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Abstract

Acoustic signals recorded simultaneously in a reverberant environ-

ment can be described as sums of di�erently convolved sources. The

task of source separation is to identify the multiple channels and possi-

bly to invert those in order to obtain estimates of the underling sources.

We tackle the problem by explicitly exploiting the non-stationarity of

the acoustic sources. Changing cross-correlations at multiple times

give a su�cient set of constraints for the unknown channels. A least

squares optimization allows us to estimate a forward model, identifying

thus the multi-path channel. In the same manner we can �nd an FIR

backward model, which generates well separated model sources. Under

certain conditions we obtain up to 14 dB signal enhancement in a real

room environment.

1 Introduction

A growing number of researchers have published in recent years on the prob-
lem of blind source separation. For one, the problem seems of relevance in
various application areas such as speech enhancement with multiple micro-
phones, crosstalk removal in multichannel communications, multi-path chan-
nel identi�cation and equalization, direction of arrival (DOA) estimation in
sensor arrays, improvement over beam forming microphones for audio and
passive sonar, and discovery of independent sources in various biological sig-
nals, such as EEG, MEG and others. Additional theoretical progress in our
understanding of the importance of higher order statistics in signal modeling
have generated new techniques to address the problem of identifying statis-
tically independent signals - A problem which lays at the heard of source
separation. This development has been driven not only by the signal pro-
cessing community but also by machine learning research that has treated
the issue mainly as a density estimation task.
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The basic problem is simply described. Assume ds statistically indepen-
dent sources s(t) = [s1(t); :::; sds(t)]

T . These sources are convolved and mixed
in a linear medium leading to dx sensor signals x(t) = [x1(t); :::; xdx(t)]

T that
may include additional sensor noise n(t),

x(t) =
PX

�=0

A(� )s(t� � ) + n(t) (1)

How can one identify the dxdsP coe�cients of the channels A and how can
one �nd an estimate ŝ(t) for the unknown sources?

Alternatively one may formulate an FIR inverse model W ,

u(t) =

QX

�=0

W (� )x(t� � ) (2)

and try to estimate W such that the model sources u(t) = [u1(t); :::; udu(t)]
T

are statistically independent.
Most of the previous work has concentrated on the property of statistical

independence, and ignores the additive noise [1, 2, 3, 4, 5, 4, 6, 7].
An alternative approach to the statistical independence condition in the

convolutive case has been touched on by Weinstein et al. in [8]. For non-
stationary signals a set of second order conditions can be speci�ed that
uniquely determines the parameters A. No algorithm has been given in [8]
nor has there been to our knowledge any results reported on this approach.
A resent paper by Ehlers and Schuster [9] carries that spirit in attempt-
ing to solve for the frequency components of A by extending prior work of
Molgedey and Schuster [10] on instantaneous mixtures into the frequency
domain. They fall short however in carefully considering the issues at hand
and mistakenly confuse this idea with simple decorrelation of multiple taps
in the time domain, which is known to be insu�cient [11, 12]. Simultaneous
work by Principe [13] suggests a similar approach for the time domain.

2 Convolutive Mixture

In previous work on instantaneous mixtures it has been demonstrated that
one can separate signals by simultaneously diagonalizing the cross-correlation
at di�erent time lags [11, 10, 14, 8].

As suggested for other source separation algorithms our approach to the
convolutive case is to transform the problem into the frequency domain and
to solve simultaneously a separation problems for every frequency [15, 16,
5, 9]. The solution for each frequency would seem to have an arbitrary
permutation. The main issues to be addressed here are how to obtain second
order equations in the frequency domain, and how to choose the arbitrary



permutations for all individual problems consistently. We will take up these
issues in the following sections.

