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The temporally varying statistics of non-stationarity
sources provides additional information for separa-
tion. Changing locations of the sources, on the
other hand, generally complicate source separation
as the mixing channel changes in time. Separation
based on decorrelation of non-stationary signals was
proposed by Weinstein et al. (1993) [29] who sug-
gested that minimizing cross-powers estimated dur-
ing different stationarity times should give sufficient
conditions for separation. Wu and Principe (1999)
proposed a corresponding joint diagonalization algo-
rithm [103, 161] extending an earlier method devel-
oped for instantaneous mixtures [162]. Kawamoto
et al. (1998) extend an earlier method [163] for in-
stantaneous mixtures to the case of convolutive mix-
tures in the time domain [164, 153] and frequency
domain [165]. This approach has also been employed
in [166, 167, 168, 169] and an adaptive algorithm
was suggested by Aichner et al. (2003) [170]. By
combining this approach with a constraint based on
whiteness, the performance can be further improved
[171].

Note that not all of these papers have used si-
multaneous decorrelation, yet, to provide sufficient
second-order constraints it is necessary to minimize
multiple cross-correlations simultaneously. An ef-
fective frequency domain algorithm for simultaneous
diagonalization was proposed by Parra and Spence
(2000) [149]. Second-order statistics in the fre-
quency domain is captured by the cross-power spec-
trum,

Ryy(ω, t) = E
[
Y (ω, t)Y H(ω, t)

]
(34)

= W (ω)Rxx(ω, t)W H(ω), (35)

where the expectations are estimated around some
time t. The goal is to minimize the cross-powers on
the off-diagonal of this matrix, e.g. by minimizing:

J =
∑

t,ω

‖Ryy(ω, t)−Λy(ω, t)‖2, (36)

where Λy(ω, t) is an estimate of the cross-power
spectrum of the model sources and is assumed to be
diagonal. This cost function simultaneously captures
multiple times and multiple frequencies, and has to
be minimized with respect toW (ω) and Λy(ω, t)
subject to some normalization constraint. If the
source signals are non-stationary the cross-powers

estimated at different timest differ and provide in-
dependent conditions on the filtersW (ω). This al-
gorithm has been successfully used on speech sig-
nals [172, 173] and investigated further by Ikram and
Morgan (2000, 2001, 2002, 2005) [174, 175, 176]
to determine the trade-offs between filter length, es-
timation accuracy, and stationarity times. Long fil-
ters are required to cope with long reverberation
times of typical room acoustics, and increasing fil-
ter length also reduces the error of using the cir-
cular convolution in (35) (see Section 6.3). How-
ever, long filters increase the number of parameters
to be estimated and extend the effective window of
time required for estimating cross-powers thereby
potentially loosing the benefit of non-stationarity of
speech signals. A number of variations of this al-
gorithm have been proposed subsequently, includ-
ing time domain implementations [177, 178, 179],
and other method that incorporate additional assump-
tions [180, 174, 181, 182, 183, 184, 185, 186, 187].
A recursive version of the algorithm was given in
Ding et al. (2003) [188]. In Robeldo-Arnuncio and
Juang (2005) [189], a version with non-causal sep-
aration filters was suggested. Based on a differ-
ent way to express (35), Wang et al. (2003, 2004,
2005) [190, 191, 148, 192] propose a slightly dif-
ferent separation criterion, that leads to a faster con-
vergence than the original algorithm by Parra and
Spence (2000) [149].

Other methods that exploit non-stationarity have
been derived by extending the algorithm of Molgedey
and Schuster (1994) [193] to the convolutive case
[194, 195] including a common two step approach
of ’sphering’ and rotation [159, 196, 197, 198, 199].
(Any matrix, for instance matrixW , can be repre-
sented as a concatenation of a rotation with subse-
quent scaling (which can be used to remove second-
order moments, i.e. sphering) and an additional rota-
tion).

In Yin and Sommen (1999) [160] a source
separation algorithm was presented based on non-
stationarity and a model of the direct path. The re-
verberant signal paths are considered as noise. A
time domain decorrelation algorithm based on differ-
ent cross-correlations at different time lags is given
in Ahmed et al. (1999) [200]. In Yin and Som-
men (2000) [201] the cost function is based on min-
imization of the power spectral density between the
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source estimates. The model is simplified by assum-
ing that the acoustic transfer function between the
source and closely spaced microphones is similar.
The simplified model requires fewer computations.
An algorithm based on joint diagonalization is sug-
gested in Rahbar and Reilly (2003, 2005) [152, 152].
This approach exploits the spectral correlation be-
tween the adjacent frequency bins in addition to non-
stationarity. Also in [202, 203] a diagonalization cri-
terion based on non-stationarity has been used.

In Olsson and Hansen (2004) [139, 138] the non-
stationary assumption has been included in a state-
space Kalman filter model.

In Buchner et al. (2003) [204], an algorithm
that uses a combination of non-stationarity, non-
Gaussianity and non-whiteness has been suggested.
This has also been applied in [205, 206, 207]. In
the case of more source signals than sensors, an al-
gorithm based on non-stationarity has also been sug-
gested [70]. In this approach, it is possible to sep-
arate three signals: a mixture of two non-stationary
source signals with short-time stationarity and one
signal which is long-term stationary. Other algo-
rithms based on the non-stationary assumptions can
be found in [208, 209, 210, 211, 212, 213, 214].

