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ABSTRACT

We propose a new performance criteria and update mechanism for
the blind decorrelation of an array of sensor measurements into inde-
pendent sources, assuming each sensor measures a different convolu-
tive mixture of statistically independent non-stationary sources.
Specifically, the criteria is the sum of the magnitude squared coher-
ence functions between all possible distinct pairs of outputs produced
by a matrix of adaptable filters operating on the sensor measurements
in the frequency domain. We then derive an efficient overlap-save on-
line update equation based on stochastic gradient descent and recur-
sive estimation of the coherence functions. We demonstrate separation
within fractions of a second and convergence within a few seconds on
real room recordings. We attribute this speed to the normalization
and recursive estimates of the coherence functions.

1 INTRODUCTION

While the theoretical underpinnings of the blind source separation (BSS) prob-
lem have advanced tremendously in the last decade (see [1]-[2]), the development
of fast, efficient, and robust algorithms that can solve real-world problems is still
lacking. This is particularly true for problems involving the presence of many
sources, more sources than sensors, the interference of diffuse noise, and the sepa-
ration of convolutive mixtures. It is the latter problem with which are concerned in
this paper.

The problem of separating convolutive mixtures of unknown sources arises in
several application domains, of which the most famous is the so-called cocktail
party problem. There, the problem is to recover the speech of multiple speakers
who are simultaneously conversing in a room, where their acoustic speech signals
are each filtered by a different speaker-to-microphone room response, depending on
their position, and then linearly mixed at the microphones. In the special case of the



meeting room transcription task, the goal is to recover the individual speakers from
the microphone signals sufficiently well to allow for use in an automatic speech
recognizer.

1.1 Approach

We have previously studied this problem for the special case when the source
signals are non-stationary processes ([3]-[5]). Non-stationarity can arise through
changes in the first-order distribution of a signal, as evidenced by changes in power,
changes in second-order joint distributions across time, as evidenced by changes in
spectrum, or higher-order changes.

Source separation is primarily based on the assumption of statistical indepen-
dence of the source signals. For stationary signals, second-order statistics (decorre-
lation) is not sufficient to identify and invert the mixing coefficients [7], and higher-
order statistics have to be considered either explicitly ([9]-[11]) or implicitly ([14]-
[17]). However, for non-stationary signals, varying second-order statistics provides
a sufficient constraint for separation [6]. In this case, multiple covariance matrices
estimated at different times can be simultaneously diagonalized ([4],[6]). This
approach has been demonstrated for the convolutive case ([3]-[5],[18]), and has
been thoroughly analyzed for the instantaneous case.

Thus, in attempting to separate non-stationary signals using multiple decorrela-
tion, we are faced with the problem of designing an algorithmrxgtiresnon-sta-
tionary signals for convergence. However, in adaptive signal processing, we are
used to formulating solutions to problems that depend on stationarity, and then
applying them to non-stationary signals on the assumption of “adiabatic” changes,
where the rate-of-change of stationarity is less than the time constant of the adapta-
tion. For example, in developing the recursive least squares (RLS) algorithm, the
optimal solution of the Wiener-Hopf equations are solved at tinmeterms of the
optimal solution at time-1, given the assumption of stationarity. However, this
does not prevent us from applying the RLS to non-stationary signals, through the
introduction of an appropriate forgetting factor.

If we were to attempt an analogous approach for BSS, we might ask the ques-
tion: given that we have found a set of filters that “best” separate the outputs at time
t-1, and a new set of measurements at tinteow do we update the filters to best
separate the outputs, making use of the solution attifrieAn answer to this ques-
tion is not so simple. The reason for this is that what we do with the new measure-
ment depends on whether it is part of the previous stationary regime, or represents a
transition to a new stationary regime. In the first case, the new data should be used
to improve the estimate of the current covariance, implying the use of a large for-
getting factor. In the second case, the data represents the beginning of new covari-
ance matrix for simultaneous diagonalization with previous covariance matrices,
implying a small forgetting factor is appropriate. Therefore, in addition to the con-
ventional trade-off between convergence speed and misadjustment, we now have a
trade-off between estimation accuracy and novel information when measuring cor-
relation.