2.1 Cross-correlations, circular and linear convolution

First consider the cross-correlations Rx(t; t+ � ) =


x(t)x(t+ � )T

�
. For sta-

tionary signals the absolute time does not matter and the correlations depend
on the relative time, i.e. Rx(t; t + � ) = Rx(� ). Denote with Rx(z) the z-
transform of Rx(� ). We can then write

Rx(z) = A(z)�s(z)A(z)
H + �s(z) (3)

where A(z) represents the matrix of z-transforms of the FIR �lters A(� ),
and �s(z), and �n(z) are the z-transform of the auto-correlation of the
sources and noise. Again they are diagonal due to the independence as-
sumptions.

For practical purposes we have to restrict ourself to a limited number of
sampling points of z. Naturally we will take T equidistant samples on the unit
circle such that we can use the discrete Fourier transform (DFT). For periodic
signals the DFT allows us to express circular convolutions as products such
as in (3). However, in (1) and (2) we assumed linear convolutions. A linear
convolution can be approximated by a circular convolution if P � T and we
can write approximately

x(!; t) � A(!)s(!; t) + n(!; t); for P � T (4)

where x(!; t) represents the DFT of the frame of size T starting at t,

[x(t); :::;x(t + T )], and is given by x(!; t) =
PT�1

�=0 e
�i2�!�

x(t + � ) and cor-
responding expressions for s(!; t) and A(!).

For non-stationary signals the cross-correlation will be time dependent.
Estimating the cross-correlation at the desired resolution of 1=T is di�cult
if the stationarity time of the signal is in the order of magnitude of T or
smaller. We are content however with any cross-correlation average which
diagonalizes for the source signals. One such sample average is,

�Rx(!; t) =
1

N

N�1X

n=0

x(!; t+ nT )xH (!; t+ nT ) (5)

We can then write for such averages

�Rx(!; t) = A(!)�s(!; t)A
H (!) + �n(!; t) (6)

If N is su�ciently large we can assume that �s(!; t) and �n(!; t) can be



modeled as diagonal again due to the independence assumption. For equa-
tions (6) to be linearly independent for di�erent times t and di�erent ! it
will be necessary that �s(!; t) changes over time for a given frequency, i.e.
the signal are non-stationary.

2.2 Backward model

Given a forward model A it is not guaranteed that we can �nd a stable
inverse. In the two dimensional square case the inverse channel is easily
determined from the forward model [8, 3]. It is however not apparent how to
compute a stable inversion for arbitrary dimensions. In this present work we
prefer to estimate directly a stable multi-path backward FIR model such as
(2). In analogy to the discussion above we wish to �nd model sources with
cross-power-spectra satisfying1,

�s(!; t) =W (!)
�
�Rx(!; t)� �n(!; t)

�
WH(!) (7)

In order to obtain independent conditions for every time we choose the
times such that we have non-overlapping averaging times for �Rx(!; tk), i.e.
tk = kTN . But if the signals vary su�ciently fast overlapping averaging times
could have been chosen. A multi-path channel W that satis�es these equa-
tions for K times simultaneously can be found, again with an LS estimation2

E(!; k) =W (!)( �Rx(!; k)� �n(!; k))W
H(!)� �s(!; k)

Ŵ ; �̂s; �̂n = argmin
W;�s;�n;

W (� ) = 0; � > Q;
Wii(!) = 1

TX

!=1

KX

k=1

kE(!; k)k2
(8)

Note the additional constraint on the �lter size in the time domain. Up to
that constraint it would seem the various frequencies ! = 1; :::; T represent
independent problems. The solutions W (!) however are restricted to those
�lters that have no time response beyond � > Q� T . E�ectively we are pa-
rameterizing Tdsdx �lter coe�cients in W (!) with Qdsdx parameters W (� ).
The LS solutions can again be found with a gradient descent algorithm. We
will �rst compute the gradients with respect to the complex valued �lter co-
e�cients W (!) and discuss their projections into the subspace of permissible
solutions in the following section.

The gradients of the LS cost in (8) are,

1W (!) represents the DFT with frame size T of the time domain W (�). In what follows
time and frequency domain are identi�ed by their argument � or !.