5.2.3. Cyclo-stationarity

If a signal is assumed to be cyclo-stationary, the sig-
nals’ cumulative distribution is invariant with respect
to time shifts of some periodT or any integer mul-
tiples of T . Further, a signal is said to be wide-
sense cyclo-stationary if the signals mean and auto-
correlation is invariant to shifts of some periodT or
any integer multiples ofT [215], i.e.:

E[s(t)] = E[s(t + αT )] (37)

E[s(t1), s(t2)] = E[s(t1 + αT ), s(t2 + αT )].(38)

An example of a cyclo-stationary signal is a ran-
dom amplitude sinusoidal signal. Many communi-
cation signals have the property of cyclo-stationarity,
and voiced speech is sometimes considered approx-
imately cyclo-stationary [216]. This property has
been used explicitly to recover mixed source in e.g.
[216, 217, 218, 55, 219, 220, 34, 118, 221, 222]. In
[220] cyclo-stationarity is used to solve the frequency
permutation problem (see Section 6.1) and in [118] it

is used as additional criteria to improve separation
performance.

5.2.4. Non-whiteness

Many natural signals, in particular acoustic signals,
are temporally correlated. Capturing this property
can be beneficial for separation. For instance, captur-
ing temporal correlations of the signals can be used
to reduce a convolutive problem to an instantaneous
mixture problem, which is then solved using addi-
tional properties of the signal [35, 25, 36, 37, 38, 39,
40]. In contrast to instantaneous separation where
decorrelation may suffice for non-white signals, for
convolutive separation additional conditions on the
system or the sources are required. For instance, Mei
and Yin (2004) [223] suggest that decorrelation is
sufficient provided the sources are an ARMA pro-
cess.

5.3. Sparseness in the Time/Frequency domain

Numerous source separation applications are limited
by the number of available microphones. It is in not
always guaranteed that the number of sources is less
than or equal to the number of sensors. With linear
filters it is in general not possible to remove more
thanM − 1 sources from the signal. By using non-
linear techniques, in contrast, it may be possible to
extract a larger number of source signals. One tech-
nique to separate more sources than sensors is based
on sparseness. If the source signals do not overlap in
the time-frequency (T-F) domain it is possible to sep-
arate them. A mask can be applied in the T-F domain
to attenuate interfering signal energy while preserv-
ing T-F bins where the signal of interest is dominant.
Often a binary mask is used giving perceptually satis-
factory results even for partially overlapping sources
[224, 225]. These methods work well for anechoic
mixtures (delay-only) [226]. However, under rever-
berant conditions, the T-F representation of the sig-
nals is less sparse. In a mildly reverberant environ-
ment (T60 ≤ 200 ms) under-determined sources have
been separated with a combination of independent
component analysis (ICA) and T-F masking [47].
The firstN −M signals are removed from the mix-
tures by applying a T-F mask estimated from the di-
rection of arrival of the signal (cf. Section 7.1). The
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remainingM sources are separated by conventional
BSS techniques. When a binary mask is applied to a
signal, artifacts (musical noise) are often introduced.
In order to reduce the musical noise, smooth masks
have been proposed [227, 47].

Sparseness has also been used as a post process-
ing step. In [77], a binary mask has been applied as
post-processing to a standard BSS algorithm. The
mask is determined by comparison of the magni-
tude of the outputs of the BSS algorithm. Hereby a
higher signal to interference ratio is obtained. This
method was further developed by Pedersen et al.
(2005, 2006) in order to segregate under-determined
mixtures [228, 229]. Because the T-F mask can be
applied to a single microphone signal, the segregated
signals can be maintained as e.g. stereo signals.

Most of the T-F masking methods do not effec-
tively utilize information from more than two micro-
phones because the T-F masks are applied to a single
microphone signal. However, some methods have
been proposed that utilize information from more
than two microphones [225, 230].

Clustering has also been used for sparse source
separation [231, 232, 233, 234, 140, 141, 235, 236,
230]. If the sources are projected into a space where
each source groups together, the source separation
problem can be solved with clustering algorithms. In
[46, 45] the mask is determined by clustering with
respect to amplitude and delay differences.

In particular when extracting sources from sin-
gle channels sparseness becomes an essential crite-
rion. Pearlmutter and Zador (2004) [237] use strong
prior information on the source statistic in addition
to knowledge of the head-related transfer functions
(HRTF). An a priori dictionary of the source sig-
nals as perceived through a HRTF makes it possible
to separate source signals with only a single micro-
phone. In [238],a priori knowledge is used to con-
struct basis functions for each source signals to seg-
regate different musical signals from their mixture.
Similarly, in [239, 240] sparseness has been assumed
in order to extract different music instruments.

Techniques based on sparseness are further dis-
cussed in the survey by O’Grady et al. (2005) [21].