As a compromise, the approach we take here is to focus on how to effectively
and efficiently measure decorrelation, and then turn that measure into a criteria for
adaptation purposes. In this paper, we propose to usedierence functioas a
measure of signal decorrelation. The coherence function is the frequency-domain
equivalent of the correlation coefficient, and represents the degree of correlation as
a function of frequency. It has the desirable property of being scaled such that it is
independent of the absolute power of either signal.

2 PROBLEM STATEMENT

The problem we seek to solve is the followingunknown source signals are
convolutively mixed and measured blysensors

x(t) = A*s(t) (1)

wheres is an unknown KIx1) vector of source signalgy is an unknown xN)
mixing matrix of channel impulse responses, ansla measured\x1) vector. The
convolution operator * here implies both matrix multiplication and convolution. We
then seek a matrix of filters operating on the sensor measurements

y(t) = W*x(t) )

such that the components of tHéx({) outputy are statistically independent, where
W is a (\xM) matrix of filter impulse responses.

In order to understand what an independence criteria can accomplish, it suf-
fices to determine the set of all operationssosuch that the resulting signals are
still independent. Clearly a reordering of the componentsades not affect their
independence. The componentssafan also be separately filtered, either linearly
or nonlinearly, without affecting their independence. Thusan only approximate
s to within a permutation and filtering operation. The latter limitation means that
BSS is distinct from the problem of blind deconvolution. That is, independence
based BSS by itself cannot recover the componentsfadm filtered versions of
themselves. For this reason, the diagonal component$ iof the time domain are
often fixed to a unity gain delta function, possibly with a delay.

In the time domain, independence must be tested not only at the same instant
of time, but for all possible combinations of delays of the components ®his
problem can be ameliorated by performing the separation in the frequency domain.
In the frequency domain, convolution becomes multiplication and (2) becomes

Y(w,t) = W(w,t) X(w,t) (3)

Note that because the signals assumechon-stationary, we have written their fre-
guency response as anplicit function of time. We have written thé\kM) matrix
of filter frequency responsedy(wt), as an implicit function of time with an eye
towards adaptation rules that we will develop later.



Equations (2) and (3) descrilamy linear system. Ultimately, we must imple-
ment them in a specific architecture. In this paper, we use finite impulse response
(FIR) filters because this allows the actual filtering operation to be carried out in the
frequency domain.

3 THE COHERENCE FUNCTION AS SEPARATION CRITERIA

The criteria we adopt is the sum of theagnitude squared coherence functions
between alNx(N-1)/2 possible distinct pairs of outputs

J= Cyyv, (@, 1)) @)
PDACHCY
whereCYiyj(w, t) is theoherence functiobetween outputisand;j, defined by

Syy (1)
Cyy (1) = .
(@Y= T 08 v (1)

(5)

and wheréYin(oo, t) is theross-power spectral densibetween outputsandj at

time t. The squared coherence function is real, constrained to lie between 0 and 1
for all frequencies, and is identically equal to one wlien This latter property
means that it is immaterial whether the summation in (4) includes thé=gase

We can express all these equations in matrix form as
2 H
J = ZHCYY((‘O! D = Ztrace[CYY(oo, t) Cyy (w )] (6)

whereCyy is a (NxN) matrix of coherence functions whose components(hrrlgaJ

Equation (6) represents therobenius squared nornof the coherence function
matrix. Again, because the diagonal elements of the coherence function matrix are
identically one, it is immaterial whether we include them in the criteria. We can
also express the matrix of coherence functions

Cyy (@, 1) = AYY (w, ) Byy (@, 1) TAVY 2, 1) 7)

in terms of a NxN) matrix of cross-power spectral densities between the outputs,
Syvy, whose components aEQ‘Yj , and a diagonal matgx, whose diagonal ele-

ments areSy y, . Inserting (7) into (6) results in:

J= Ztrace{/\§lv(w. ) Dyy (@, 1) TAGY (@, t) CByy (0, 1)] (8)



3.1 Estimating the output-output cross-power spectral densities

Formally, the cross-power spectral density is the Fourier transform of the
expected value of the cross-correlation in the time domain. However, it can also be
obtained as the expected value of the product of the signals in the frequency
domain. In order to efficiently estimate the output-output cross-power spectral den-
sity, we use a recursive estimator

Syy (@, 1) =y Syy (0 t=T)+(1-y) Y(w,t) ¥ (1) 9)

wherey is a forgetting factor, constrained @<y <1 for stability, ahd a block
processing time (frame rate) that represents the time it takes to esWnigte for-
getting factor and block processing time combine to make the effective memory of
the estimator to b&@/(1-y). Taking the expected value of both sides of (9) readily
shows that it is annbiasedestimator foistationarysignals.

3.2 Weight update

Clearly, in order to capture short-term non-stationarity we must use the sto-
chastic gradient approximation. Thus, in order to find the weight-update equation,
we take the derivative of the criteria (8) with respect to the complex weights in the
frequency domain and then drop the summation over time, updating the weights at
the end of each time block.

We are then faced with the question of whether to take the derivatives with

respect to the power spectral densit®gy, . Since they always appear in the
denominator, this implies simultaneously decorrelating the ougmdsnaximizing

the output power. However, the output powers are already constrained by fixing the
diagonal filters ofW to unity gain delta functions. Hence, for the purposes of this
paper, we regard them as a constant normalization factor. Then, it is not difficult to
show that the gradient update equation is

AW (0, 1) = —NAGY (0, 1) O Syy (0, 1) = Ayy (@, 1)] TAGY (@, 1) Byx (@, ) (10)

whereSyy is a (N\xM) matrix of cross-power spectral densities betweerotitputs
and theinputs

Syx(@ 1) = ¥ Syx(w t=T)+(1-y) Y(w 1) X" (1) (11)

It is important to note that the recursive nature of the cross-power spectral density
estimates in (9) and (11) means tf&t, cannot be obtained directly froiByx
through a simple multiplication by the weights. This differs from all previous meth-
ods that we have seen, including our previous work, which use a single recursive
estimate ofSyy involving the inputs only, and then obtaiSgy andSyy through
multiplications involving the weight matri.



3.3 Implementation details

The entire algorithm consists of equations (3) and (9)-(11) and is entirely com-
patible with the overlap-save method of frequency domain adaptive filtering. The
overlap-save method implements linear convolution in the frequency domain with
the discrete Fourier transform (DFT), or its efficient counterpart, the fast Fourier
transform (FFT). However, since the DFT corresponds to circular convolution in
the time domain, the filters must be padded with zeros, in turn requiring the use of a
larger input buffer. As a result, only the latter part of the output in the time domain
is valid. In the context of the present algorithm, it is thus incorrect to directly use
the complex outpul =W*X in updating the cross-power spectral densities in (9)
and (11). Rather, they must first be transformed into the time domain (also required
to obtain the system output), and the invalid parts zeroed prior to transforming back
into the frequency domain to obtain a validfor use in (9) and (11). Note that this
is not required foiX, since the input buffer is always filled with valid input samples
prior to transforming into the frequency domain. Although other frame rates rela-
tive to the filter size can be used, a 50% overlap is the most compuationally efficient
and is the one adopted for the simulations presented next.

The computational complexity of the algorithm scales linearly in the number
of inputs and quadratically in the number of outputs. For the simulation to be pre-
sented next, a two input - two output problem at a sampling rate of 8 kHz with 256
taps ran in approximately 1/20 real-time for compiled c-code on a 866 MHz Pen-
tium Illl. Thus, the algorithm is entirely suitable for real-time operation for many-
input, many-output problems.