2In short we write again �s(!; k) = �s(!; tk) and �s = �s(!; t1); :::;�s(!; tK) when-
ever possible. The same applies to �n(!; t) and Rx(!; t)



@E

@W �(!)
=2

KX

k=1

E(!; k)W (!)
�
�Rx(!; k)� �n(!; k)

�
(9)

@E

@�̂�s(!; k)
=� diag (E(!; k)) (10)

@E

@�̂�n(k)
=� diag

�
WH(!)E(!; k)W (!)

�
(11)

With (10)=0 one can solve explicitly for parameters �s(!; k), while pa-
rameters �s(!; k);W (!) may be computed with a gradient descent rule.

2.3 Permutations and constraints

The above unconstrained gradients can not be used as such but have to be
constrained to remain in the subspace of permissible solutions withW (� ) = 0
for � > Q � T . This is important since it is a necessary condition for
equations (7) to hold to a good approximation.

Additionally, and this is a crucial point that may have not been realized
in previous literature, not all possible permutations of frequencies will lead
to FIR �lters which satisfy that constrain. Note that any permutation of the
coordinates for every frequency will lead to exactly the same error E(!; k).
The total cost will therefore not change if we choose a di�erent permutation
of the solutions for every frequency !. Obviously those solutions will not all
satisfy the condition on the length of the �lter. E�ectively, requiring zero
coe�cients for elements with � > Q will restrict the solutions to be smooth
in the frequency domain, e.g., if Q=T = 8 the resulting DFT corresponds to a
convolved version of the coe�cients with a sinc function 8 times wider than
the sampling rate.

It is therefore crucial to enforce that constraint by starting the gradi-
ent algorithm with an initial point that satis�es the constraints, and then
following the constrained gradient. The normalization condition that avoid
trivial solutions of the LS optimization have to be enforced simultaneously.
The constrained gradients are obtained by applying the corresponding pro-
jection operators. The projection operator that zeros the appropriate delays
for every channel Wij = [Wij(0); :::;Wij(!); :::;Wij(T )]

T is

P (2) = FZF�1 (12)

where the DFT is given by Fij = 1=
p
Te�i2�ij, and Z is diagonal with Zii = 1

for i < Q and Zii = 0 for i � Q. The projection operator that enforces unit
gains on diagonal �lters Wii(!) = 1 is applied simply by setting the diagonal
terms of the gradients to zero. These projections are orthogonal and can be
applied independently of each other. The so obtained constrained gradient
can be used in a gradient update of the �lter parameters.



The computational cost of the algorithm are dominated by the costs of
estimating �Rx(!; t) in (5), the gradient computation in (9), and the projec-
tion (12). Before the gradient descent starts one needs to evaluate (5) K
times, resulting in a computational cost of O(KNdxT (log T + dx)). Every
gradient step requires then a computation of O(KTdxds(2ds + dx)) in (9)
and O(dxdsKT log T ) in (12).

3 Experimental results

The main di�culty in assessing the quality of a separation from real record-
ings is that the true sources are generally not available.

We de�ne as the Signal to Signal Ratio (SSR) of a signal s(t) in a multi-
path channel H(!) the total signal powers of the direct channel versus the
signal power stemming from cross channels.

SSR[H; s] =

P
!

P
i jHii(!)j2


jsi(!)j2
�

P
!

P
i6=j

P
j jHij(!)j2 hjsj(!)j2i (13)

In the case of known channels and source signals we can compute the
expressions directly by using a sample average over the available signal and
multiplying the powers with the given direct and cross channel responses. In
the case of unknown channel response and underlying signals we can estimate
the direct powers (numerator) and cross-powers (denominator) by using al-
ternating signals. We estimate the contributions of source j while source j is
'on' and all other sources are 'o�'. During periods of silence, i.e. all sources
are 'o�' we can estimate background noise powers in all channels to subtract
from the signal powers.