5.4. Priors from Auditory Scene Analysis and
Psycho-Acoustics

Some methods rely on insights gained from studies of
the auditory system. The work by Bergman [241] on
auditory scene analysis characterized the cues used
by humans to segregate sound sources. This has mo-
tivated computational algorithms that are referred to
as computational auditory scene analysis (CASA).
For instance, the phenomenon of auditory masking,
i.e., the dominant perception of the signal with largest
signal power has motivated the use of T-F masking
for many years [242]. In addition to the direct T-F
masking methods outlined above, separated sources
have been enhanced by filtering based on perceptual
masking and auditory hearing thresholds [191, 243].

Another important perceptual cue that has been
used in source separation is pitch frequency, which
typically differs for simultaneous speakers [135, 244,
245, 137, 138, 147]. In Tordini and Piazza (2000)
[135] pitch is extracted from the signals and used
in a Bayesian framework. During unvoiced speech,
which lacks a well-defined pitch they use an ordi-
nary blind algorithm. In order to separate two sig-
nals with one microphone, Gandhi and Hasegawa-
Johnson (2004) [137] have proposed a state-space
separation approach with stronga priori informa-
tion. Both pitch and Mel-frequency cepstral coeffi-
cients (MFCC) were used in their method. A pitch
codebook as well as an MFCC codebook have to be
known in advance. Olsson and Hansen [138] have
used a Hidden-Markov Model, where the sequence of
possible states is limited by the pitch frequency that is
extracted in the process. As a pre-processing step to
source separation, Furukawa et al. (2003) [245] use
pitch in order to determine the number of source sig-
nals.

A method for separation of more sources than
sensors is given in Barros et al. (2002) [244]. They
combined ICA with CASA techniques such as pitch
tracking and auditory filtering. Auditory filter banks
are used in order to model the cochlea. In [244]
wavelet filtering has been used for auditory filter-
ing. Another commonly used auditory filter bank is
the Gammatone filter-bank (see e.g. Patterson (1994)
[246] or [247, 248]). In Roman et al. (2003) [248]
binaural cues have been used to segregate sound
sources, whereby inter-aural time and inter-aural in-
tensity differences (ITD, IID) have been used to
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group the source signals.

6. TIME VERSUS FREQUENCY DOMAIN

The blind source separation problem can either be ex-
pressed in the time domain

y(t) =

L−1∑

l=0

W lx(t− l) (39)

or in the frequency domain

Y (ω, t) = W (ω)X(ω, t). (40)

A survey of frequency-domain BSS is provided in
[22]. In Nishikawa et al. (2003) [249] the advantages
and disadvantages of the time and frequency domain
approaches have been compared. This is summarized
in Table 3.

An advantage of blind source separation in the
frequency domain is that the separation problem can
be decomposed into smaller problems for each fre-
quency bin in addition to the significant gains in com-
putational efficiency. The convolutive mixture prob-
lem is reduced to “instantaneous” mixtures for each
frequency. Although this simplifies the task of con-
volutive separation a set of new problems arise: The
frequency domain signals obtained from the DFT are
complex-valued. Not all instantaneous separation al-
gorithms are designed for complex-valued signals.
Consequently, it is necessary to modify existing algo-
rithms correspondingly [250, 251, 252, 5]. Another
problem that may arise in the frequency domain is
that there are no longer enough data points available
to evaluate statistical independence [131]. For some
algorithms [149] it is necessary that the frame size
T of the DFT is much longer than the length of the
room impulse responseK (see Section 6.3). Long
frames result in fewer data samples per frequency
[131], which complicates the estimation of the in-
dependence criteria. A method that copes with this
issue has been proposed by Servière (2004) [253].

6.1. Frequency Permutations

Another problem that arises in the frequency domain
is the permutation and scaling ambiguity. If the con-
volutive problem is treated for each frequency as

a separate problem, the source signals in each fre-
quency bin may be estimated with an arbitrary per-
mutation and scaling, i.e.:

Y (ω, t) = P (ω)Λ(ω)S(ω, t). (41)

If the permutationP (ω) is not consistent across fre-
quency then converting the signal back to the time
domain will combine contributions from different
sources into a single channel, and thus annihilate the
separation achieved in the frequency domain. An
overview of the solutions to this permutation prob-
lem is given in Section 7. The scaling indeterminacy
at each frequency – arbitrary solution forΛ(ω) – will
result in an overall filtering of the sources. Hence,
even for perfect separation the separated sources may
have a different frequency spectrum than the original
sources.

6.2. Time-Frequency Algorithms

Algorithms that define a separation criteria in the
time domain do typically not exhibit frequency per-
mutation problems, even when computations are exe-
cuted in the frequency domain. A number of authors
have therefore used time-domain criteria combined
with frequency domain implementations that speed
up computations. [254, 113, 255, 256, 121, 101, 257,
179, 171]. However, note that second-order criteria
may be susceptible to the permutation problem even
if they are formulated in the time domain [184].

6.3. Circularity Problem

When the convolutive mixture in the time domain is
expressed in the frequency domain by the DFT, the
convolution becomes separate multiplications, i.e.:

x(t) = A ∗ s(t)←→X(ω, t) ≈ A(ω)S(ω, t).
(42)

However, this is only an approximation which is ex-
act only for periodics(t) with periodT , or equiva-
lently, if the time convolution iscircular:

x(t) = A ⊛ s(t)←→X(ω) = A(ω)S(ω). (43)

For a linear convolutionerrors occur at the frame
boundary, which are conventionally corrected with
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Table 3: Advantages and disadvantages for separation in thetime domain or separation in the frequency
domain.