4 EXPERIMENTS

The data set used here first appeared in [3], and later [4]-[5]. Two live speakers
were recorded in a real room of dimensions 3m x 3.6m x 2.3m using two unidirec-
tional microphones, 50 cm apart and 150 cm from the speakers, and sampled at 8
kHz. The training data is a 15 second recording where both speakers are continu-
ously and simultaneously talking. The test data consists of another 15 second
recording where the two speakers alternately say the digits such that only one
speaker is active at a time. The two data sets were recorded consecutively to ensure
that the speakers maintained their position and thus that the room responses would
not change.

For the test data, the active periods of each speaker were hand segmented in
order to obtain an accurate measurement of signal separation. Whenever a perfor-
mance measure was required during training, the training weights were used to fil-
ter the entire 15 seconds of test data. The resulting output was then analyzed using
the aforementioned segmentation such that whenever a speaker was talking, the
power in both the enhanced and rejection channels were measured and accumu-
lated. Thesignal to interference rati¢SIR) was then calculated as



On-Line Convergence for Various Learning Rates
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Figure 1. Test set performance during on-line adaptation on training set for various learning
rates. Other parameters gre 0.5 and\yps= 256.

P
SIR= 10 Dlogm[m‘j (12)

Prejection

The effect of various learning rates on the algorithm’s convergence is shown in
Fig. 1. The test set performance was measured dwintine adaptation on the
training set afteeachweight update, which for 256 taps at 8 kHz occurred every
0.032 s. With the forgetting factor setyst0.5, the effective memory depth was thus
0.064 s. At the highest learning rate (0.1), a separation of 3 dB was achieved after
only 10 weight updates or approximately 1/3 s, and a separation of 6 dB was
achieved in approximately 1.3 s. However, this learning rate also exhibited some
undesirable misadjustment about the mean, particularly around the 12 s mark. It is
not clear what causes this temporary degradation in performance, but its extended
nature suggests possible movement of one of the speakers during the training utter-
ances. The smaller learning rates are less susceptible to this, at the expense of a
slower initial convergence time.



On-Line Convergence for Various Forgetting Factors
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Figure 2. Test set performance during on-line adaptation on training set for various forgetting
factors. Other parameters aye= 0.05 andNy;ps= 256.

The effect of various forgetting factors on the algorithm’s on-line convergence
is shown in Fig. 2. Early in the training (< 2s), the forgetting factor does not seem to
play an important role. However, beyond this, a forgetting factoy=6x.9 clearly
under performs the other settings. At the other extreme, a forgetting facyo® &
outperforms the other settings between 3s and 7s, but then under performs. Overall,
the best performance was obtained for a forgetting factpr@5b.

Finally, theoff-line performance for various filter sizes is shown in Fig. 3 as a
function of the length of training data. The algorithm was trained for 10 iterations
on increasing lengths of training data, using the weights from the previous length as
a seed. Performance was then measured on the test data using the weights at the end
of the final training iteration. For 512 taps, a separation of over 11 dB was obtained
using approximatgl 1 s of data. Thus, very little data is needed to achieve good
separation. For 1024 taps, a separation of better than 12 dB is consistently main-
tained, but it takes 5 s of training data to achieve this level.



Off-Line Performance for Various Filter Orders
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Figure 3. Test set performance after off-line training as a function of training data length for
various filter lengths. Other parametersare0.025 and/ = 0.5.

5 CONCLUSIONS

The present work is an extension of our previous work on the blind decorrela-
tion of non-stationary signals. However, it differs significantly in two important
respects: the use of the coherence function and its corresponding normalization,
and the independent estimates of the output-output and input-output cross power
spectral densities. The combination of these two improvements results in very fast
convergence. However, because the BSS literature typically reports steady-state
rather than convergence performance, and due to a lack of standardized data sets,
we cannot claim that the algorithm is faster than all others. Nevertheless, the low
computational complexity and fast convergence clearly shows that it is suitable for
real-time operation. In addition, the potential remains for improving performance
through adaptation of the learning rate and/or forgetting factor, particularly as the
latter parameter relates to the rate-of-change of stationarity. We also plan to study
the permutation and scaling problem as it relates to the details of the algorithm.
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