In �rst experiment we hand-segment the signal of alternating speakers
into speech and non-speech to obtain the 'on' and 'o�' labels. We recorded
two speakers in a quiet o�ce environment (12.6 dB) for 30 seconds at 8kHz.
The two microphones were 50 cm apart facing the speakers situated at about
150 cm distance to the microphones and from each other. Half of the signal
was alternating speech to allow the measurement of SSR as outlined above.
In the second half the speakers talk simultaneously. The SSR of the recorded
signal was about 0 dB. The resulting separation after 400 iterations with,
T = 4096; Q = T=8; N = 10;K = 5, gave a SSR of 14.5 dB. The record-
ings and the separation can be heard at [17] along with other results on real
room recordings. A systematic analysis with real recordings is still outstand-
ing, in particular in order to determine the robustness of the algorithm to
background noise (more sources than sensors) and various room responses
(geometry of the room and location of sources and microphones)

We have used arti�cial random �lters in order to determine the depen-
dency of the algorithm on the various parameters such as number of channels,
number of sources, �lter size, and required signal length. All experiments
used mixtures with an SSR of roughly 0 dB as input. The direct forward
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Figure 1: Separation performance as a function of separation �lter size Q
for forward �lter sizes P = 16; 32; 64 (dash-doted, dashed, and solid lines
respectively). Mean values over 15 runs with di�erent random forward �lters
are shown. The deviation from that mean was in average 3.4 dB, 4.8 dB, and
1.3 dB respectively.

channels where constant gain (Aii(!) = 1) and the cross-channels where set
in the time domain to zero mean, normal, random numbers. The deviation
was adjusted to produce in average a SSR of 0dB. We used K = 5 in all
cases.

Figure 1 shows the dependency of the separation performance as measured
with (13) on the size Q of the unmixing �lters W for P = 16; 32; 64. Too
few parameter are not su�cient to perform the separation, while too many
parameters become harder to estimate. That tradeo� depends on the size
P of the forward �lter. We can see that the performance peaks as expected
with a shifting maximum for di�erent P .

Figure 2 shows the dependency of the separation performance on the
length of the used signal. In order to keep K = 5 we had to use overlapping
time windows and varying N . We see that the performance does not decay
too rapidly, allowing reasonable performance even down to one second. This
suggest that an online implementation of this algorithm might give reasonable
result with an adaption time of a few seconds.

For the experiments in �gure 1 and 2 a 15 seconds signal of continuous
speech and music sampled at 8 kHz where used.

Another interesting question is how well the performance scales with the
number of channels for the square case (dx = ds). Figure 3 shows the result up
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Figure 2: Separation performance as a function of signal length in seconds
for random forward �lters of size P = 64. Mean and standard deviation over
15 runs with di�erent random forward �lters are shown.

to 10 channels with �ve second of music per channel sampled at 8.8 kHz (CD
recordings). Again, the separation performance does not decay seriously with
the number of channels. We observed however that the algorithm converges
slower with increasing number of channels. The results in �gure 3 were
obtained by increasing the number of iterations linearly with the number of
channels. Additionally every gradient step is slower for increasing number of
channels as the number of computations scales with O(dsd

2
x + d2sdx).

Note that the separation quality obtained for the real room recording are
similar those of the of the random �lters. This is not a proof that the results
obtained with the arti�cial mixtures apply fully to real recordings but gives
at least some indication on its validity.

4 Conclusion

A large body of work has accumulated in the last two decades on the prob-
lem of blind source separation. We have concentrated on the rather general
case of recovering convolutive mixtures of wideband signals for less or equal
number of sources than sensors. Most of the concepts in this work where
borrowed from previous work. The main contributions are: We explicitly use
the property of non-stationary. Careful considerations of how to measure sec-
ond order statistics in the frequency domain allows us to obtain a constraint
LS cost that is optimal at the desired solutions. The constraint on the �lter
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Figure 3: Separation performance as a function of number of channels (ds =
dx) for random forward �lters of size P = 64. Mean and standard deviation
over 10 runs with di�erent random forward �lters are shown.

size solves the permutation problem of wideband signals. The current exper-
imental results suggest that under proper conditions we can achieve for two
channels a crosstalk reduction of up to 14 dB in a realistic environment.
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