Time Domain Frequency Domain
Advantages Disadvantages Advantages Disadvantages
• The independence as-
sumption holds better for
full-band signals

• Degradation of conver-
gence in strong reverber-
ant environment

• The convolutive mix-
ture can be transformed
into instantaneous mix-
ture problems for each
frequency bin

• For each frequency
band, there is a per-
mutation and a scaling
ambiguity which needs to
be solved

• Possible high conver-
gence near the optimal
point

• Many parameters need
to be adjusted for each it-
eration step

• Due to the FFT, com-
putations are saved com-
pared to an implementa-
tion in the time domain

• Problem with too few
samples in each frequency
band may cause the inde-
pendence assumption to
fail

• Convergence is faster • Circular convolution de-
teriorates the separation
performance.
• Inversion of W is not
guaranteed

the overlap-save method. However, a correct overlap-
save algorithm is difficult to implement when com-
puting cross-powers such as in (35) and typically the
approximate expression (42) is assumed.

The problem of linear/circular convolution has
been addressed by several authors [62, 149, 258, 171,
121]. Parra and Spence (2000) [149] note that the
frequency domain approximation is satisfactory pro-
vided that the DFT lengthT is significantly larger
than the length of the mixing channels. In order to
reduce the errors due to the circular convolution, the
filters should be at least two times the length of the
mixing filters [131, 176].

To handle long impulse responses in the fre-
quency domain, a frequency model which is equiv-
alent to the time domain linear convolution has been
proposed in [253]. When the time domain filter ex-
tends beyond the analysis window the frequency re-
sponse is under-sampled [258, 22]. These errors can
be mitigated by spectral smoothing or equivalently by
windowing in the time domain. According to [259]
the circularity problem becomes more severe when
the number of sources increases.

Time domain algorithms are often derived using
Toeplitz matrices. In order to decrease the complex-
ity and improve computational speed, some calcula-
tions involving Toeplitz matrices are performed us-
ing the fast-Fourier transform. For that purpose, it is

necessary to express the Toeplitz matrices in circu-
lant Toeplitz form [23, 260, 261, 195, 121, 171]. A
method that avoids the circularity effects but main-
tains the computational efficiency of the FFT has
been presented in [262]. Further discussion on the
circularity problem can be found in [189].

6.4. Subband filtering

Instead of the conventional linear Fourier domain
some authors have used subband processing. In [142]
a long time-domain filter is replaced by a set of short
independent subband-filters, which results in faster
convergence as compared to the full-band methods
[214]. Different filter lengths for each subband fil-
ter have also been proposed motivated by the vary-
ing reverberation time of different frequencies (typ-
ically low-frequencies have a longer reverberation
time) [263].

7. THE PERMUTATION AMBIGUITY

The majority of algorithms operate in the frequency
domain due to the gains in computational efficiency,
which are important in particular for acoustic mix-
tures that require long filters. However, in frequency
domain algorithms the challenge is to solve the per-
mutation ambiguity, i.e., to make the permutation
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matrix P (ω) independent of frequency. Especially
when the number of sources and sensors is large, re-
covering consistent permutations is a severe problem.
With N model sources there areN ! possible per-
mutations in each frequency bin. Many frequency
domain algorithms providead hocsolutions, which
solve the permutation ambiguity only partially, thus
requiring a combination of different methods. Ta-
ble 4 summarizes different approaches. They can be
grouped into two categories

1. Consistency of the filter coefficients

2. Consistency of the spectrum of the recovered
signals

The first exploits prior knowledge about the mixing
filters, and the second uses prior knowledge about
the sources. Within each group the methods differ in
the way consistency across frequency is established,
varying sometimes in the metric they use to measure
distancebetween solutions at different frequencies.

7.1. Consistency of the Filter Coefficients

Different methods have been used to establish con-
sistency of filter coefficients across frequency, such
as constraints on the length of the filters, geometric
information, or consistent initialization of the filter
weights.

Consistency across frequency can be achieved
by requiring continuity of filter values in the fre-
quency domain. One may do this directly by compar-
ing the filter values of neighboring frequencies after
adaptation, and pick the permutation that minimize
the Euclidean distance between neighboring frequen-
cies [269, 74]. Continuity (in a discrete frequency
domain) is also expressed as smoothness, which is
equivalent with a limited temporal support of the fil-
ters in the time domain. The simplest way to im-
plement such a smoothness constraint is by zero-
padding the time domain filters prior to performing
the frequency transformation [264]. Equivalently,
one can restrict the frequency domain updates to have
a limited support in the time domain. This method
is explained in Parra et al. [149] and has been used
extensively [283, 161, 269, 174, 190, 188, 201, 119,
122, 192]. Ikram and Morgan [174, 176] evaluated
this constraint and point out that there is a trade-off

between the permutation alignment and the spectral
resolution of the filters. Moreover, restricting the fil-
ter length may be problematic in reverberant environ-
ments where long separation filters are required. As
a solution they have suggest to relax the constraint on
filter length after the algorithm converges to satisfac-
tory solutions [176].

Another suggestion is to assess continuity after
accounting for the arbitrary scaling ambiguity. To do
so, the separation matrix can be normalized as pro-
posed in [265]:

W (ω) = W̃ (ω)Λ(ω), (44)

whereΛ(ω) is a diagonal matrix and̃W (ω) is a
matrix with unit diagonal. The elements of̃W (ω),
W̃mn(ω) are the ratios between the filters and these
are used to assess continuity across frequencies [48,
220].

Instead of restricting theunmixingfilters, Pham
et al. (2003) [202] have suggested to require conti-
nuity in themixingfilters, which is reasonable as the
mixing process will typically have a shorter time con-
stant. A specific distance measure has been proposed
by Asano et al. (2003) [284, 267]. They suggest to
use the cosine between the filter coefficients of dif-
ferent frequenciesω1 andω2:

cosαn =
aH

n (ω1)an(ω2)

‖aH
n (ω1)‖‖an(ω2)‖

, (45)

where an(ω) is the n’th column vector ofA(ω),
which is estimated as the pseudo-inverse ofW (ω).
Measuring distance in the space of separation filters
rather than mixing filters was also suggested because
these may better reflect the spacial configuration of
the sources [285].

In fact, continuity across frequencies may also be
assessed in terms of the estimated spatial locations
of sources. Recall that the mixing filters are impulse
responses between the source locations and the mi-
crophone locations. Therefore, the parameters of the
separation filters should account for the position of
the source in space. Hence, if information about the
sensor location is available it can be used to address
the permutation problem.

To understand this, consider the signal that ar-
rives at an array of sensors. Assuming a distant
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Table 4: Categorization of approaches to solve the permutation problem in the frequency domain.
Class Metric Reference
Consistency of Smooth spectrum [264, 149]
the filter Source locations [265]
coefficients Directivity pattern [266, 175, 73]

Location vectors [267]
DOA [184, 268, 72]
Adjacent matrix distance [269]
Invariances [48]
Split spectrum [270]
Frequency link in update process [127]
Initialization [250, 271]
Moving sources [167]
Vision [148]

Consistency of Amplitude modulation [159, 197, 272, 126, 203]
the spectrum Pitch [135, 147]
of the recovered Psychoacoustics [243, 243]
signals Fundamental frequency [244]

Cyclo-stationarity [273]
Periodic signals [221]
Cross-correlation [62, 274, 209]
Cross-cumulants [275]
Kurtosis [86]
Source distribution [276, 134]
Multidimensional prior [277, 278]
Clustering [230, 279]

Time-frequency FIR polynomial [23, 254, 113, 255]
information TD cost function [178]

Apply ICA to whole spectrogram [280]
Combined [106, 258, 281, 282]
approaches

source in an reverberation-free environment the sig-
nal approximates a plane-wave. If the plane-waves
arrives at an angle to the microphone array it will
impinge on each microphone with a certain delay
(see Figure 6). This delayτ is given by the micro-
phone distanced, the velocity of the wavec, and the
direction-of-arrival (DOA) angleθ:

τ =
d

c
sin θ, (46)

Filters that compensate for this delay can add the mi-
crophone signals constructively (or destructively) to
produce a maximum (or minimum) response in the
DOA. Hence, the precise delay in filters (which in
the frequency domain correspond to precise phase re-
lationships) establishes a relationship between differ-
ent frequencies that can be used to identify correct
permutations. This was first considered by Soon et

al. (1993) [286].
To be specific, each row in the separation ma-

trix W (ω) defines adirectivity pattern, and therefore
each row can be thought of as a separate beamformer.
This directivity pattern is determined by the transfer
function between the source and the filter output. The
magnitude response of then-th output is given by

rn(ω, θ) = |wH
n (ω)a(ω, θ)|2, (47)

wherea(ω) is anM×1 vector representing the prop-
agation of a distant source with DOAθ to the sensor
array. WhenM sensors are available, it is possible to
placeM − 1 nulls in each of theM directivity pat-
terns, i.e., directions from which the arriving signal
is canceled out. In an ideal, reverberation-free en-
vironment separation is achieved if these nulls point
to the directions of the interfering sources. The lo-
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1 2 3 M

d

Figure 6: A sensor array consisting ofM sensors
linearly distributed with the distanced to the adja-
cent sensor. The sensors are placed in a free field.
A source signal is considered coming from a point
source of a distancer away from the sensor array.
The source signal is placed in the far-field, i.e.,r ≫
d. Therefore the incident wave is planar and the ar-
rival angleθ is the same for all the sensors.

cations of these nulls, as they may be identified by
the separation algorithm, can be used to resolve the
permutation ambiguity [266, 287, 288, 81, 77, 131,
289, 290]. These techniques draw strong parallels
between source separation solutions andbeamform-
ing. The DOA’s do not have to be known in ad-
vance and can instead be extracted from the result-
ing separation filters. Note, however, that the ability
to identify source locations is limited by the physics
of wave propagation and sampling: distant micro-
phones will lead to grading lobes which will con-
fuse the source locations, while small aperture lim-
its spatial resolution at low frequencies. Ikram and
Morgan (2002) [175] extend the idea of Kurita et al.
(2000) [266] to the case where the sensor space is
wider than one half of the wavelength. Source loca-
tions are estimated at lower frequencies, which do not
exhibit grating lobes. These estimates are then used
to determine the correct nulls for the higher frequen-
cies and hereby the correct permutations. In order
to resolve permutations when sources arrive from the
same direction, Mukai et al. (2004) [291] use a near-
field model. Mitianoudis and Davies (2004) [268]
suggested frequency alignment based on DOA esti-

mated with the MuSIC algorithm [292]. A subspace
method has been used in order to avoid constraints
on the number of sensors. Knaak et al. (2003) [222]
include DOA information as a part of the BSS algo-
rithm in order to avoid the permutation. Although all
these methods assume a reverberation-free environ-
ment they give reasonable results in reverberant en-
vironments as long as the source has a strong direct
path to the sensors.

Two other methods also utilize geometry. In the
case of moving sources, where only one source is
moving, the permutation can be resolved by noting
that only one of the parameters in the separation ma-
trix changes [167]. If visual cues are available, they
may also be used to solve the permutation ambiguity
[148].

Instead of using geometric information as a sep-
arate step to solve the permutation problem Parra
and Alvino (2002) include geometric information di-
rectly into the cost function [184, 185]. This ap-
proach has been applied to microphone arrays under
reverberant conditions [187]. Baumann et al. (2003)
[72] have also suggested a cost function, which in-
cludes the DOA estimation. The arrival angles of the
signals are found iteratively and included in the sep-
aration criterion. Baumann et al. [73] also suggest a
maximum likelihood approach to solve the permuta-
tion problem. Given the probability of a permuted or
non-permuted solution as function of the estimated
zero directions, the most likely permutation is found.

Gotanda et al. (2003) [270] have proposed a
method to reduce the permutation problem based on
the split spectral difference, and the assumption that
each source is closer to one microphone. The split
spectrum is obtained when each of the separated sig-
nals are filtered by the estimated mixing channels.

Finally, for iterative update algorithms a proper
initialization of the separation filters can re-
sult in consistent permutations across frequencies.
Smaragdis [250] proposed to estimate filter values
sequentially starting with low frequencies and ini-
tializing filter values with the results of the previous
lower frequency. This will tend to select solutions
with filters that are smooth in the frequency domain,
or equivalently, filters that are short in the time do-
main. Filter values may also be initialized to sim-
ple beamforming filters that point to estimated source
locations. The separation algorithm will then tend
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to converge to solutions with the same target source
across all frequencies [184, 271].

7.2. Consistency of the Spectrum of the Recov-
ered Signals

Some solutions to the permutation ambiguity are
based on the properties of speech. Speech signals
have strong correlations across frequency due to a
common amplitude modulation.

At the coarsest level the power envelope of the
speech signal changes depending on whether there
is speech or silence, and within speech segments
the power of the carrier signal induces correlations
among the amplitude of different frequencies. A sim-
ilar argument can be made for other natural sounds.
Thus, it is fair to assumed that natural acoustic sig-
nals originating from the same source have a cor-
related amplitude envelope for neighboring frequen-
cies. A method based on this co-modulation prop-
erty was proposed by Murata et al. (1998) [159, 196].
The permutations are sorted to maximize the cor-
relation between different envelopes. This is illus-
trated in Figure 7. This method has also been used in
[293, 198, 199, 287, 263, 203]. Rahbar and Reilly
(2001, 2005) [209, 152] suggest efficient methods
for finding the correct permutations based on cross-
frequency correlations.

Asano and Ikeda (2000) [294] report that the
method sometimes fails if the envelopes of the dif-
ferent source signals are similar. They propose the
following function to be maximized in order to esti-
mate the permutation matrix:

P̂ (ω) = arg max
P (ω)

T∑

t=1

ω−1∑

j=1

[P (ω)ȳ(ω, t)]H ȳ(j, t),

(48)
where ȳ is the power envelope ofy and P (ω) is
the permutation matrix. This approach has also been
adopted by Peterson and Kadambe (2003) [232]. Ka-
mata et al. (2004) [282] report that the correlation
between envelopes of different frequency channels
may be small, if the frequencies are too far from each
other. Anemüller and Gramms (1999) [127] avoid
the permutations since the different frequencies are
linked in the update process. This is done by seri-
ally switching from low to high frequency compo-
nents while updating.

ω

t

ω

t

ω

t

ω

t

Figure 7: For speech signals, it is possible to esti-
mate the permutation matrix by using information on
the envelope of the speech signal (amplitude mod-
ulation). Each speech signal has a particular enve-
lope. Therefore, by comparison with the envelopes
of the nearby frequencies, it is possible to order the
permuted signals.

Another solution based on amplitude correlation
is the so-called Amplitude Modulation Decorrelation
(AMDecor)–algorithm presented by Anemüller and
Kollmeier (2000, 2001) [272, 126]. They propose to
solve, the source separation problem and the permu-
tation problems simultaneously. An amplitude mod-
ulation correlation is defined, where the correlation
between the frequency channelsωk andωl of the two
spectrogramsY a(ω, t) andY b(ω, t) is calculated as

c(Y a(ω, t), Y b(ω, t)) =

E[|Y a(ω, t)||Y b(ω, t)|]

−E[|Y a(ω, t)|]E[|Y b(ω, t)|]. (49)

This correlation can be computed for all combina-
tions of frequencies. This results in a square matrix
C(Y a, Y b) with sizes equal to the number of fre-
quencies in the spectrogram, whosek, lth element is
given by (49). Since the unmixed signalsy(t) have to
be independent, the following decorrelation property
must be fulfilled

Ckl(Y a, Y b) = 0 ∀a 6= b, ∀k, l. (50)

This principle also solves the permutation ambiguity.
The source separation algorithm is then based on the
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minimization of a cost function given by the Frobe-
nius norm of the amplitude modulation correlation
matrix.

A priori knowledge about the source distribu-
tions has also been used to determine the correct
permutations. Based on assumptions of Laplacian
distributed sources, Mitianopudis and Davies (2001,
2002) [251, 276, 134] propose a likelihood ratio test
to test which permutation is most likely. A time-
dependent function that imposes frequency coupling
between frequency bins is also introduced. Based on
the same principle, the method has been extended to
more than two sources by Rahbar and Reilly (2003)
[152]. A hierarchical sorting is used in order to
avoid errors introduced at a single frequency. This
approach has been adopted in Mertins and Russel
(2003) [212].

Finally, one of the most effective convolutive
BSS methods to-date (see Table 5) uses this statis-
tical relationship of signal powers across frequen-
cies. Rather than solving separate “instantaneous”
source separation problems in each frequency band
Kim et al. (2006) [295, 278, 277] propose a multi-
dimensional version of the density estimation algo-
rithms described in Section 5.1.3. The density func-
tion captures the power of the entire model source
rather than the power at individual frequencies. As
a result, the joint-statistics across frequencies are ef-
fectively captured and the algorithm converges to sat-
isfactory permutations in each frequency.

Other properties of speech have also been sug-
gested in order to solve the permutation indetermi-
nacy. Apitch-based method has been suggested by
Tordini and Piazza (2002) [135]. Also Sanei et al.
(2004) [147] use the property of different pitch fre-
quency for each speaker. The pitch and formants
are modeled by a coupled hidden Markov model
(HMM). The model is trained based on previous time
frames.

Motivated by psycho-acoustics, Guddeti and
Mulgrew (2005) [243] suggest to disregard frequency
bands that are perceptually masked by other fre-
quency bands. This simplifies the permutation prob-
lem as the number of frequency bins that have to be
considered is reduced. In Barros et al. (2002) [244],
the permutation ambiguity is avoided due toa priori
information of the phase associated with the funda-
mental frequency of the desired speech signal.

Non-speech signals typically also have properties
which can be exploited. Two proposals for solving
the permutation in the case of cyclo-stationary sig-
nals can be found in Antoni et al. (2005) [273]. For
machine acoustics, the permutations can be solved
easily since machine signals are (quasi) periodic.
This can be employed to find the right component in
the output vector [221].

Continuity of the frequency spectra has been used
by Capdevielle et al. (1995) [62] to solve the permu-
tation ambiguity. The idea is to consider the slid-
ing Fourier transform with a delay of one point. The
cross correlation between different sources are zero
due to the independence assumption. Hence, when
the cross correlation is maximized, the output be-
longs to the same source. This method has also been
used by Servière (2004) [253]. A disadvantage of
this method is that it is computationally very expen-
sive since the frequency spectrum has to be calcu-
lated with a window shift of one. A computation-
ally less expensive method based on this principle
has been suggested by Dapena and Servière (2001)
[274]. The permutation is determined from the so-
lution that maximizes the correlation between only
two frequencies. If the sources have been whitened
as part of separation, the approach by Capdevielle et
al.(1995) [62] does not work. Instead, Kopriva et
al. (2001) [86] suggest that the permutation can be
solved by independence tests based on kurtosis. For
the same reason, Mejuto et al. (2000) [275] consider
fourth order cross-cumulants of the outputs at all fre-
quencies. If the extracted sources belong to the same
sources, the cross-cumulants will be non-zero. Oth-
erwise, if the sources belong to different sources, the
cross-cumulants will be zero.

Finally, Hoya et al. (2003) [296] use pattern
recognition to identify speech pauses that are com-
mon across frequencies, and in the case of over-
complete source separation, K-means clustering has
been suggested. The clusters with the smallest
variance are assumed to correspond to the desired
sources [230]. Dubnov et al. (2004) [279] also ad-
dress the case of more sources than sensors. Cluster-
ing is used at each frequency and Kalman tracking is
performed in order to link the frequencies together.
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7.3. Global permutations

In many applications only one of the source signals is
desired and the other sources are only considered as
interfering noise. Even though the local (frequency)
permutations are solved, the global (external) permu-
tation problem still exists. Only few algorithms ad-
dress the problem of selecting the desired source sig-
nal from the available outputs. In some situations, it
can be assumed that the desired signal arrives from
a certain direction (e.g. the speaker of interest is in
front of the array). Geometric information can deter-
mine which of the signals is the target [184, 171]. In
other situations, the desired speaker is selected as the
most dominant speaker. In Low et al. (2004) [289],
the most dominant speaker is determined on a crite-
rion based on kurtosis. The speaker with the highest
kurtosis is assumed to be the dominant. In separation
techniques based on clustering, the desired source
is assumed to be the cluster with the smallest vari-
ance [230]. If the sources are moving it is necessary
to maintain the global permutation by tracking each
source. For block-based algorithm the global permu-
tation might change at block-boundaries. This prob-
lem can often be solved by initializing the filter with
the estimated filter from the previous block [186].

8. RESULTS

The overwhelming majority of convolutive source
separation algorithms have been evaluated on sim-
ulated data. In the process, a variety of simulated
room responses have been used. Unfortunately, it is
not clear if any of these results transfer to real data.
The main concerns are the sensitivity to microphone
noise (often not better than -25 dB), non-linearity in
the sensors, and strong reverberations with a possibly
weak direct path. It is suggestive that only a small
subset of research teams evaluate their algorithms on
actual recordings. We have considered more than 400
references and found results on real room recordings
in only 10% of the papers. Table 5 shows a com-
plete list of those papers. The results are reported as
signal-to-interference ratio (SIR), which is typically
averaged over multiple output channels. The result-
ing SIR are not directly comparable as the results for
a given algorithm are very likely to dependent on the
recording equipment, the room that was used, and the

SIR in the recorded mixtures. A state-of-the art al-
gorithm can be expected to improve the SIR by 10-
20 dB for two stationary sources. Typically a few
seconds of data (2 s-10 s) will be sufficient to gener-
ate these results. However, from this survey nothing
can be said about moving sources. Note that only 8
(of over 400) papers reported separation of more than
2 sources indicating that this remains a challenging
problem.

9. CONCLUSION

We have presented a taxonomy for blind separation
of convolutive mixtures with the purpose of provid-
ing a survey and discussion of existing methods. Fur-
ther we hope that this might stimulate the develop-
ment of new models and algorithms which more ef-
ficiently incorporate specific domain knowledge and
useful prior information.

In the title of the BSS review by Torkkola (1999)
[13], it was asked:Are we there yet?Since then
numerous algorithms have been proposed for blind
separation of convolutive mixtures. Many convolu-
tive algorithms have shown good performance when
the mixing process is stationary, but still only few
methods work in real-world, time-varying environ-
ments. In real-time-varying environments, there are
too many parameters to update in the separation fil-
ters, and too little data available in order to estimate
the parameters reliably, while the less complicated
methods such as null-beamformers may perform just
as well. This may indicate that the long de-mixing fil-
ters are not the solution for real-world, time-varying
environments such as the cocktail-party party situa-
tion.
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Table 5: An overview of algorithms applied in real
rooms, where the SIR improvement has been re-
ported.

Room size T60 N M SIR Reference
(approx.)
[m]

[ms] [dB]

6 × 3 × 3 300 2 2 13 [169, 170]1

6 × 3 × 3 300 2 2 8–10 [271]1

6 × 3 × 3 300 2 2 12 [249]
6 × 3 × 3 300 2 2 5.7 [290]
6 × 3 × 3 300 2 2 18–20 [297, 132]1

50 2 2 10 [207]
250 2 2 16 [262]

6 × 6 × 3 200 2 2 < 16 [205]2

6 × 6 × 3 150 2 2 < 15 [206]
6 × 6 × 3 150 2 2 < 20 [171]

500 2 2 6 [262]
4 × 4 × 3 130 3 2 4–12 [298]
4 × 4 × 3 130 3 2 14.3 [227]
4 × 4 × 3 130 3 2 < 12 [47]
4 × 4 × 3 130 2 2 7–15 [130]
4 × 4 × 3 130 2 2 4–15 [22, 299]2

4 × 4 × 3 130 2 2 12 [291]
4 × 4 × 3 130 6 8 18 [300]
4 × 4 × 3 130 4 4 12 [259]

130 3 2 10 [140, 141]
Office 2 2 5.5–7.6 [142]
6 × 5 130 2 8 1.6–7.0 [269]
8 × 7 300 2 2 4.2–6.0 [73]
15 × 10 300 2 2 5–8.0 [72]

2 2 < 10 [57, 91]
Office 2 2 6 [122]
Many rooms 2 2 3.1–27.4 [115]
Small room 2 2 4.7–9.5 [252]
4 × 3 × 2 2 2 < 10 [181]
4 × 3 × 2 2 2 14.4 [183]
4 × 3 × 2 2 2 4.6 [182]

2 2 < 15 [245]
6 × 7 580 2 3 < 73 [31]3

810 2 2 < 10 [167]2

Conf. room 4 4 14 [278]
150 3 3 10 [222]

15 × 10 × 4 300 2 2 10 [77]
360 2 2 5 [266]

5 × 5 200 2 2 6–21 [301]
300 2 2–12 8–12 [302]

3 × 6 3 8 10 [184]
4 × 3 × 2 2 2 15 [149]
5 × 5 × 3 2 2 5 [187]
8 × 4 700 2 4 16 [152]
7 × 4 × 3 250 2 2 9.3 [253]1

4 × 4 200 2 2 15 [303]
Office 500 3 2 4.3–10.6 [45]

300 2 6 < 15 [213]
1 Sources convolved with real impulse responses.
2 Moving sources.
3 This method is not really blind. It requires that sources
are on one at a time.
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cocktail-party problem, 1
convolutive model, 2
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delayed sources, 2
directivity pattern, 17

feed-forward structure, 4
feedback structure, 5
frequency domain, 2

higher order statistics, 8
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